Integral de funções de uma variável

Tamanho: px
Começar a partir da página:

Download "Integral de funções de uma variável"

Transcrição

1 Integrais Múltiplas

2 Integral de funções de uma variável x = b a n a b f x dx = lim m m i=1 f(x i ) x

3 Integral Dupla Seja f uma função de duas variáveis definida no retângulo fechado. R = a, b x c, d = {(x, y) R a x b; c y d} e vamos, inicialmente, supor f(x,y) > 0. O gráfico de f é a superfície de equação z = f(x,y).

4 Problema: Encontrar o volume do sólido acima de R e abaixo da superfície S. S = {(x, y, z) R 3 x, y R, 0 z f(x, y)}

5 Subdividindo [a, b] em m subintervalos e [c, d] em n subintervalos, temos: b a x = m e y = d c n Área dos subretângulos : A = xy

6 6 Ilustração da interpretação geométrica da integral dupla

7 Figura 5 O volume da caixa R ij é dado pelo produto pela altura vezes a área do retângulo da base: V Rij = f(x ij, y ij)a

8 O volume procurado V é aproximadamente a soma dos volumes destes prismas: n V f ( x, y ) A i1 j1 Quanto maior o número de retângulos da região R mais próximo de V fica a soma dupla acima, podemos dizer então que Nestas condições temos a seguinte definição: m n m V lim f ( x, y ) A nm, i 1 j 1 ij ij ij ij

9 Definição: Seja f uma função contínua definida em R R com valores reais, definimos a integral dupla na região R acima por: R f ( x, y) da lim f ( x, y ) A Se f for positiva em volume do sólido S. n m nm, i 1 j 1 R ij então essa integral resulta no ij

10 Exemplo 1: O volume do sólido que está acima do quadrado R = [0,] x [0,] e abaixo do parabolóide elíptico z = 16 x y pode ser aproximado pela subdivisão de R em quatro quadrados iguais e a escolha do ponto amostra como o canto superior direito de cada quadrado R ij.

11 Solução: Os quadrados estão ilustrados na figura acima e a área de cada um vale 1. O parabolóide é o gráfico de f(x,y) = 16 x y. Aproximando o volume pela soma de Riemann com m = n =, temos:

12 i1 j1 V f ( x, y ) A f 1,1 A f 1, A f,1 A f, A ij ij uv Esse é o volume das caixas que aproximam o volume V, como mostra a figura a seguir.

13 13

14 Abaixo estão ilustrados a três diferentes subdivisões z 16 x y m = n = 4 V 41.5 Figure m = n = 8 V m = n = 16 V The approximations become more accurate as m and n increase. A 14

15 Integrais Iteradas Supondo f(x, y) contínua no retângulo R = a, b x c, d. Temos que d A x = f x, y dy c b b d V = A x dx = f x, y dy dx a a c A 15

16 Integrais iteradas Teorema de Fubini: Se f for contínua no retângulo R = { (x,y) a < x < b, c < y < d }, então calculamos a integral dupla de f em R através de integrais iteradas, como mostrado abaixo: b d d b f ( x, y) da f ( x, y) dy dx f ( x, y) dx dy R a c c a vale sempre que f for limitada em R, podendo ser descontínua em um número finito de pontos de R.

17 PROPRIEDADES DAS INTEGRAIS DUPLAS i) ii) iii) [ f ( x, y) g( x, y)] da f ( x, y) da g( x, y) da D D D D cf ( x, y) da c f ( x, y) da D f ( x, y) da f ( x, y) da f ( x, y) da D D D 1 se D = D 1 D, onde D 1 e D não se sobrepõem exceto, possivelmente, nas fronteiras.

