INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1

Tamanho: px
Começar a partir da página:

Download "INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1"

Transcrição

1 Teoria INTEGRAIS MÚLTIPLAS Integral Dupla: Seja o retângulo R = {(x, y) R a x b, c y d} e a = x 0 < x 1 <... < x n = b, c = y 0 < y 1 <... < y m = d partições de [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = 0,..., m} denomina-se partição do retângulo R. Toda partição P produz retângulos R ij. Seja X ij um ponto escolhido arbitrariamente no retângulo R ij. A integral dupla (segundo Riemann) de uma função f sobre uma região qualquer é o limite f(x, y)dxdy = lim 0 n i=1 m j=1 f(x ij) x i y j onde f(x ij ) = 0 se X ij é um ponto escolhido fora de e é o maior dos números x i, y j. Seja f(x, y) 0 em. Seja o conjunto A = {(x, y, z) R (x, y), 0 z f(x, y)}. Definimos o volume de A por V = f(x, y)dxdy. Definimos a área de um conjunto por dxdy. Sejam f e g integráveis em e seja k uma constante. Nestas condições, tem-se: 1. [f(x, y) + g(x, y)]dxdy = f(x, y)dxdy + g(x, y)dxdy. kf(x, y)dxdy = k f(x, y)dxdy. f(x, y) 0 f(x, y)dxdy f(x, y)dxdy = f(x, y)dxdy + 1 f(x, y)dxdy, desde que 1 tenha conteúdo nulo. (Teorema de Fubini) Seja f(x, y) integrável no retângulo R = {(x, y) R a x b, c y d}. Então R f(x, y)dxdy = d c [ b a f(x, y)dx]dy = b 1 [ d a c f(x, y)dy]dx.

2 Sejam c(x) e d(x) duas funções contínuas em [a, b] e tais que, para todo x [a, b], c(x) d(x). Seja o conjunto de todos (x, y) tais que a x b e c(x) y d(x). Nestas condições, se f(x, y) for contínua em, então f(x, y)dxdy = b [ d(x) a c(x) f(x, y)dy]dx. Sejam a(y) e b(y) duas funções contínuas em [c, d] e tais que, para todo y [c, d], a(y) b(y). Seja o conjunto de todos (x, y) tais que c y d e a(y) x b(y). Nestas condições, se f(x, y) for contínua em, então f(x, y)dxdy = d Mudança de Variáveis: c [ b(y) a(y) f(x, y)dx]dy. Seja ϕ : Ω R R, Ω aberto, com derivadas contínuas, sendo ϕ dada por (x, y) = ϕ(u, v), com x = x(u, v) e y = y(u, v). Seja uv Ω, uv compacto e com fronteira de conteúdo nulo. Seja = ϕ( uv ) e suponhamos que ϕ mapeia o interior de uv no interior de. Suponhamos, ainda, que ϕ seja inversível no interior de uv e que (x, y) o jacobiano da transformação seja não nulo. Nestas condições, (u, v) se f(x, y) for integrável em, então f(x, y)dxdy = uv f(ϕ(u, v)) (x, y) (u, v) dudv. Cada ponto P = (x, y) fica determinado pelas suas coordenadas polares (ρ, θ), onde ρ é a distância entre P e a origem (pólo) O do sistema, e θ é o ângulo entre o vetor OP e o eixo polar, geralmente tomado como o semi-eixo positivo das abscissas. As coordenadas cartesianas (ou retangulares), denotadas por (x, y), se relacionam com as coordenadas polares (ρ, θ) mediante as relações x = ρ cos θ y = ρ sin θ

