Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Tamanho: px
Começar a partir da página:

Download "Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano"

Transcrição

1 Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano Nos eemplos a seguir desejamos descrever regiões como uniões de regiões onde cada uma destas será descrita em um dos dois formatos padrões: Tipo I : R = ( ) R } a b e f() g() ou Tipo II : R = ( ) R c d e h() j() } eplicitando o intervalo [a b] ou [c d] e as funções f e g ou h e j Eemplo Considere a região do plano definida por } R = ( ) R Para descrever R como uma região de Tipo I tomaremos f() = e g() = Os gráficos dessas funções se intersectam nos pontos do plano cujas abscissas satisfazem a equação = ie = ou = Assim temos que } R = ( ) R e Um esboço da região R pode ser visto na Figura A fronteira de R é a união das seguintes curvas: } C = ( ) R = e C = ( ) R = e }

2 Figura : Esboço da região R Vamos agora descrever R como uma região de Tipo II Para isso será necessário escrever as curvas de sua fronteira através de equações da forma = h(): = = ± = = ± Devemos dividir R em duas sub-regiões para poder descrevê-la no formato desejado como indicado na Figura R R Figura : Divisão horizontal da região R Então R = R R onde R = ( ) R 0 e } R = ( ) R e } Eemplo Agora vejamos a região } R = ( ) R Observe que a região R está definida por duas inequações Nessas inequações a variável é limitada inferiormente por e superiormente por Assim para descrevê-la como uma região de Tipo I tomaremos f() = e g() = Os limites do intervalo [a b] são determinados pelas abscissas dos pontos de interseção das curvas = e = ie pelos valores de que satisfazem =

3 Se 0 a última equação equivale a + = 0 a qual possui duas soluções: 5 = e = 5 Sendo não negativo a única solução válida é Se < 0 a equação de interesse se torna = 0 cujas soluções são: = + 5 e = 5 Como é negativo a única solução válida é Logo a região R (esboçada na Figura ) pode ser escrita como R = ( ) R 5 5 e } 5 5 Figura : Esboço da região R A fronteira de R é a união das seguintes curvas: C = ( ) R = e } 5 5 C = ( ) R = e 5 } 5 Podemos ainda descrever a região R como uma região de Tipo II Para isto é importante saber epressar sua fronteira através de equações do tipo = h() Observe que: = = = = = = ± Verifique que R = R R (Figura ) onde

4 R = R = ( ) R ( ) R e e } } R R Figura : Divisão horizontal da região R Eemplo Considere agora a seguinte região do plano: R = ( ) R e } Observe que R já está descrita como uma região do Tipo II (pois varia entre duas constantes e varia entre duas funções de ) Um esboço desta região é apresentado na Figura 5 Figura 5: Esboço da região R A fronteira de R é a união das seguintes curvas: } C = ( ) R = e 0

5 } C = ( ) R = e 0 C = ( ) R = } e C = ( ) R = } e Para descrever R como uma região de Tipo I vamos estudar sua fronteira (lembrando que agora queremos epressá-la através de equações da forma = f()): = = ± = = ± Este eemplo é um pouco mais complicado do que os que vimos até agora pois será necessário dividir R em três sub-regiões: R R R (Figura 6) onde R = ( ) R 0 e } R = ( ) R 0 e } R = ( ) R e } R R R Figura 6: Divisão vertical da região R Vamos agora considerar um eercício interessante: descrever a região R como união de regiões escritas na forma (r θ) α θ β e f(θ) r g(θ)} (ou seja descrever R em coordenadas polares) Lembrando que a relação entre as coordenadas cartesianas e polares é dada por = r cos(θ) e = r sin(θ) temos que a equação da reta = em coordenadas polares é r = / sin(θ) Analogamente = é reescrita como r = / sin(θ) Logo verifique que R é dada como união das seguintes sub-regiões: (r θ) π θ π e r } sin(θ) 5

6 (r θ) π θ π e r } (r θ) π θ π e r } sin(θ) Eemplo Considere a seguinte região do plano: } R = ( ) R ln( + ) ln() e 0 < O limite inferior para a variável é a abscissa do ponto de interseção entre as curvas = ln(+) e = ln() ou seja a solução da equação ln(+) = ln(): ln( + ) = ln() ( ) ln = ln() + + = + = 0 = ± 5 Como > 0 consideraremos apenas a solução positiva da equação acima Logo } R = ( ) R 5 e ln( + ) ln() Um esboço desta região é dado pela Figura 7 ln 5 ln 5 ln Figura 7: Esboço da região R 6