18 Exemplo : Calcule o valor da integral, onde R = [0,3] x [1,] x yda R

19 Solução: De acordo com a figura acima temos: R y 4 1 x yda x ydydx x dx x x dx x x x dx 13,5 3 R x 7 x yda x ydxdy y dy y 0 dy y , O valor obtido é o volume do sólido acima de R e abaixo do gráfico da função f(x,y) = x y (Veja figura ao lado)

20 Exemplo 3: Calcule R = [1,] x [0,]. Solução: R , onde ysen( xy) da ysen( xy) dxdy cosxy dy 1 ( cos y cos y) dy seny seny 1 1 sen sen sen0 sen0 0 R ysen( xy) da Note que é importante saber escolher a ordem de integração que dê menos trabalho. O resultado dessa integral representa a diferença de volume da parte do sólido positivo com a parte negativa. 0 1

21 Exemplo 4: Determine o volume do sólido S que é delimitado pelo parabolóide elíptico x + y + z = 16, os planos x = e y = e os três planos coordenados. Solução: S é o sólido que está abaixo da superfície z = 16 x y e acima do retângulo R = [0,] x [0,], como mostra a figura. Vamos calcular o volume deste sólido usando integral dupla:

22 Solução V 16 x y da x y dxdy 3 x 16x xy dy y R 88 4 y 3 dy 3 88 y y dy uv

23 Integrais duplas em regiões gerais Tipo 1 - Regiões planas inscritas em faixas verticais: Seja D = { (x,y) R a < x < b, g 1 (x) < y < g (x) } onde g 1 e g são contínuas em [a, b]. Por exemplo, as regiões D representadas abaixo:

24 A integral dupla de f em D é calculada pelas seguintes integrais iteradas: 1 ( x) f ( x, y) da f ( x, y) dydx D a g ( x) b g

25 Tipo - Regiões planas inscritas em faixas horizontais Sendo D= {(x, y) c y d, h 1 (y) < x < h (y) }

26 A integral dupla de f em D é calculada pelas seguintes integrais iteradas: sempre que f for contínua em D. 1 ( x) f ( x, y) da f ( x, y) dxdy D c h ( x) d h

27 Exemplo 5: Calcule ( x y ) da onde D é a D região limitada pelas parábolas y = x e y = 1 + x. Solução: y = 1+ x y = x

28 D = { (x,y) 1 < x < 1, x < y < 1 + x } D ( ) ( ) 1 1 x 1 1 x x y da x y dydx xy y dx x -1 x x(1 x ) (1 x ) - x 4x dx x x 1 x x - x - 4x dx 4 3-3x - x x x 1 dx x x x x x

29 Exemplo 6: Determine o volume do sólido que está abaixo do parabolóide z = x + y e acima da região do plano xy limitada pela reta y = x e pela parábola y = x. Solução: D = { (x,y) 0 < x <, x < y < x } x 3 y V x y da x y dydx x y dx 0 3 D 0 x x x 4 x 14x 4 x 14x x x x x 3 3 dx x dx x

30 Gráfico do exemplo 6 y = x y= x Exercício: Resolva o exemplo anterior invertendo ordem de integração:

31 Exemplo 7: Calcule xyda D, onde D é a região limitada pela reta y = x 1 e pela parábola y = x + 6. Solução:

32 A intersecção das duas curvas é calculada da seguinte maneira: [y = x + 6] [y = x 1] y 6 x e x = y +1 y 6 y y 8 = 0 y 1 y = ( x = 1 ) ou y = 4 (x = 5 ) Assim, preferimos expressar D como: y 6 D x, y y 4, e x y 1

33 Fazemos agora o cálculo: D 4 y1 4 y1 x xyda xydx dy y dy y 6 y y y y y 1y 36y dy 8 1 y 16y 8y 3y dy 4 1 y y 4y 8 16y

34 Exemplo 8: Determine o volume do tetraedro limitado pelos planos x + y + z =, x = y, x = 0 e z = 0. Solução: Em uma questão como esta, é prudente desenhar dois diagramas: um do sólido tridimensional e outro da região plana D sobre a qual o sólido está. Igualando as equações dos planos, duas a duas, obtemos as retas que contém as arestas do tetraedro:

