Universidade Federal da Bahia

Tamanho: px
Começar a partir da página:

Download "Universidade Federal da Bahia"

Transcrição

1 Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA3 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atualiada 13.1 Coordenadas Polares [1] Dados os pontos P 1 (3, 5π 3 ), P ( 3, 33 ), P 3 ( 1, π 3 ), P (, 315 ), P 5 (, 53 ), P (, e π ) e P 7 (1, 3), determine: (1.1) A representação gráfica de cada um desses pontos no plano polar. (1.) Três outros conjuntos de coordenadas polares para os pontos P 3 e P. (1.3) Quais desses pontos coincidem com o ponto P(3, 31 ). (1.) O conjunto principal de coordenadas polares do ponto P. (1.5) Um conjunto de coordenadas polares (r, θ) do ponto P 3, tal que r > e θ ( 7π, 5π). [] Em cada um dos ítens a seguir, identifique o lugar geométrico do ponto que se move e faça um esboço desse lugar: (.1) Um ponto P(r, θ) se move de maneira que, para todos os valores de seu ângulo vetorial θ seu raio vetor r permanece constante e igual a. (.) Um ponto se move de maneira que, para todos os valores de seu raio vetor, seu ângulo vetorial permanece constante e igual a. [3] Determine um conjunto abrangente para cada uma das curvas dadas a seguir: (3.1) C 1 : r = (3.) C : θ = π (3.3) C 3 : r = cos θ (3.) C : r = cos θ [] Verifique se o ponto P pertence à curva C, sendo: (.1) P( 1, π) e C : r cos θ = (.) P( 1, π ) e C : r(1 3 sen θ) = (.3) P(, π) e C : r = sen 3θ (.) P(, π ) e C : r 3 cos θ + r sen θ =. 11 [5] Determine o conjunto principal de coordenadas polares dos pontos de coordenadas retangulares: 3 3 (3.1), 3 (3.) (3, ) (3.3) ( cos, sen ) [] Transforme as equações cartesianas para polares: (.1) = (.) ( 1) + ( 3) = (.3) = + 1 (.) a = (.5) = (.) = 1 1

2 [7] Transforme as equações polares para cartesianas: (7.1) r = 8 sen θ (7.) r sen θ = (7.3) r = 3 sen θ (7.) r = θ (7.5) r = sen 3θ (7.) r = cos θ [8] Determine todos os pares de coordenadas polares do ponto Q simétrico de P em relação: (8.1) ao eio polar (8.) ao eio à 9 (8.3) ao pólo. [9] Considere a curva C : r = sen θ. (9.1) Determine uma equação polar da curva C simétrica de C em relação: (a) ao eio polar (b) ao eio à 9 (c) ao pólo. (9.) Verifique se C é simétrica em relação: (a) ao eio polar (b) ao eio à 9 (c) ao pólo. [1] Ache os pontos de intersecção dos gráficos do par de equações dadas: r = 3 r = (1 + sen θ) (1.1) r = 1 + cos θ (1.) r(1 sen θ) = 3 (1.3), π 3 r = 1 sen θ r = cos θ (1.) r = sen θ r = + sen θ (1.5) r = + cos θ θ = π [11] Deduir a fórmula da distância entre os pontos P 1 (r 1, θ 1 ) e P (r, θ ) em coordenadas polares. [1] Faça um esboço do gráfico das seguintes equações polares: (1.1) r = 3 cos θ (1.) r = + sen θ (1.3) r = 9 sen θ (1.) r = 5 cos 3θ (1.5) r = sen 5θ (1.) r = sen θ (1.7) r = 3θ, θ > (1.8) r = 8 sen θ Áreas de figuras planas em coordenadas polares [13] Nos problemas a seguir encontre a área das regiões indicadas: (13.1) Interior à circunferência r = cos θ e eterior à cardióide r = 1 cos θ. (13.) Eterior à circunferência r = cos θ e interior à cardióide r = 1 cos θ. (13.3) Intersecção do círculo r = cos θ com o interior da cardióide r = 1 cos θ. (13.) Intersecção dos círculos r = cos θ e r =. (13.5) Interior à rosácea r = sen θ.