3 ou, equivalentemente, ρ = x + y O jacobiano (x, y) (ρ, θ) Integral Tripla: θ = arctan y x. da transformação acima é igual a ρ. Seja o paralelepípedo A = {(x, y, z) R a x a 1, b y b 1, c z z 1 } e a = x 0 < x 1 <... < x n = a 1, b = y 0 < y 1 <... < y m = b 1, c = z 0 < z 1 <... < z p = c 1 partições de [a, a 1 ], [b, b 1 ] e [c, c 1 ], respectivamente. O conjunto P = {(x i, y j, z k ) i = 0,..., n, j = 0,..., m, k = 0,..., p} denomina-se partição do paralelepípedo A. Toda partição P produz paralelepípedos A ijk. Seja X ijk um ponto escolhido arbitrariamente no paralelepípedo A ijk. A integral tripla de uma função f : R R, com limitado, é o limite f(x, y, z)dxdydz = lim 0 n i=1 m j=1 p k=1 f(x ijk) x i y j z k onde f(x ijk ) = 0 se X ijk não pertence a e é o maior dos números x i, y j, z k. Com as adaptações devidas, existem enunciados análogos do Teorema de Fubini para integrais triplas. Seja um subconjunto do R. Definimos o volume de por Mudança de Variáveis: V = dxdydz. Seja ϕ : Ω R R, Ω aberto, com derivadas contínuas, sendo ϕ dada por (x, y, z) = ϕ(u, v, w), com x = x(u, v, w), y = y(u, v, w) e z = z(u, v, w). Seja uvw Ω, uvw compacto e com fronteira de conteúdo nulo. Seja = ϕ( uvw ) e suponhamos que ϕ mapeia o interior de uvw no interior de. Suponhamos, ainda, que ϕ seja inversível no interior (x, y, z) de uvw e que o jacobiano da transformação seja não nulo. (u, v, w) Nestas condições, se f(x, y, z) for integrável em, então

4 f(x, y, z)dxdydz = uvw f(ϕ(u, v, w)) (x, y, z) (u, v, w) dudvdw. Cada ponto P = (x, y, z) fica determinado pelas suas coordenadas cilíndricas (ρ, θ, z), onde ρ é o comprimento do vetor OP 1 = (x, y, 0) e θ o ângulo entre esse vetor e o semi-eixo positivo Ox. As coordenadas cartesianas (x, y, z) se relacionam com as coordenadas cilíndricas (ρ, θ, z) mediante as relações O jacobiano (x, y, z) (ρ, θ, z) x = ρ cos θ y = ρ sin θ z = z da transformação acima é igual a ρ. Cada ponto P = (x, y, z) fica determinado pelas suas coordenadas esféricas (ρ, θ, ϕ), onde θ é o ângulo entre o vetor OP 1 = (x, y, 0) e o semi-eixo positivo Ox, ρ o comprimento do vetor OP e ϕ o ângulo entre o vetor OP e o semi-eixo positivo Oz. As coordenadas cartesianas (x, y, z) se relacionam com as coordenadas esféricas (ρ, θ, ϕ) mediante as relações x = ρ sin ϕ cos θ O jacobiano y = ρ sin ϕ sin θ z = ρ cos ϕ (x, y, z) (θ, ρ, ϕ) da transformação acima é igual a ρ sin ϕ. Observação. Os conceitos e resultados apresentados aqui podem ser facilmente generalizados para funções de n variáveis reais. As integrais resultantes são chamadas de integrais múltiplas. 4

5 Exercícios Fixação: 1. Calcule kdxdy onde R é o retângulo a x b e c y d. R. Calcule (x + y)dxdy, onde R é o retângulo 1 x, 0 R y 1.. Calcule: (a) xy dxdy (b) xy dydx 4. Calcule o volume do conjunto de todos (x, y, z) tais que 0 x 1, 0 y 1 e 0 z x + y. 5. Calcule xydxdy, onde é o conjunto de todos (x, y) tais que 0 x 1, 0 y x. 6. Calcule (x y)dxdy, onde é o semicírculo x +y 1, x Calcule o volume do conjunto de todos (x, y, z) tais que x 0, y 0, x + y 1 e 0 z 1 x. 8. Calcule xydxdy, onde é o triângulo de vértices ( 1, 0), (0, 1) e (1, 0). 9. Inverta a ordem de integração e calcule 1 [ 1 y sin x dx]dy Utilizando integral dupla, calcule a área da região compreendida entre os gráficos das funções y = x e y = x + x + 1, com 1 x Calcule cos(x y) dxdy, onde é o trapézio 1 x + y sin(x + y), x 0, y Calcule sin(x + y )dxdy onde é o semicírculo x + y 1, y Calcule x dxdy onde é o conjunto x + 4y Calcule. e y x (a) dxdy onde é o conjunto de todos (x, y) tais que y x 1 + x y + x, y x + x e x 0. 5