35 A figura acima, à esquerda, mostra o tetraedro T limitado pelos planos coordenados x = 0, z = 0, o plano vertical x = y e o plano x + y + z =. Como x + y + z = intercepta o plano xy (de equação z = 0) na reta x + y =, vemos que T está sobre a região triangular D, do plano xy, limitada pelas retas x = y, x + y = e x = 0. O plano x + y + z = pode ser escrito como z = x y e a região D como:

36 D { x, y 0 x 1, x / y 1 x / }. 1 1 x x/ x x V x y da x y dydx y xy y dx D 1 x x x x x 1 x1 1 x dx x x x x x x 1 x x dx x 1 1 x x dx x x 3 3

37 Exemplo 8: Expresse, de duas maneiras, as integrais iteradas que resolvem y cos xda, D onde D é a região do plano xy limitada pelos gráficos de x, y = 1, y = 3, 3y + x = 10 e x = y. 6 Solução:

38 Dividiremos a região D em duas D 1 e D. 1) Inscrita na faixa vertical /6 x 4 e, nesse caso dividi-la em D 1 = { (x,y) /6 x 1, 1 y 3 } e 10 x D = { (x,y) 1 x 4, x y } 3 ) Inscrita na faixa horizontal 1 y 3 e, nesse caso, dividi-la em D 1 = { (x,y) 1 y, /6 x y } e D = { (x,y) y 3, /6 x 10 3y }

39 Podemos então escrever de duas formas a integral. y cos xda y cos xda y cos xda D D D 1 10x y cos xdydx y cos xdydx 1 1 y cos xda y cos xda y cos xda D D D 1 x y y y cos xdxdy y cos xdxdy 1 6 6

40 Integrais Duplas em Coordenadas Polares Regiões Polares Simples: Uma região polar simples num sistema de coordenadas polares é uma região delimitada por dois raios, e r, e duas curvas polares contínuas, r 1 ( ) r r ( ) e, onde as equações dos raios e das curvas satisfazem as seguintes condições: (i) (ii) (iii) 0 r( ) r ( ) 1

41 Regiões em Coordenadas Polares y R r = f () f 1 () r f () 1 1 r 1 = f 1 () x

42 Integrais Duplas em Coordenadas y R Polares A k = (r - r 1 )( - )/ r = [(r 1 + r )/] (r) r A k unidade de área: r 1 A k x

43 Teste Faremos o volume V k do prisma k por V f r A * * k ( k, k ). k Sendo assim, o volume aproximado do sólido é: n V f r A k1 * * ( k, k ). k e definiremos a integral dupla em coordenadas polares por; n r ( ) * * lim ( k, k ). k (, ) n k 1 r ( ) f r A f r da 1

44 Observe que a unidade de área pode ser dada usando-se os centros dos sub-retângulos: e Então, Onde A {( r, ) r r r, } * * k k k k1 k k k1 k k * 1 * 1 rk ( rk 1 rk ) k ( k 1k ) rk rk rk 1 A 1 1 k rk k rk 1 k 1 ( rk rk 1 ) k 1 ( rk rk 1 )( rk rk 1 ) k r r * k k k

45 Cálculo da Integral Dupla em Coordenadas Polares R: r 1 () r r () r ( ) R f ( r, ) da f ( r, ) rdrd r 1 ( )

46 (3x 4y ) da Example 1: Calcule R, onde R é a região do semiplano y 0 delimitada pelos circulos x y 1, and x y 4. Solução: A região R pode ser descrita como R {( x, y) y 0, (3x 4y ) da R 0 1 (3r cos 1 x 0 1 4r 3 y 4} (3r cos sin r r1 ) drd {( r, ) 1 r, 0 } 4r sin ) rdrd 3 4 r cos r sin d 0 7cos 15sin d cos (1 cos ) d sin sin

47 Example : Encontre o volume do sólido limitado Pelo plano xy e pelo parabolóide z 1 x y V D {( x, y) x y 1} {( r, ) 0 r 1, 0 } (1 x y ) da D 1 (1 r d ( r r r 4 ) rdrd 1 0 r 3 ) dr