3 (13.) Interior à rosácea r = cos 3θ e eterior à circunferência r = 1. (13.7) Interior à lemniscata r = a cos θ. (13.8) Interior à rosácea r = sen θ e eterior à circunferência circunferência r = cos θ. (13.9) Eterior à limaçon r = sen θ e interior à circunferência r = 3 sen θ. Comprimento de arco em coordenadas polares [1] Calcular o comprimento de arco das seguintes curvas dadas em coordenadas polares: (1.1) a espiral r = θ, θ 3 (1.) a espiral r = 1 e θ, θ π (1.3) a cardioide r = 1 + cos θ (1.) r = 1 + sen θ (1.5) r = ( cos θ + sen θ), θ π (1.) r = 1 + sen θ, θ π [15] Determine o comprimento da espiral logarítmica r = e θ/ de θ = a θ =. [1] Calcule o comprimento de arco da curva r = 1 + cos θ. Domínio, Imagem e Curvas de Nível [17] Determine o domínio de cada uma das funções abaio e represente-o graficamente: (17.1) f(, ) = (17.) f(, ) = ln ( ) å (17.3) f(, ) = ln ( + è 1 ) (17.) f(, ) = ln (17.5) f(, ) = arccos( ) (17.) f(, ) = arcsec + [18] Determine o domínio; determine e trace as interseções do gráfico com os planos coordenados; determine e trace as curvas de nível; e esboce o gráfico das funções: (18.1) f(, ) = 1 (18.) f(, ) = 9 + (18.3) f(, ) = (18.) f(, ) = (18.5) f(, ) = 8 (18.) f(, ) = (18.7) f(, ) = + + [19] Descreva as curvas de nível da cada função: (19.1) f(, ) = e (19.) f(, ) = arcsen( ) (19.3) f(, ) = ln () 3

4 Limites e Continuidade [] Mostre que lim P P f(, ) não eiste se: (.1) f(, ) = ( + ) e P (, ) (.) f(, ) = + e P (, ) (.3) f(, ) = 3 ( ) ( ) e P (, ) (.) f(, ) = 1 e P (, 1) - (.5) f(, ) = + e P (, ) (.) f(, ) = e P (, ) [1] Calcule os limites: (1.1) lim (,) (,) (1.3) lim (,) (,) 1 + (1.) lim (,) (,1) (1.) f(, ) = arcsen( ) arctg(3 ) ( + )( + ) ; se ( 1) + ( 3) ; se = e P (1, 3) [3] Estude a continuidade das seguintes funções no ponto : ( + 1 ) sen, (, ) (, ) (3.1) f(, ) = + (, ) = (, ) (3.) f(, ) = 3 + 5, 3 5, = 3 5 ; (, ) ; (, ) (3.3) f(, ) = +, (, ) (, ), (, ) = (, ) ; (, )

5 Derivadas Parciais de 1 a ordem [] Calcule as derivadas parciais das seguintes funções: (.1) = + + (.) = arcsen( ) (.3) = e / ln (.) = + sen () (.5) = e cos ( ).) [5] Para as funções abaio calcule, caso eista, as derivadas parciais, nos pontos indicados: (5.1) f(, ) = cos + π ; P (, 1) (5.) f(, ) = arctg ; P (1, 1) (5.3) f(, ) = tg [ln (1 + )]; P (π, ) (5.) f(, ) = 3 + ; se ; P (1, ) e P 1 (1, 1). 3 ; se = w = [] Verificar a identidade proposta para cada função dada: (.1) = 3 3 ; + = (.) = ln ( + ); + = 1 (.3) = ln ( + ) arctg( ); + = + (.) = ; + = Diferenciabilidade [7] Considere a função f : R R definida por f(, ) = Mostre que f não é diferenciável no ponto (, )., se (, ) (, ) +, se (, ) = (, ) [8] Seja f(, ) = +, (, ) (, ), (, ) = (, ) Mostre que f não é diferenciável no ponto (, ). 5

6 Derivadas Parciais de Ordem Superior [9] Calcule as derivadas parciais de segunda ordem de: (9.1) = (9.) = cos () sen () (9.3) = cos ( 3 + ). = e + 9.) (9.5) w = e (9.) w = 3 [3] Provar as identidades: (3.1) f(, t) = sen (ap ) sen (p t); a f t = f (3.) V (, t) = f( ct) + g( + ct); V 1 V = ; f e g são funções deriváveis. c t [31] Uma função f de e é harmônica se satisfaem à equação de Laplace f f + =. Prove que as funções a seguir são harmônicas: (31.1) f(, ) = e cos () (31.) f(, ) = ln ( + ) (31.3) f(, ) = arctg, >. Regra da Cadeia [3] Usando a regra da cadeia para = f(, ) calcule d dt : (3.1) = +, = sen (t), = cos (t) (3.) = arctg, = ln (t), = e t (3.3) = tg, = t, = ln t [33] Usando a regra da cadeia para = f(, ) calcule t, s : (33.1) =, = 3t s, = t + s (33.) = e, = s cos(t), = s sen(t) (33.3) = 1 + +, = se t, = se t, [3] Seja φ : R R uma função de uma variável real, diferenciável e tal que φ (1) =. Seja g(, ) = φ. Calcule: (3.1) g (1, 1) g (3.) (1, 1)