7 A fronteira de R é a união das seguintes curvas: } C = ( ) R 5 = ln() e } C = ( ) R 5 = ln( + ) e } C = ( ) R = e ln() ln() Para descrevê-la como uma região de Tipo II devemos epressar suas fronteiras através de equações da forma = h(): = ln() = e ( ) = ln( + ) = ln + e = + = e Para encontrar os etremos do intervalo [c d] basta procurar pelas ordenadas dos pontos de interseção das curvas = ln( + ) e = ln() com a reta vertical = Logo c = ln() e d = ln() Entretanto será ainda necessário dividir horizontalmente a região R em duas sub-regiões como ilustrado na Figura 8 R R Figura 8: Divisão horizontal da região R E então R = R R onde ( R = ( ) + ) 5 R ln() ln R = ( ) R ln ( + ) 5 e e ln() e e 7

8 Eemplo 5 Considere a seguinte região do plano: R 5 = ( ) R 0 π } sen() cos() As curvas = sen() e = cos() intersectam-se em = π Logo a região R 5 pode ser descrita como R 5 = ( ) R } π 0 sen() cos() A fronteira de R 5 é composta por três curvas: } C = ( ) R = 0 0 C = ( ) R = sen() 0 π } C = ( ) R = cos() 0 π } Para descrever R 5 como uma região do Tipo II devemos dividi-la em duas sub-regiões: R 5 = R 5 R 5 Observando que = sen() = arcsen() = cos() = arccos() ( ) ( ) π π sen = cos = temos: R 5 = ( ) R } 0 0 arcsen() R 5 = ( ) R } 0 arccos() 8

9 Eercício Calcule os centróides das regiões planas estudadas nos Eemplos a Eercício Seja R = ( ) R } Esboce esta região e calcule seu centróide Eercício Seja R = ( ) R e } Descreva esta região em coordenadas polares e calcule seu centróide Regiões no Espaço Nos eemplos a seguir desejamos descrever regiões do espaço no formato padrão U = ( z) R } F ( ) z G( ) e ( ) R eplicitando a região R e as funções F e G Eemplo Considere a região U = ( z) R + z } Nesse eemplo temos que F ( ) = + e G( ) = Os gráficos dessas funções se intersectam ao longo de uma curva no espaço cuja representação cartesiana é dada pelas equações z = + e z = Ao eliminarmos a variável z das equações anteriores obtemos + = a equação que define a fronteira da projeção ortogonal de U no plano A última equação equivale a + = / Logo a projeção ortogonal U no plano é um disco centrado na origem de raio / Assim temos que U = ( z) R + z e ( ) R } onde R = ( ) R e } A fronteira de U é a união das seguintes superfícies: S = ( z) R z = + + } S = ( z) R z = + } Um esboço da região U pode ser visto na Figura 9 9

10 z Figura 9: Esboço da região U Em coordenadas cartesianas o volume do sólido U é dado por: Vol(U ) = = = ( + ) d d Esta é uma integral muito difícil de ser calculada mas podemos simplificar nossa tarefa se usarmos o fato de que a região de integração R é um círculo centrado na origem de raio / Em coordenadas polares o volume do sólido U é dado por: Vol(U ) = π θ=0 r=0 ( r r) rdr dθ = π( ) Como eercício calcule o volume do seguinte sólido: Ũ = ( z) R + z } z Eemplo Observe a região } U = ( z) R + e z 7 que corresponde ao sólido contido no cilindro + delimitado pelos planos z = e z = 7 (veja Figura 0) A projeção ortogonal de U no plano é obviamente um círculo centrado na origem de raio Logo no formato padrão esta região é descrita como } U = ( z) R z 7 e ( ) R onde R = ( ) R e } 0

11 z Figura 0: Esboço da região U A fronteira de U é a união das seguintes superfícies: } S = ( z) R z = e + } S = ( z) R z = 7 e + } S = ( z) R + = e z 7 O volume do sólido U é dado por: Vol(U ) = = = ( 7 ( ) ) d d = 9π Assim como no eemplo anterior também seria conveniente aqui usar coordenadas polares para descrever a região de integração R O volume de U seria então dado por: π ( ) Vol(U ) = 9 r sin(θ) rdr dθ = 9π θ=0 Eemplo Considere as regiões e U = r=0 ( z) R } + + z U = ( z) R ( + ) } z