48 Para uma região do tipo Onde D é uma região do tipo D {( r, ), h ( ) r h ( D h ( ) h ( ) Temos a integral f ( x, y) da 1 f ( r cos, r sin ) rdrd 1 )}

49 Example 3 Usando a integral dupla encontre a área englobada pela pétala da rosácia r D {( r, ), 0 r cos } 4 4 cos /4 cos A( D) da rdrd D /4 0 /4 /4 cos 1 r d /4 cos /4 /4 /4 d 1cos 4 d /4 1 1 sin /4

50 Example 4 Encontre o volume do sólido que está sob o parabolóide, acima do plano e dentro do cilindro y x z xy. x y x Solution O sólido está acima do disco, limitado pelo círculo } cos 0, ), {( r r D

51 D da y x V ) ( / / cos 0 rdrd r / / cos d r / / 4 cos 4 d / 0 4 cos 8 d / 0 cos 1 8 d / 0 ] cos4 1 cos [1 1 d 3 3 sin 4 sin 3 / 0 8 1

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Cálculo Diferencial e Integral 2: Integrais Duplas

Cálculo Diferencial e Integral 2: Integrais Duplas Cálculo Diferencial e Integral 2: Integrais Duplas Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Integrais Duplas sobre Retângulos 2 3 Lembrete:

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II Universidade Federal de Viçosa Centro de Ciências xatas e Tecnológicas epartamento de Matemática MAT 43 - Cálculo iferencial e Integral III a Lista - 8/II Máximos e mínimos. A distribuição de temperatura

Leia mais

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem

Leia mais

FEITEP - PROFESSOR GILBERTO TENANI CÁLCULO III - PRIMEIRO BIMESTRE /2

FEITEP - PROFESSOR GILBERTO TENANI CÁLCULO III - PRIMEIRO BIMESTRE /2 FEITEP - POFESSO GILBETO TENANI CÁLCULO III - PIMEIO BIMESTE - 206/2 Soma de iemann Estime o volume do sólido contido abaixo da superfície z = xy e acima do retângulo = {(x, y) 0 x 6, 0 y 4}. Utilize a

Leia mais

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo Integral Dupla Aula 06 Cálculo Vetorial Professor: Éwerton Veríssimo Integral Dupla Integral dupla é uma extensão natural do conceito de integral definida para as funções de duas variáveis. Serão utilizadas

Leia mais

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d) Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine

Leia mais

Revisão de integrais simples. Definimos a soma S n = f(t i ) x i. chamada como soma. de Riemann de f sobre [a, b] i=1

Revisão de integrais simples. Definimos a soma S n = f(t i ) x i. chamada como soma. de Riemann de f sobre [a, b] i=1 Revisão de integrais simples Definimos a soma S n = n i=1 f(t i ) x i chamada como soma de Riemann de f sobre [a, b] 1 Definição: Se a sequencia {S n } das somas de Riemann da função f converge quando

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014 Cálculo 2 ECT1212 Integrais Múltiplas Prof. Ronaldo Carlotto Batista 23 de outubro de 2014 Cálculo de áreas e Soma de Riemann Vamos primeiro revisar os conceitos da integral de uma função de uma variável.

Leia mais

Cálculo III-A Lista 1

Cálculo III-A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,].

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j).

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j). MAT1153 / 2008.1 LISTA DE EXECÍCIOS : EGIÕES DO PLANO, INTEGAIS DUPLAS E VOLUMES (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) (2) Fazer

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013 MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x

Leia mais

Cálculo III-A Módulo 1

Cálculo III-A Módulo 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Prezado aluno, Cálculo III-A Módulo Seja bem-vindo à nossa disciplina. Este teto possui - salvo

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,]. +

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis 9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

Capítulo 5 Integrais Múltiplas

Capítulo 5 Integrais Múltiplas Capítulo 5 Integrais Múltiplas 1. Revisão de Integral de Funções a uma Variável 1.1. Integral Indefinida Definição: Uma função será chamada de antiderivada ou primitiva de uma função num intervalo I se