7 [35] Seja f(,, ) = g e,. Determine o valor da constante β, sabendo-se que β f = f + f. [3] Considere a função dada por w = +, onde = f(, ). Se (1, 1) = e f(1, 1) = 1, calcule w (1, 1). [37] Seja f(, ) = g, 3, onde f e g são funções diferenciáveis. Sabendo-se que f f (, 1) = 1 e (, 1) = 8, calcule as derivadas parciais de g no ponto (, 8). [38] Considere f(, ) = ln ( ) + arctg( ). (38.1) Calcule f (, 3). (38.) Se = g(u, v) = uv + v, = h(u, v), h(, 1) = 3, f f h (, 1) =, calcule (, 1) e (, 1). v u v h (, 1) = e u Diferenciação Implícita [39] Suponha que = f(, ) é definida implicitamente como uma função de e pela equação /3 + /3 + 3 /3 = 1, onde,, e sao números reais positivas. Usando derivação implícita, calcule. [] Se é uma função de e definida implicitamente pela equação = cos (++), determine no ponto (, π/, π/). [1] Se é uma função de e definida implicitamente pela equação + ( 1) + = 1, calcule (, ) e (, ). [] Supondo que é uma função diferenciável definida implicitamente pela equação F(,) =, onde F d também é direfenciável, mostre que: d = F F F F F + F F. F 3 7

8 Plano Tangentes, Reta Tangentes e Normais [3] Determine a equação do plano tangente e da reta normal a cada superfície abaio, nos pontos indicados: (3.1) = em P = (1, 1, 1) (3.) = no ponto cuja projeção no plano = é (1,, 3) (3.3) cos () + sen () = em P = (1, π/, ) (3.) = para = = (3.5) g(, ) = em (1, 1, 1) [] Determine o plano tangente ao gráfico de = que passa pelos pontos (1, 1, ) e ( 1, 1, 1). [5] Dada a superfície = 1, determine as equações dos planos tangentes que são paralelos ao plano + + =. 8

9 Respostas P 3 (1, 1 ), P 3 (1, 8 ), P 3 ( 1, 3 ) (1.) [1] P (, 5 ), P (, 135 ), P (, 5 ) (1.3) P (1.) P (3, 15 ) (1.5) P (1, 1π) 3 [] (.1) Círculo: r = (.) Reta: θ = 5 [3] (3.1) E(C) = {r =, r = } (3.) E(C) = {θ = (n + 1) π ; n Z} (3.3) E(C) = {r = cos θ} (3.) E(C) = {r = cos θ; r = cos θ} [] (.1) Sim (.) Sim (.3) Não (.) Sim [5] [] [7] [8] [9] 5π (5.1) (3, ) (5.) ( 13, π + arctg( )) (5.3) (1, ) 3 3 (.1) θ = arctg (.) r r( cos θ + 3 sen θ) + = (.3) r cos θ sen θ + sen θ cos θ = (.) r = ou r( cos 3 θ + sen 3 θ) 3a (.) r = 1 secθ (7.1) + 8 = (7.) = 1 sen θ = (.5) r + 3 sen θ = (7.3) + 3 = (7.) tg ( + ) = (7.5) ( + ) + 3 = (7.) ( + ) = ( ) (8.1) (8.3) (9.1) (9.) ( 1) n, π 3 + nπ, n Z (8.) ( 1) n, π 3 + nπ, n Z ( 1) n, π 3 + nπ, n Z (a) r = sen θ (b) r = sen θ (c) r = sen θ (a) Nâo (b) Não (c) Sim 9

10 3 (1.1), π 3 e 3, 5π 3 π 5π 7π 11π (1.),,,,, e, 1 (, ), (1, ), (1, π),, π 1,, 5π, [1] (1.3) , arcsen,, π arcsen (1.) 3, 7π, 3, 11π + π, e 5π (1.5)polo, [11] d = r 1 + r r 1r cos (θ θ 1 ) [1] (1.1) (1.) (1.3) (1.) (1.5) (1.) 1