12 z Figura : Esboço da região U Seja U = U U z 0} Na Figura vemos um esboço desta região Como z 0 para encontrar a equação da curva no espaço onde o elipsóide U e o cone U se interceptam basta igualar a parte de cima do elipsóide à parte de cima do cone: = + A projeção ortogonal de U no plano é obtida simplificando-se a equação acima: + = / (um círculo centrado na origem de raio /) Logo descrevemos a região U da seguinte forma: U = onde ( z) R + z e ( ) R } R = ( ) R e } A fronteira de U é a união das seguintes superfícies: } S = ( z) R z = + + S = ( z) R z = + } O volume do sólido U é dado por: ( Vol(U ) = = = + ) d d = π

13 Usando coordenadas polares o cálculo da integral acima é bem mais simples: π ( Vol(U ) = ) r r rdr dθ = π θ=0 r=0 Eemplo Considere U a região do espaço delimitada pelos planos = 0 z = 0 e + z = 5 e pelo cilindro sobre a curva z = Um esboço de U pode ser visto na Figura z 5 Figura : Esboço da região U A maneira mais fácil de descrever esta região é no seguinte formato: } U = ( z) R F ( z) G( z) e ( z) R onde R é uma região do plano z A projeção ortogonal de U no plano z é a região delimitada pelas retas z = z = + e z = 0 Logo } U = ( z) R 0 5 z e ( ) R onde R = } ( z) R 0 z e + z z A fronteira de U é a união das seguintes superfícies: } S = ( z) R z = S = ( z) R } = 0 0 z

14 S = ( z) R S = ( z) R O volume do sólido U é dado por: Vol(U ) = } z = 0 5 z z=0 } = 5 z 0 z z = +z (5 z) d dz = 76 Como eercício calcule R z d dz Eemplo 5 Considere a região U 5 de R dada por } U 5 = ( z) R z A projeção ortogonal de U 5 sobre o plano é o disco centrado na origem de raio Logo } U 5 = ( z) R z + 0 ( ) R 5 onde R 5 = ( ) R } A fronteira de U 5 é a união das seguintes superfícies: } S = ( z) R z = + } S = ( z) R z = } S = ( z) R + = z + 0 Em coordenadas cartesianas o volume do sólido U 5 é dado por ( Vol(U 5 ) = ( + 0) ( ) ) dd R 5 ( = + ) dd = π Para facilitar o cálculo da integral acima podemos descrever a região R 5 em coordenadas polares: 0 r e 0 θ π Usando ainda que = rcos(θ) e

15 = rsen(θ) o volume de U 5 pode ser reescrito como: Vol(U 5 ) = = = π 0 0 π 0 0 ( ( r cos (θ) r sen (θ) + ) r drdθ ( r cos(θ) + ) r drdθ ) ( ) π r dr cos(θ) dθ + π 0 0 Eercício Seja = 0 + π = π R = ( z) R z } Considere a região U R obtida girando-se R em torno do eio z Descreva U usando desigualdades Eercício Seja U a região do espaço delimitada pelo parabolóide z = + e pelo plano z = + a) Escreva U usando desigualdades b) Eplicite R região do plano obtida pela projeção ortogonal de U nesse plano Eercício Considere a seguinte região U = } ( z) R + + z + + z 5 e z 0 Descreva essa região como a união de duas regiões U e U escritas no formato padrão Eercício Esboce as regiões do espaço a seguir e determine suas respectivas projeções no plano a) U = ( z) R + + z e z } + b) U = U z } c) U = U 0 e 0} Eercício 5 Considere U a região do espaço delimitada pelos planos = 0 z = 0 + z = 5 e pelo cilindro sobre uma parábola dado por z = Seja R a projeção ortogonal de U no plano z a) Esboce U eplicitando sua fronteira por equações b) Descreva R através de equações ou inequações cartesianas c) Calcule o volume de U 5

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2 Eercício : Seja a integral iterada Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo A Lista 4 I = ddd. a) Esboce o sólido cujo volume é

Leia mais

Cálculo III-A Módulo 2 Tutor

Cálculo III-A Módulo 2 Tutor Eercício : Calcule Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor + e +. + da onde é a região compreendida pelas retas,,

Leia mais

Cálculo IV EP2 Tutor

Cálculo IV EP2 Tutor Eercício : Calcule + e +. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor da

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Cálculo III-A Lista 5

Cálculo III-A Lista 5 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Lista 5 Eercício : Calcule + dv onde é a região contida dentro do cilindro + = 4

Leia mais

3.2 Coordenadas Cilíndricas

3.2 Coordenadas Cilíndricas Exemplo 3.6 Encontre DzdV para D a região do espaço limitada pelos gráficos x = 1 z 2, x =, entre os planos y = e y = 1. Solução: observe que pela descrição da região de integração D, é mais conveniente

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j).