Leia mais

Lista de Exercícios de Cálculo 3 Sétima Semana

Lista de Exercícios de Cálculo 3 Sétima Semana Lista de Exercícios de Cálculo Sétima Semana Parte A. Use os multiplicados de Lagrange para determinar os valores máximos e mínimos da função sujeita as restrições dadas. (a) f(x, y) = x 2 + y 2 s.a. xy

Leia mais

Integrais Múltiplas. Integrais duplas sobre retângulos

Integrais Múltiplas. Integrais duplas sobre retângulos Integrais Múltiplas Integrais duplas sobre retângulos Vamos estender a noção de integral definida para funções de duas, ou mais, variáveis. Da mesma maneira que a integral definida para uma variável, nos

Leia mais

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci

Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci Universidade Federal do Pará Cálculo II - Projeto Newton - 5/4 Professores: Jerônimo e Juaci a Lista de exercícios para monitoria. Determine o volume do sólido limitado pelos planos coordenados e pelo

Leia mais

Aplicações de. Integração

Aplicações de. Integração Aplicações de Capítulo 6 Integração APLICAÇÕES DE INTEGRAÇÃO Neste capítulo exploraremos algumas das aplicações da integral definida, utilizando-a para calcular áreas entre curvas, volumes de sólidos e

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

Integrais Múltiplos. Slide 1. c 2000, 1998 Maria Antónia Carravilla FEUP

Integrais Múltiplos. Slide 1. c 2000, 1998 Maria Antónia Carravilla FEUP Integrais Múltiplos Slide 1 Transparências de apoio à leccionação de aulas teóricas Versão 2 c 2000, 1998 Integrais Múltiplos 1 Integrais Duplos Generalização do conceito de integral a subconjuntos limitados

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFGS Instituto de Matemática 2015/1 MAT0154 álculo e Geometria Analítica IIA POVA 2 15 de maio de 2015 08h0 1 2 4 5 081 Nome artão Turma hamada 0811 Seja a região plana delimitada pela curva de equação

Leia mais

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais simples, nós somamos os valores de uma função f(x) em comprimentos dx. Agora, nas integrais duplas fazemos o mesmo, mas

Leia mais

INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1

INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1 Teoria INTEGRAIS MÚLTIPLAS Integral Dupla: Seja o retângulo R = {(x, y) R a x b, c y d} e a = x 0 < x 1

Leia mais

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y Universidade Federal Fluminense Andrés Gabarito - Primeira Verificação Escolar de álculo IIIA GMA - Turma. onsidere a integral dupla a Esboce a região. y Temos que onde Observando que f(x, ydxdy + y {(x,

Leia mais

Aplicações à Física e à Engenharia

Aplicações à Física e à Engenharia UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física

Leia mais

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

Exercícios de Cálculo - Prof. Ademir

Exercícios de Cálculo - Prof. Ademir Exercícios de Cálculo - Prof. Ademir Funções, limites e continuidade. Considere f : IR IR definida por f(x) = x 4x + 3. (a) Faça um esboço do gráfico de f. (b) Determine os valores de x para os quais f(x)..

Leia mais

Cálculo III-A Módulo 1 Tutor

Cálculo III-A Módulo 1 Tutor Eercício : Calcule as integrais iteradas: Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor a) e dd b) dd Solução: a) Temos:

Leia mais

MAT146 - Cálculo I - Cálculo de Áreas

MAT146 - Cálculo I - Cálculo de Áreas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Anteriormente, definimos a área de uma região plana como sendo o limite de uma soma de Riemann e que tal limite é uma integral definida.

Leia mais

Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas

Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas Assunto: Integrais Triplas UNIVRSIDAD FDRAL DO PARÁ CÁLCULO II - PROJTO NWTON AULA 8 Palavras-chaves: integração, integrais triplas, volume, teorema de Fubini, soma de Riemann Integrais triplas Assim como

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

Lista de Exercícios 1 : integrais duplas e triplas

Lista de Exercícios 1 : integrais duplas e triplas INSTITUTO DE MATEMÁTICA UFRJ Lista de Exercícios : integrais duplas e triplas. Calcule as integrais de (x + y) e y( sen(πx)) na região limitada pelas retas x =, y = e y = x.. Calcule as integrais de (x

Leia mais

1. Em cada caso abaixo, observe a região D e escreva a integral dupla integral iterada (repetida) de modo a obter o cálculo mais simples.