6 (b) xydxdy onde é a região no primeiro quadrante delimitada pelas retas y = x e y = x, e pelas hipérboles xy = 1 e xy =. (use x = u v e y = v) 15. Calcule xdxdydz, onde é o conjunto de todos os (x, y, z) tais que 0 x 1, 0 y x e 0 z x + y. 16. Calcule o volume do conjunto de todos (x, y, z) tais que x + y z x y. 17. Calcule o volume do conjunto de todos (x, y, z) que estão acima do cone z = x + y e abaixo da esfera x + y + z = z. 18. Sendo o cubo de aresta 1, calcule: (a) xyzdxdydz (b) (x + y + z)dxdydz 19. Calcule sin(x + y z) dxdydz, onde é o paralelepípedo x + y + z 1 x + y + z, 0 x + y z π 4, 0 z Calcule z z. Aplicação: zdxdydz onde é o elipsoide (x 1) 4 (y 1) Uma piscina tem formato circular com um diâmetro de 1m. A profundidade é dada pela função f(x, y) = 1 8 y + 9. Encontre o volume de água na piscina.. Carga elétrica está distribuída sobre uma placa retangular, descrita por 1 x, 0 y, de modo que a densidade de carga na superfície da placa é σ(x, y) = xy + y (medida em coulombs por metro quadrado). Encontre a carga total na placa.. Ao estudar a proliferação de uma epidemia, assumimos que a probabilidade de um indivíduo infectado contaminar outro indivíduo é uma função da distância entre eles. Considere uma cidade circular D de raio 10 milhas na qual a população pode ser considerada uniformemente distribuída. Assuma que a exposição E de um indivíduo não infectado em um ponto fixo A(x 0, y 0 ) isto é, o 6

7 número de infecções da pessoa em A devido a todas as pessoas infectadas da cidade é dada pela integral dupla [ ] (x x0 ) E = 1 + (y y 0 ) dxdy. 0 D Determine a exposição de uma pessoa que mora no centro da cidade. 7

8 Respostas Fixação: 1. k(b a)(d c).. (a) 4 (b) cos(1) π 1. (1 cos 1) π (a) e e (b) ln π π (a) 1 8 8

9 (b) ( ) ln 0. 8π Aplicação: π m de água. 64. coulombs.. Aproximadamente 09 possibilidades de infecção. 9

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II Universidade Federal de Viçosa Centro de Ciências xatas e Tecnológicas epartamento de Matemática MAT 43 - Cálculo iferencial e Integral III a Lista - 8/II Máximos e mínimos. A distribuição de temperatura

Leia mais

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014 Cálculo 2 ECT1212 Integrais Múltiplas Prof. Ronaldo Carlotto Batista 23 de outubro de 2014 Cálculo de áreas e Soma de Riemann Vamos primeiro revisar os conceitos da integral de uma função de uma variável.

Leia mais

Integrais Múltiplos. Slide 1. c 2000, 1998 Maria Antónia Carravilla FEUP

Integrais Múltiplos. Slide 1. c 2000, 1998 Maria Antónia Carravilla FEUP Integrais Múltiplos Slide 1 Transparências de apoio à leccionação de aulas teóricas Versão 2 c 2000, 1998 Integrais Múltiplos 1 Integrais Duplos Generalização do conceito de integral a subconjuntos limitados

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis 9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado

Leia mais

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d) Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013 MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

Lista de Exercícios de Cálculo 3 Sétima Semana

Lista de Exercícios de Cálculo 3 Sétima Semana Lista de Exercícios de Cálculo Sétima Semana Parte A. Use os multiplicados de Lagrange para determinar os valores máximos e mínimos da função sujeita as restrições dadas. (a) f(x, y) = x 2 + y 2 s.a. xy

Leia mais

Primitva. Integral Indenida

Primitva. Integral Indenida Primitva Denição. 1 Uma função F (x) é chamada uma primitiva da função f(x) em um intervalo I (ou simplesmente uma primitiva de f(x), se para todo x I, temos F (x) = f(x). Exemplo. 1 1. emos que cos(x)

Leia mais

2 Integrais Duplas em Coordenadas Polares

2 Integrais Duplas em Coordenadas Polares Lista 3: CDCI2 Turmas: 2AEMN e 2BEMN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Mudança de Variáveis em Integrais Duplas Exercício 1: Calcule a integral dupla transformando a região de integração

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

Integral Triplo. Seja M um subconjunto limitado de 3.