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j). MAT1153 / 2008.1 LISTA DE EXECÍCIOS : EGIÕES DO PLANO, INTEGAIS DUPLAS E VOLUMES (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) (2) Fazer

Leia mais

Cálculo III-A Módulo 1 Tutor

Cálculo III-A Módulo 1 Tutor Eercício : Calcule as integrais iteradas: Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor a) e dd b) dd Solução: a) Temos:

Leia mais

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla MAT116 - Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla 1 Exercícios Complementares resolvidos Exercício 1 Considere a integral iterada 1 ] exp ( x ) dx dy. x=y 1. Inverta a ordem

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 7.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 7. Eercício : ada a integral dupla I Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista 7 f,)dd + f,)dd. a) Esboce a região. b) Inverta

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 9

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 9 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo A Lista 9 Eercício : eja uma superfície parametriada por com u π e v. ϕu,v) vcosu, vsenu,

Leia mais

Cálculo III-A Módulo 4

Cálculo III-A Módulo 4 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.

Leia mais

Cálculo III-A Lista 1

Cálculo III-A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,].

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) a) etermine números reais a 0, b, c, e d tais que o gráfico de f(x) ax + bx + cx + d tenha um ponto de inflexão em (1, ) e o coeficiente angular

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,]. +

Leia mais

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla.

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP4 Aula 7 Integrais Triplas Objetivo

Leia mais

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)

(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),

Leia mais

Dizemos que uma superfície é um cilindro se na equação cartesiana da superfície há uma variável que não aparece.

Dizemos que uma superfície é um cilindro se na equação cartesiana da superfície há uma variável que não aparece. Aula 9 Cilindros e Quádricas Cilindros Dizemos que uma superfície é um cilindro se na equação cartesiana da superfície há uma variável que não aparece. Exemplo 1. x 2 + y 2 = 1 No espaço, o conjunto de

Leia mais

ANÁLISE MATEMÁTICA III A OUTONO Sobre Medida Nula

ANÁLISE MATEMÁTICA III A OUTONO Sobre Medida Nula Departamento de Matemática Secção de Álgebra e Análise Última actualização: 6/Out/5 ANÁLISE MATEMÁTICA III A OUTONO 5 PATE II INTEGAÇÃO EM N EXECÍCIOS COM POSSÍVEIS SOLUÇÕES ABEVIADAS acessível em http://www.math.ist.utl.pt/

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Cálculo III-A Módulo 10 Tutor

Cálculo III-A Módulo 10 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor Eercício : eja a superfície parametriada por ϕ(u,v) = (u,v, v ), com

Leia mais

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA VIGÉSIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, consideraremos mais uma técnica de integração, que é conhecida como substituição trigonométrica. Esta técnica pode

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

Capítulo 3 - Geometria Analítica

Capítulo 3 - Geometria Analítica 1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico

Leia mais

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw.

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP5 Aula 9 Mudança de Variáveis na

Leia mais

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado 1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 13. rot F n ds.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 13. rot F n ds. Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 3 Eercício : Verifique o Teorema de tokes, calculando as duas integrais do enunciado,

Leia mais

Cálculo III-A Módulo 9

Cálculo III-A Módulo 9 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Aula 17 Teorema de Green Objetivo Estudar um teorema que estabelece uma ligação

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Exercícios Resolvidos Mudança de Coordenadas

Exercícios Resolvidos Mudança de Coordenadas Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida

Leia mais

Cálculo IV EP11 Tutor

Cálculo IV EP11 Tutor Fundação Centro de Ciências e Educação uperior a istância do Estado do Rio de Janeiro Centro de Educação uperior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor Eercício : eja a superfície parametriada

Leia mais

Teorema de Fubini. Cálculo de Integrais

Teorema de Fubini. Cálculo de Integrais Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Fubini. Cálculo de Integrais Recordemos que o teorema de Fubini estabelece uma forma epedita

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

Capítulo 19. Coordenadas polares

Capítulo 19. Coordenadas polares Capítulo 19 Coordenadas polares Neste capítulo, veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana. Embora os sistemas cartesianos sejam muito utilizados,