1. Em cada caso abaixo, observe a região D e escreva a integral dupla integral iterada (repetida) de modo a obter o cálculo mais simples. . INTEGRAL MÚLTIPLA CÁLCULO 3-8... :::: :::::::::::::::::::::::::::::::::::: INTEGRAIS UPLAS ITERAAS. Em cada caso abaixo, observe a região e escreva a integral dula integral iterada (reetida) de modo

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste.

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste. . [.5] (a) Calcule a soma da série Resolução: A série INSTITUTO POLITÉCNICO DE SETÚBAL Resolução do o Teste n (n + ) ; n (n + ) + + 4 +... rapidamente se verifica que não é uma série aritmética ou geométrica.

Leia mais

6.3. Cálculo de Volumes por Cascas Cilíndricas

6.3. Cálculo de Volumes por Cascas Cilíndricas APLICAÇÕES DE INTEGRAÇÃO 6.3 Cálculo de Volumes por Cascas Cilíndricas Nesta seção aprenderemos como aplicar o método das cascas cilíndricas para encontrar o volume de um sólido. VOLUMES POR CASCAS CILÍNDRICAS

Leia mais

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução

Leia mais

1. Superfícies Quádricas

1. Superfícies Quádricas . Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para

Leia mais

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTEGAÇÃO MÚLTIPLA TÓPICO Gil da Costa Marques Fundamentos da Matemática II. Introdução. Integrais Duplas.3 Propriedades das Integrais Duplas.4 Cálculo de Integrais Duplas.5 Integrais duplas em regiões

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

CÁLCULO II: VOLUME II

CÁLCULO II: VOLUME II CÁLCULO II: VOLUME II MAURICIO A. VILCHES - MARIA LUIZA CORRÊA epartamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

INTEGRAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis.

INTEGRAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis. INTEGAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis INTEGAIS DUPLAS Consideremos o problema de determinar o volume V do sólido compreendido entre

Leia mais

Teorema de Fubini. Cálculo de volumes

Teorema de Fubini. Cálculo de volumes Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Fubini. Cálculo de volumes Teorema de Fubini O teorema de Fubini (cf. [,, 3] permite relacionar

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Dizemos que uma superfície é um cilindro se na equação cartesiana da superfície há uma variável que não aparece.

Dizemos que uma superfície é um cilindro se na equação cartesiana da superfície há uma variável que não aparece. Aula 9 Cilindros e Quádricas Cilindros Dizemos que uma superfície é um cilindro se na equação cartesiana da superfície há uma variável que não aparece. Exemplo 1. x 2 + y 2 = 1 No espaço, o conjunto de

Leia mais

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha

Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha INTEGRAIS DE LINHA INTRODUÇÃO: Temos como objetivo definir uma integral que é semelhante a uma integral simples, exceto que ao invés de integrarmos sobre um intervalo [a,b], integramos sobre uma curva

Leia mais

CADERNO DE ATIVIDADES

CADERNO DE ATIVIDADES CADERNO DE ATIVIDADES UTILIZAÇÃO DO SOFTWARE MAPLE PARA O CÁLCULO DE ÁREAS E VOLUMES Autor: Silvimar Fábio Ferreira Orientador: Prof. Dr. João Bosco Laudares Produto Educacional do Mestrado em Ensino de

Leia mais

Teorema de Fubini. Cálculo de Integrais

Teorema de Fubini. Cálculo de Integrais Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Fubini. Cálculo de Integrais Recordemos que o teorema de Fubini estabelece uma forma epedita

Leia mais

2 Integrais Duplas em Coordenadas Polares

2 Integrais Duplas em Coordenadas Polares Lista 3: CDCI2 Turmas: 2AEMN e 2BEMN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Mudança de Variáveis em Integrais Duplas Exercício 1: Calcule a integral dupla transformando a região de integração