11 (1.8) [13] (13.1) 3 3 π 3 (13.) 11π (13.5) π (13.) π (13.9) 3 3 (13.3) 7π (13.) 8π 3 3 (13.7) a (13.8) π [1] 8 3 (1.) 8 (1.5) π (1.1) [15] 5(e 1) [1] (1.) e π 1 (1.3) 8 (1.) π [17] (17.1) {(, ) R ; 1 e } (17.) {(, ) R ; ou e > }

12 (17.3) {(, ) R ; > } (17.) (, ) R ; e + 1 > (17.5) {(, ) R ; 1 1} (17.) {(, ) R ; + 1 ou + 1} 1 1

13 [18] (18.1) D(f) = R G(f) Ì XOY : o circulo: + = 1 G(f) Ì XOZ : a parábola = 1 1 Curvas de nível: Para = k, k < 1 : circulos + = 1 k k = 1 : ponto (, ) k > 1 : 1 k Gráfico: (um parabolóide de revolução) G(f) Ì Y OZ : a parábola = (18.) D(f) = R G(f) Ì XOY : o ponto (, ) G(f) Ì XOZ : a parábola = 9 G(f) Ì Y OZ : a parábola = Curvas de nível: Para = k, k > : as elipses ( k/3) + ( k/) = 1 k = : o ponto (, ) k < : Gráfico: k/ k/

14 (18.3) D(f) = R G(f) Ì XOY : o eio OY G(f) Ì XOZ : a parábola = G(f) Ì Y OZ : o eio OY Curvas de nível: Para = k, k > : as retas = k e = k k = : o eio OY k < : k k Gráfico: (uma superfície cilíndrica) (18.) D(f) = R G(f) Ì XOY : G(f) Ì XOZ : a reta = 1 G(f) Ì Y OZ : a curva = 1 1+ Curvas de nível: Para = k, < k < 1 : as retas = Õ 1 k 1 e Õ 1 k 1 k = 1 : o eio OX k > 1 ou k : 1/(k 1) 1/(k 1) Gráfico: (uma superfície cilíndrica)

15 (18.5) D(f) = R G(f) Ì XOY : a reta: = + G(f) Ì XOZ : a reta = Curvas de nível: Para = k, k R : as retas = + 8 k (8 k) (8 k) Gráfico: (um plano) G(f) Ì Y OZ : a reta = (18.) D(f) = R {(, )} G(f) Ì XOY : G(f) Ì XOZ : a curva = G(f) Ì Y OZ : a curva = 1 Curvas de nível: Para = k, k > : elipses k : Gráfico: (/ k) + (1/ k) = 1 1 k k 9e+3 8e+3 7e+3 e+3 5e+3 e+3 3e+3 e+3 1e

16 (18.7) D(f) = R G(f) Ì XOY : o ponto (, ) G(f) Ì XOZ : a curva = Curvas de nível: Para = k, k > : circulos + = (k ) k = : ponto (, ) k < : G(f) Ì Y OZ : a curva = k Gráfico: (uma superfície de revolução) [19] (19.1) k <, curvas de nível é vaio < k < 1, curvas de nível são elipses de semi eios k = 1, curvas de nível é o ponto (, ) k > 1, curvas de nível é vaio ln k lnk e (19.3) Para k R, curvas de nível são hipérboles = c, c = ek > [1] (1.1) + (1.) 1 3 (1.3) 1 (1.) [3] (3.1) contínua (3.) descontínua (3.3) descontínua (3.) contínua 1

17 [] (.1) = + ( + ) = + ( + ) (.) = 1 = 1 (.3) å = ln = å 1 ln + 1 è e / è e / (.) = + cos () = + cos () = e [ cos ( ) sen ( )] (.5) w = e [ cos ( ) + sen ( )] 3 (5.1) f (P ) = 1, f (P ) = (5.) f (P ) = 3, f (P ) = 3 1 [5] (5.3) f (P ) =, f (P ) = π (5.) f (P ) =, f (P ) = 5, f (P 1 ), f (P 1 ) [9] (9.1) = = = (9.) = (3 ) sen () cos () = sen () ( 3 + ) cos () = ( ) sen () ( + ) cos () 17