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Integral de funções de uma variável

Integral de funções de uma variável Integrais Múltiplas Integral de funções de uma variável x = b a n a b f x dx = lim m m i=1 f(x i ) x Integral Dupla Seja f uma função de duas variáveis definida no retângulo fechado. R = a, b x c, d =

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pedreira Cattai apcattai@ahoo.com.br Universidade Federal da Bahia UFBA, MAT A01, 006. 1. Discussão da equação de uma superfície. Construção de uma superfície 1.1 Introdução Definição de Superfície

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA3 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atualiada 13.1 Coordenadas Polares [1] Dados os pontos P 1 (3, 5π 3 ), P ( 3, 33 ),

Leia mais

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2 Questão -A. (, pontos) Calcule a) arctg d = arctg() 1 d = 1 + arctg() 1 u 1 6 u du = u = arctg() du = 1 dv = d v = 1+ d u = 1 + du = d = arctg() 1 1 + [u ln u ] + k = arctg() + ln(1 + ) + k. 6 6 6 b) 5e

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

Aula 4. Coordenadas polares. Definição 1. Observação 1

Aula 4. Coordenadas polares. Definição 1. Observação 1 Aula Coordenadas polares Nesta aula veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana Embora os sistemas cartesianos sejam muito utilizados, há curvas

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio Material Teórico - Módulo Cônicas Eercícios Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios Resolvidos Neste último material, resolvemos

Leia mais

2.1 Mudança de variáveis em integral dupla

2.1 Mudança de variáveis em integral dupla ! "! # $! % & #! ' ( $ Objetivos. Os objetivos desta Aula são: apresentar a ideia de mudança de variáveis no plano para calcular integrais duplas; usar as coordenadas polares para calcular a integral dupla

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico

Leia mais

Teorema da Divergência e Teorema de Stokes

Teorema da Divergência e Teorema de Stokes Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.

Leia mais

Curso de Verão Exemplos para o curso de

Curso de Verão Exemplos para o curso de Curso de Verão 006 Programa de Pós-Graduação em Matemática Aplicada DCCE - Departamento de Ciência da Computação e Estatística Universidade Estadual Paulista - UNESP Instituto de Biociências, Letras e

Leia mais

UNIDADE III LISTA DE EXERCÍCIOS

UNIDADE III LISTA DE EXERCÍCIOS Universidade Federal da Bahia Instituto de Matemática. - Departamento de Matemática. Disciplina: MATA álculo B UNIDADE III LISTA DE EXERÍIOS Atualizada. Derivada Direcional e Gradiente alcule o gradiente

Leia mais

Aula 31 Funções vetoriais de uma variável real

Aula 31 Funções vetoriais de uma variável real MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução

Leia mais

Cálculo III-A Lista 14

Cálculo III-A Lista 14 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Eercício : Mostre que álculo III-A Lista 4 I + +ln) d+ d é independente do caminho e calcule o valor

Leia mais

LISTA DE PRÉ-CÁLCULO

LISTA DE PRÉ-CÁLCULO LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Sistemas de inequações Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

Aula 17 Superfícies quádricas - parabolóides

Aula 17 Superfícies quádricas - parabolóides Objetivos Aula 17 Superfícies quádricas - parabolóides Apresentar os parabolóides elípticos e hiperbólicos identificando suas seções planas. Estudar os parabolóides regrados e de revolução. Nas superfícies

Leia mais

Solução: Um esboço da região pode ser visto na figura abaixo.

Solução: Um esboço da região pode ser visto na figura abaixo. Instituto de Matemática - IM/UFRJ Gabarito prova final - Escola Politécnica / Escola de Química - 29/11/211 Questão 1: (2.5 pontos) Encontre a área da região do primeiro quadrante limitada simultaneamente

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

Cálculo III-A Lista 10

Cálculo III-A Lista 10 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : eja a parte do cilindro + entre os planos e +. a) Parametrie e esboce.

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS MAT1153 / 008.1 LISTA DE EXERCÍCIOS : (1) Fazer os seguintes exercícios do livro texto. Exercs da seção.1.4: Exercs 1(b), 4(a), 4(b). () Fazer exercícios 3:(b), (c), (d) da secão 4.1.4 pg 99 do livro texto.