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

2.2 Aplicações da Integral dupla

2.2 Aplicações da Integral dupla . Aplicações da Integral dupla..1 Área de figuras planas Sobre esta aplicação, não há muito o que acrescentar, pois esta foi a motivação para o conceito de integral dupla. Para calcular a área de uma região

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) a) etermine números reais a 0, b, c, e d tais que o gráfico de f(x) ax + bx + cx + d tenha um ponto de inflexão em (1, ) e o coeficiente angular

Leia mais

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I. Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Integração Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 1 Introdução Calcular integrais é uma tarefa rotineira em engenharia,

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Do ponto de vista analítico existem diversas regras, que podem ser utilizadas na prática. Porém, técnicas de integração

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números

Leia mais

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2 Eercício : Seja a integral iterada Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo A Lista 4 I = ddd. a) Esboce o sólido cujo volume é

Leia mais

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green MAT 003 2 ō Sem. 207 Prof. Rodrigo Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green. Considere o campo de forças F (x, y) = f( r ) r, onde f : R R é uma função derivável e r = x

Leia mais

Integral Triplo. Seja M um subconjunto limitado de 3.

Integral Triplo. Seja M um subconjunto limitado de 3. Integral Triplo Seja M um subconjunto limitado de 3. Considere-se um paralelepípedo, de faces paralelas aos planos coordenados, que contenha M, e subdivida-se esse paralelepípedo por meio de planos paralelos

Leia mais

CÁLCULO I. Lista Semanal 01 - Gabarito

CÁLCULO I. Lista Semanal 01 - Gabarito CÁLCULO I Prof. Márcio Nascimento Prof. Marcos Diniz Questão 1. Nos itens abaixo, diga se o problema pode ser resolvido com seus conhecimentos de ensino médio (vamos chamar de pré-cálculo) ou se são necessários

Leia mais

Volumes de Sólidos de Revolução

Volumes de Sólidos de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos

ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Out/5 ANÁLISE MATEMÁTICA III A TESTE 3 DE OUTUBRO DE 5 5:-6H RESOLUÇÃO (As soluções aqui propostas não são únicas!) Duração:

Leia mais

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2 Turma A Questão 1: (a Calcule Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - 1o. Semestre 15-19/5/15 e z dx + xz dy + zy dz sendo a curva

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

Total Escolha 5 (cinco) questões. Justifique todas as passagens. Não é permitido o uso de calculadoras. Boa Sorte!

Total Escolha 5 (cinco) questões. Justifique todas as passagens. Não é permitido o uso de calculadoras. Boa Sorte! ā Prova de MAT 147 - Cálculo II - FEA-USP 8/11/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens. Não

Leia mais

Dividir para conquistar. Eduardo Nobre Lages CTEC/UFAL

Dividir para conquistar. Eduardo Nobre Lages CTEC/UFAL Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 2007-2 Professor:

Leia mais

INTEGRAL DEFINIDA APLICAÇÕES. Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli

INTEGRAL DEFINIDA APLICAÇÕES. Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli INTEGRAL DEFINIDA APLICAÇÕES Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli Variação Total Em certas aplicações práticas, conhecemos a taxa de variação Q (x) de uma grandeza Q(x) e estamos

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

Cálculo 2. Guia de Estudos P1

Cálculo 2. Guia de Estudos P1 Cálculo 2 Guia de Estudos P1 Resuminho Teórico e Fórmulas Parte 1 Cônicas Conceito: Cônicas são formas desenhadas em duas dimensões, considerando apenas os eixos x (horizontal) e y (vertical). Tipos de

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Cálculo de Volumes por Cascas Cilíndricas

Cálculo de Volumes por Cascas Cilíndricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Cálculo de Volumes

Leia mais

1.1 Domínios & Regiões

1.1 Domínios & Regiões 1. CAMPOS ESCALARES CÁLCULO 2-2018.2 1.1 Domínios & Regiões 1. Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a)

Leia mais