Integral Triplo. Seja M um subconjunto limitado de 3. Integral Triplo Seja M um subconjunto limitado de 3. Considere-se um paralelepípedo, de faces paralelas aos planos coordenados, que contenha M, e subdivida-se esse paralelepípedo por meio de planos paralelos

Leia mais

Lista de Exercícios 1 : integrais duplas e triplas

Lista de Exercícios 1 : integrais duplas e triplas INSTITUTO DE MATEMÁTICA UFRJ Lista de Exercícios : integrais duplas e triplas. Calcule as integrais de (x + y) e y( sen(πx)) na região limitada pelas retas x =, y = e y = x.. Calcule as integrais de (x

Leia mais

Cálculo Diferencial e Integral 2: Integrais Duplas

Cálculo Diferencial e Integral 2: Integrais Duplas Cálculo Diferencial e Integral 2: Integrais Duplas Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Integrais Duplas sobre Retângulos 2 3 Lembrete:

Leia mais

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTEGAÇÃO MÚLTIPLA TÓPICO Gil da Costa Marques Fundamentos da Matemática II. Introdução. Integrais Duplas.3 Propriedades das Integrais Duplas.4 Cálculo de Integrais Duplas.5 Integrais duplas em regiões

Leia mais

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais

Revisão de integrais simples. Definimos a soma S n = f(t i ) x i. chamada como soma. de Riemann de f sobre [a, b] i=1

Revisão de integrais simples. Definimos a soma S n = f(t i ) x i. chamada como soma. de Riemann de f sobre [a, b] i=1 Revisão de integrais simples Definimos a soma S n = n i=1 f(t i ) x i chamada como soma de Riemann de f sobre [a, b] 1 Definição: Se a sequencia {S n } das somas de Riemann da função f converge quando

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

CÁLCULO II: VOLUME II

CÁLCULO II: VOLUME II CÁLCULO II: VOLUME II MAURICIO A. VILCHES - MARIA LUIZA CORRÊA epartamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y Universidade Federal Fluminense Andrés Gabarito - Primeira Verificação Escolar de álculo IIIA GMA - Turma. onsidere a integral dupla a Esboce a região. y Temos que onde Observando que f(x, ydxdy + y {(x,

Leia mais

1. Superfícies Quádricas

1. Superfícies Quádricas . Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos

ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Out/5 ANÁLISE MATEMÁTICA III A TESTE 3 DE OUTUBRO DE 5 5:-6H RESOLUÇÃO (As soluções aqui propostas não são únicas!) Duração:

Leia mais

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw.

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP5 Aula 9 Mudança de Variáveis na

Leia mais

Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C

Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C Notas de Aulas de Cálculo III Prof. Sandro Rodrigues Mazorche 1 o semestre de 2015 Turmas: A e C Capítulo 1: Integral Dupla 1.1 Definição: Vamos considerar uma função z = f(x, y) definida em uma região

Leia mais

Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas

Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas Assunto: Integrais Triplas UNIVRSIDAD FDRAL DO PARÁ CÁLCULO II - PROJTO NWTON AULA 8 Palavras-chaves: integração, integrais triplas, volume, teorema de Fubini, soma de Riemann Integrais triplas Assim como

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Teorema de Fubini e Mudança de Variáveis (Resolução Sumária)

Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) 9 de Maio de 9. Escreva fdv como um integral iterado nas duas ordens de integração possíveis, onde o conjunto é: (a) O triângulo de vértices

Leia mais

Lista 12. Aula 39. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Lista 12. Aula 39. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Revisão - Resolução de Exerícios Aula 39 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Coordenadas esféricas