Leia mais

Exercícios orientados para a Prova Escrita de Fundamentos de Matemática Aplicada C Prof. Germán Suazo

Exercícios orientados para a Prova Escrita de Fundamentos de Matemática Aplicada C Prof. Germán Suazo Ministério da Educação Universidade Federal de Pelotas Centro de Educação a Distância Curso de Licenciatura em Matemática a Distância Eercícios orientados para a Prova Escrita de Fundamentos de Matemática

Leia mais

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t. MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE

Leia mais

d{p, s) = R. Mas, d(p, s) = d(p, Q), onde Q(0, 0, z). Logo, P{x, y, z) pertence ao cilindro se, e somente se,

d{p, s) = R. Mas, d(p, s) = d(p, Q), onde Q(0, 0, z). Logo, P{x, y, z) pertence ao cilindro se, e somente se, 134 Geometria Analítica \ Vamos deduzir uma equação do cilindro, em relação a um sistema de coordenadas que contém s como eixo z. Seja R a distância entre r es. Então, um ponto P(x, y, z) pertence ao cilindro

Leia mais

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d) Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,

Leia mais

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes MAT 00 2 ō em. 2017 Prof. Rodrigo Lista 6: Área e Integral de uperfície, Fluo de Campos Vetoriais, Teoremas de Gauss e tokes 1. Forneça uma parametrização para: a a porção do cilindro 2 + y 2 = a 2 compreendida

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS )

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS ) UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A0 CÁLCULO A 009 ª LISTA ( QUESTÕES DE PROVAS ) Regra da cadeia ( f ( g( h(( t( )))))) f ( g( h(( t( ))))) g ( h(( t(

Leia mais

Cálculo III-A Módulo 1

Cálculo III-A Módulo 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Prezado aluno, Cálculo III-A Módulo Seja bem-vindo à nossa disciplina. Este teto possui - salvo

Leia mais

Aula Exemplos diversos. Exemplo 1

Aula Exemplos diversos. Exemplo 1 Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os

Leia mais

4 + x6 3a. Lista de Exercícios. (3x + 1) 2 dx (3) x cos(nx)dx, n N (9) cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) x 2 x + 1dx (21)

4 + x6 3a. Lista de Exercícios. (3x + 1) 2 dx (3) x cos(nx)dx, n N (9) cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) x 2 x + 1dx (21) UFPR - Universidade Federal do Paraná Setor de Ciências Eatas Departamento de Matemática Prof. José Carlos Eidam PROFMAT - MA - Fundamentos de Cálculo Integrais definidas e indefinidas. Calcule as integrais

Leia mais

Cálculo IV EP5 Tutor

Cálculo IV EP5 Tutor Eercício : Calcule esfera + + =. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP

Leia mais

Aula 2 A distância no espaço

Aula 2 A distância no espaço MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas

Leia mais

Cálculo 2B - Notas de Aula (em construção) - Prof a Denise

Cálculo 2B - Notas de Aula (em construção) - Prof a Denise Cálculo 2B - Notas de Aula (em construção) - Prof a Denise 20-2 4 3.9 Superfícies de Nível de Funções Reais de Três Variáveis Seja f : Dom(f) R 3 R. Conforme já sabemos, dado k Im(f), temos que o conjunto

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações Quociente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 27 de

Leia mais

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio Material Teórico - Círculo Trigonométrico Secante, cossecante e cotangente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5 de dezembro de

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

Cálculo III-A Módulo 3

Cálculo III-A Módulo 3 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 3 Aula 5 Aplicações da Integrais uplas Objetivo Estudar algumas aplicações

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Geometria Analítica I

Geometria Analítica I Geom. Analítica I Respostas do Módulo I - Aula 15 1 Geometria Analítica I 17/03/2011 Respostas dos Exercícios do Módulo I - Aula 15 Aula 15 1. Este exercício se resume a escrever a equação em uma das formas

Leia mais

MAT Cálculo II - POLI

MAT Cálculo II - POLI MAT25 - Cálculo II - POLI Primeira Lista de Exercícios - 2006 TAYLOR 1. Utilizando o polinômio de Taylor de ordem 2, calcule um valor aproximado e avalie o erro: (a) 3 8, 2 (b) ln(1, 3) (c) sen (0, 1)

Leia mais

MAT Cálculo a Várias Variáveis I. Período

MAT Cálculo a Várias Variáveis I. Período MAT116 - Cálculo a Várias Variáveis I Integração Tripla Período 01.1 1 Exercícios Exercício 1 Considere a região = {(x, y, z) R 3 x + y z 1}. 9 1. Calcule o volume de.. Determine o valor de b de forma

Leia mais