18 (9.5) w = e w = e w = e w = ( + )e w = ( + )e w = ( + )e (9.) w = 3 w = w = 1 3 w = w = 83 3 w = 1 3 (33.1) (33.3) t = s (e t e t ) 1 + s e t + s e t s = s(e t + e t ) [35]β = [3]17 [38] (3.1) sen t cos t (3.) [39] 1/3 3 1/3 = 1t 1s t = 1t s s (38.1) f (, 3) = [] + -3 = 1 + s e t + s e [3] [] π 1 (33.) e ( 1 + tln t) t[e t + (ln t) ] [37] [5] [5 + + = 1 e + + = 1 t = sec t.e tg t s = g (, 8) = 1 u e (3.1) (3.) g (, 8) = v f (38.) u (, 1) = 17 e h (, 1) = 5 v f f 1 1 [1] (, ) = e (, ) = ln = = 18 (3.1) 1 = 1 = 1 (3.) 1 = = 3 9 π + 18 π = π [3] (3.3) 1 π = 8 = = + (3.) (,, ) = (,, ) + t(,, 1); t R π 18 π = (3.5) (,, ) = (1, 1, 1) + t(1,, 1); t R 18

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B33 Limites e Derivadas Prof a. Graça Luzia Dominguez Santos

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B33 Limites e Derivadas Prof a. Graça Luzia Dominguez Santos UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivadas Prof a Graça Luzia Dominguez Santos LISTA DE EXERCÍCIOS( Questões de Provas a UNIDADE) Derivada

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

MAT Cálculo II - POLI

MAT Cálculo II - POLI MAT25 - Cálculo II - POLI Primeira Lista de Exercícios - 2006 TAYLOR 1. Utilizando o polinômio de Taylor de ordem 2, calcule um valor aproximado e avalie o erro: (a) 3 8, 2 (b) ln(1, 3) (c) sen (0, 1)

Leia mais

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o. Semestre de - a. Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. e. cos 7 4. tg 7 sen 5. 6.

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o Semestre de - a Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. 7 5. 6. 9. tg. e. tg sec 7..

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em 007. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a+ a, >, e a) f (

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números

Leia mais

1) Determine e represente graficamente o domínio de cada uma das funções:

1) Determine e represente graficamente o domínio de cada uma das funções: UNIVESIDADE FEDEAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPATAMENTO DE MATEMÁTICA ª LISTA DE EXECÍCIOS DE CÁLCULO II-A Última atualizaçã 4-4-4 ) Determine e represente graficamente dmíni de cada uma das funções:

Leia mais

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique.

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique. INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A 008. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a a, >, e a) f ( ) =, = (a = )

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS )

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS ) UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A0 CÁLCULO A 009 ª LISTA ( QUESTÕES DE PROVAS ) Regra da cadeia ( f ( g( h(( t( )))))) f ( g( h(( t( ))))) g ( h(( t(

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no

Leia mais

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ;

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ; Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/004 Ficha Prática nº. 5: Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores BONS ESTUDOS!

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II (Escola Politécnica) Primeira Lista de Exercícios - Professor: Equipe de Professores BONS ESTUDOS!.

Leia mais

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t. MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT5 - Cálculo Diferencial e Integral para Engenharia II a lista de eercícios - 0 I - Polinômio de Talor. Utilizando o polinômio de Talor de ordem, calcule um valor aproimado e avalie o erro: (a) 8, (b)

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1 14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

UNIDADE III LISTA DE EXERCÍCIOS

UNIDADE III LISTA DE EXERCÍCIOS Universidade Federal da Bahia Instituto de Matemática. - Departamento de Matemática. Disciplina: MATA álculo B UNIDADE III LISTA DE EXERÍIOS Atualizada. Derivada Direcional e Gradiente alcule o gradiente

Leia mais

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18)

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) UFPR - Universidade Federal do Paraná Departamento de Matemática CM4 - Cálculo I a. Lista de Eercícios Integrais definidas. Calcule as integrais definidas abaio: () (4) (7) () () (6) (9) () (5) (8) /4

Leia mais

Aula 32 Curvas em coordenadas polares

Aula 32 Curvas em coordenadas polares MÓDULO 3 - AULA 32 Aula 32 Curvas em coordenadas polares Objetivo Aprender a usar as coordenadas polares para representar curvas planas. As coordenadas polares nos dão uma maneira alternativa de localizar

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 2011 CURVAS E SUPERFÍCIES 1. Desenhe as imagens das seguintes curvas: (a) γ(t) =(1, t) (b) γ(t) =(cos 2 t,sent), 0

Leia mais

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática a Lista MAT - Cálculo I 7/II. Verifique se as seguintes igualdades são válidas, seja por integração ou por derivação:

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Planejamento do Curso de MATA03 Cálculo B Semestre 2008.