Coordenadas esféricas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Assunto: Integrais triplas. Coordenadas esféricas Palavras-caves: integrais triplas, coordenadas esféricas,cálculo de volume Coordenadas esféricas

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 D

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 D MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 14 de Outubro de 2011 Prova 1 D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 A

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 A MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 18 de Outubro de 2013 Prova 1 A Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 B

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 B MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 18 de Outubro de 2013 Prova 1 B Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 D

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 D MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 18 de Outubro de 2013 Prova 1 D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine

Leia mais

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem

Leia mais

Integral de funções de uma variável

Integral de funções de uma variável Integrais Múltiplas Integral de funções de uma variável x = b a n a b f x dx = lim m m i=1 f(x i ) x Integral Dupla Seja f uma função de duas variáveis definida no retângulo fechado. R = a, b x c, d =

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste.

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste. . [.5] (a) Calcule a soma da série Resolução: A série INSTITUTO POLITÉCNICO DE SETÚBAL Resolução do o Teste n (n + ) ; n (n + ) + + 4 +... rapidamente se verifica que não é uma série aritmética ou geométrica.

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS

INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS INTEGAIS DE FUNÇÕES DE VÁIAS VAIÁVEIS Gil da Costa Marques. Introdução. Integrais Duplas.. Propriedades das Integrais Duplas.. Cálculo de Integrais Duplas..4 Integrais duplas em regiões não retangulares.

Leia mais

MAT Cálculo a Várias Variáveis I. Período

MAT Cálculo a Várias Variáveis I. Período MAT116 - Cálculo a Várias Variáveis I Integração Tripla Período 01.1 1 Exercícios Exercício 1 Considere a região = {(x, y, z) R 3 x + y z 1}. 9 1. Calcule o volume de.. Determine o valor de b de forma

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS MAT1153 / 008.1 LISTA DE EXERCÍCIOS : (1) Fazer os seguintes exercícios do livro texto. Exercs da seção.1.4: Exercs 1(b), 4(a), 4(b). () Fazer exercícios 3:(b), (c), (d) da secão 4.1.4 pg 99 do livro texto.

Leia mais

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada).

APOIO À FICHA 7. (Alguns) Exemplos das aulas teóricas de (revistos e com solução detalhada). APOIO À FICHA 7 MAGAIDA BAÍA, DM, IST (Alguns) Exemplos das aulas teóricas de 5-4-219 (revistos e com solução detalhada). 1. Calcule o volume de = {(x, y, z) 3 : x 2 + y 2 + z 2 16, z } esolução: Queremos

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

Lista de Exercícios de Cálculo 3 Primeira Semana

Lista de Exercícios de Cálculo 3 Primeira Semana Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.

Leia mais

Universidade de Trás-os-Montes e Alto Douro. Mestrado...

Universidade de Trás-os-Montes e Alto Douro. Mestrado... Universidade de Trás-os-Montes e Alto Douro Mestrado... Complementos de Matemática - I Guião de Estudo 2012 2013 Primeiro semestre Américo Bento Outono, 2012 1 Conteúdo I 6 1 Cónicas 6 1.1 Caracterização

Leia mais

Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores FCULDDE DE ENGENHRI D UNIVERSIDDE DO PORTO Mestrado Integrado em Engenharia Electrotécnica e de Computadores nálise Matemática 2 pontamentos das aulas teóricas - Integrais Múltiplos 29/21 Maria do Rosário

Leia mais

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios Departamento de Matemática Faculdade de iências e Tecnologia Universidade de oimbra álculo III - Engenharia Electrotécnica aderno de Exercícios álculo Integral álculo do integral triplo em coordenadas

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas. 1. Calcular I =

Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas. 1. Calcular I = 1 Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas 1. Calcular I = (x 1)dV, sendo T a região do espaço delimitada pelos planos y =, z =, T y + z = 5 e pelo cilindro parabólico z = 4 x.. Determinar

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

Algumas Aplicações das Integrais tríplas

Algumas Aplicações das Integrais tríplas Algumas Aplicações das Integrais tríplas META: Apresentar algumas aplicações das integrais triplas de funções de valores reais e domínio em R 3. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes

Leia mais

ANÁLISE MATEMÁTICA III A TESTE 2 PARA PRATICAR OUTUBRO DE Duração: 50 minutos

ANÁLISE MATEMÁTICA III A TESTE 2 PARA PRATICAR OUTUBRO DE Duração: 50 minutos Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Out/5 ANÁLISE MATEMÁTICA III A TESTE PARA PRATICAR OUTUBRO DE 5 RESOLUÇÃO (As soluções aqui propostas não são únicas!) Duração:

Leia mais

3 a Ficha de Exercícios de AMIII

3 a Ficha de Exercícios de AMIII 3 a Ficha de Exercícios de MIII Resolução Sumária. Escreva fdv como um integral iterado nas duas ordens de integração possíveis, onde o conjunto é: O triângulo de vértices,,, e, ; região entre os gráficos

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB B

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB B MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB B Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB C

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB C MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB C Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB D

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB D MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale

Leia mais

Lista de Exercícios 1 Forças e Campos Elétricos

Lista de Exercícios 1 Forças e Campos Elétricos Lista de Exercícios 1 Forças e Campos Elétricos Exercícios Sugeridos (21/03/2007) A numeração corresponde ao Livros Textos A e B. A19.1 (a) Calcule o número de elétrons em um pequeno alfinete de prata

Leia mais

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019 Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos

Leia mais

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.

Leia mais

Lista 4: CDCI2 Turmas: 2AEMN e 2BEMN. 1 Integrais triplas sobre caixas retangulares

Lista 4: CDCI2 Turmas: 2AEMN e 2BEMN. 1 Integrais triplas sobre caixas retangulares Lista 4: CDCI Turmas: AEMN e BEMN Prof. Alexandre Alves Universidade São Judas Tadeu Integrais triplas sobre caixas retangulares Exercício : Calcule a integral tripla sobre a caixa retangular indicada

Leia mais

1. Em cada caso abaixo, observe a região D e escreva a integral dupla integral iterada (repetida) de modo a obter o cálculo mais simples.

1. Em cada caso abaixo, observe a região D e escreva a integral dupla integral iterada (repetida) de modo a obter o cálculo mais simples. . INTEGRAL MÚLTIPLA CÁLCULO 3-8... :::: :::::::::::::::::::::::::::::::::::: INTEGRAIS UPLAS ITERAAS. Em cada caso abaixo, observe a região e escreva a integral dula integral iterada (reetida) de modo

Leia mais

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=

Leia mais

Cálculo II - Superfícies no Espaço

Cálculo II - Superfícies no Espaço UFJF - DEPARTAMENTO DE MATEMÁTICA Cálculo II - Superfícies no Espaço Prof. Wilhelm Passarella Freire Prof. Grigori Chapiro 1 Conteúdo 1 Introdução 4 2 Plano 6 2.1 Parametrização do plano...................................

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014 MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t

Leia mais

Análise Matemática III Resolução do 2 ō Teste e 1 ō Exame - 20 de Janeiro horas

Análise Matemática III Resolução do 2 ō Teste e 1 ō Exame - 20 de Janeiro horas Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Análise Matemática III Resolução do ō Teste e ō Exame - de Janeiro - 9 horas. O sólido tem simetria cilíndrica em torno do

Leia mais

(g) (h) (i) (j) (k) (l) 2. Esboce o domínio e inverta a ordem de integração. (d) 1 e x

(g) (h) (i) (j) (k) (l) 2. Esboce o domínio e inverta a ordem de integração. (d) 1 e x Quarta Lista de Cálculo 3 Parte A. Calcule as integrais iteradas. (a) (b) (c) (d) (e) (f) x 4 dx 9 + 2 ddx x ddx 2 3z 8 2 3 x ( x 2 2 z 2) dxddz ddx 4 + z x 2 + xz 2 dxdzd (g) (h) (i) (j) (k) (l) π/2 π/2

Leia mais

2.1 Mudança de variáveis em integral dupla

2.1 Mudança de variáveis em integral dupla ! "! # $! % & #! ' ( $ Objetivos. Os objetivos desta Aula são: apresentar a ideia de mudança de variáveis no plano para calcular integrais duplas; usar as coordenadas polares para calcular a integral dupla

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo Integral Dupla Aula 06 Cálculo Vetorial Professor: Éwerton Veríssimo Integral Dupla Integral dupla é uma extensão natural do conceito de integral definida para as funções de duas variáveis. Serão utilizadas

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

Dessa forma, podemos reescrever o domínio

Dessa forma, podemos reescrever o domínio Turma A Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. Semestre - 9// Questão. (. pontos) Calcule as seguintes integrais: (a) arctg(y)

Leia mais

Mudança de variável na integral dupla

Mudança de variável na integral dupla UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 6 Assunto: Mudnç de Vriável n Integrl Dupl Plvrs-chves: mudnç de vriável, integris dupls, jcobino Mudnç de vriável n integrl dupl Vmos ntes

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

FEITEP - PROFESSOR GILBERTO TENANI CÁLCULO III - PRIMEIRO BIMESTRE /2

FEITEP - PROFESSOR GILBERTO TENANI CÁLCULO III - PRIMEIRO BIMESTRE /2 FEITEP - POFESSO GILBETO TENANI CÁLCULO III - PIMEIO BIMESTE - 206/2 Soma de iemann Estime o volume do sólido contido abaixo da superfície z = xy e acima do retângulo = {(x, y) 0 x 6, 0 y 4}. Utilize a

Leia mais

Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática. Banco de Questões

Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática. Banco de Questões Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática Banco de Questões Cálculo 1 Maceió, Brasil 11 de Março de 2010 Sumário 1 2005 3 1.1 1 a Avaliação-21 de fevereiro

Leia mais

Ney Lemke. Departamento de Física e Biofísica

Ney Lemke. Departamento de Física e Biofísica Revisão Matemática Ney Lemke Departamento de Física e Biofísica 2010 Vetores Sistemas de Coordenadas Outline 1 Vetores Escalares e Vetores Operações Fundamentais 2 Sistemas de Coordenadas Coordenadas Cartesianas

Leia mais

Superfícies Parametrizadas

Superfícies Parametrizadas Universidade Estadual de Maringá - epartamento de Matemática Cálculo iferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit Superfícies Parametrizadas Prof.

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS IFPB» Concurso Público Professor Efetivo de Ensino Básico, Técnico e Tecnológico» Edital Nº 16/011 CONHECIMENTOS ESPECÍFICOS» MATEMÁTICA (Perfil 1) «1. Classifique os itens a seguir em V (verdadeiro) ou

Leia mais

CÁLCULO I. 1 Área de Superfície de Revolução

CÁLCULO I. 1 Área de Superfície de Revolução CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.

Leia mais

Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2

Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2 MATEMÁTICA 20 Um objeto parte do ponto A, no instante t = 0, em direção ao ponto B, percorrendo, a cada minuto, a metade da distância que o separa do ponto B, conforme figura. Considere como sendo de 800

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 7.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 7. Eercício : ada a integral dupla I Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista 7 f,)dd + f,)dd. a) Esboce a região. b) Inverta

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

Mudança de variável na integral dupla(continuação)

Mudança de variável na integral dupla(continuação) UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 7 Assunto: Mudança de Variável na Integral Dupla e Coordenadas Polares Palavras-chaves: mudança de variável, integrais duplas, coordenadas

Leia mais

Física III-A /1 Lista 3: Potencial Elétrico

Física III-A /1 Lista 3: Potencial Elétrico Física III-A - 2018/1 Lista 3: Potencial Elétrico Prof. Marcos Menezes 1. Qual é a diferença de potencial necessária para acelerar um elétron do repouso até uma velocidade igual a 40% da velocidade da

Leia mais

3.4. Determine o(s) ponto(s) da curva x =cost, y =sent, z =sen(t/2) mais distante(s) da origem.

3.4. Determine o(s) ponto(s) da curva x =cost, y =sent, z =sen(t/2) mais distante(s) da origem. 3.1. Locallize e classifiqueospontoscríticosdafunçãoz = f (x, y). Determine se a função tem máximo ou mínimo absoluto em seu domínio. (a) z = xy (b) z =ln(xy) 2x 3y (c) z = xy 2 + x 2 y xy (d) z = x 2

Leia mais