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Planejamento do Curso de MATA03 Cálculo B Semestre 2008. Atualizado em 08/08/2008 1 de 10 UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Planejamento do Curso de MATA03 Cálculo B Semestre 2008.2 Datas do Calendário Acadêmico

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 008 POLINÔMIO DE TAYLOR 1. Utilizando o polinômio de Taylor de ordem, calcule um valor aproximado e avalie o erro: a)

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Exercícios de Geometria Analítica - Prof. Ademir

Exercícios de Geometria Analítica - Prof. Ademir Exercícios de Geometria nalítica - Prof. demir Vetores 1. onsidere o triângulo, onde = (1, 1, 1), = (2, 1, 0) e = (3, 2, 3). Verifique que este triângulo é retângulo, diga qual vértice contém o ângulo

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Lista de Exercícios de Cálculo Infinitesimal II

Lista de Exercícios de Cálculo Infinitesimal II Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,

Leia mais

2 o semestre de Calcule os seguintes limites, caso existam. Se não existirem, justifique por quê:

2 o semestre de Calcule os seguintes limites, caso existam. Se não existirem, justifique por quê: MAT2454 - Cálculo II - POLI - 2 a Lista de Eercícios 2 o semestre de 2004. Calcule os seguintes ites, caso eistam. Se não eistirem, justifique por quê: (a) (b) (c) (d) (e) y 2 + y 2 (f) 2 y cos( 2 + y

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-45 Cálculo Diferencial e Integral I (Escola Politécnica) Terceira Lista de Eercícios - Professor: Equipe de Professores. APLICAÇÕES DE

Leia mais

MAT Lista de exercícios para a 3 a prova

MAT Lista de exercícios para a 3 a prova Universidade de São Paulo Instituto de Matemática e Estatística MAT - Lista de eercícios para a a prova Valentin Ferenczi de maio de 9. Estude a função dada com relação a máimos e mínimos locais e globais.

Leia mais

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim. MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)

Leia mais

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Derivadas (26/09/2017)

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Derivadas (26/09/2017) Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma ) Cálculo Diferencial e Integral I 207/II a Lista de Derivadas (26/09/207) ) Calcule f (p), usando definição de derivada. a) f() =

Leia mais

1.2. Curvas, Funções e Superfícies de Nível. EXERCÍCIOS 1. Desenhe as imagens das seguintes curvas, indicando o sentido de percurso:

1.2. Curvas, Funções e Superfícies de Nível. EXERCÍCIOS 1. Desenhe as imagens das seguintes curvas, indicando o sentido de percurso: . MAT - 047 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA a LISTA DE EXERCÍCIOS - 07.. Retas e Planos. Faça alguns exercícios das seções.3 e.5 do livro Cáculo (vol.) de James Stewart... Curvas, Funções

Leia mais

Seja ( ) ( ) g ( z1z 2 ) é um número real. ( )

Seja ( ) ( ) g ( z1z 2 ) é um número real. ( ) . Seja n natural e n ³. Se S (0) é: 5000 57650 600 606700 67670 QUESTÃO ÚNICA 0,000 pontos distribuídos em 0 itens S ( n + ) = S ( n ) + n e S () =, então o valor de. A negação de A Matemática é fácil

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Exercícios de Cálculo - Prof. Ademir

Exercícios de Cálculo - Prof. Ademir Exercícios de Cálculo - Prof. Ademir Funções, limites e continuidade. Considere f : IR IR definida por f(x) = x 4x + 3. (a) Faça um esboço do gráfico de f. (b) Determine os valores de x para os quais f(x)..

Leia mais

Cálculo III-A Módulo 10 Tutor

Cálculo III-A Módulo 10 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor Eercício : eja a superfície parametriada por ϕ(u,v) = (u,v, v ), com

Leia mais

TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0.

TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0. FICHA DE TRABALHO N.º 3 (GEOMETRIA ANALÍTICA DO ESPAÇO) TURMAS:11.ºA/11.ºB 2017/2018 (JANEIRO DE 2018) No âmbito da Diferenciação Pedagógica (conjunto de exercícios com diferentes níveis de dificuldade:

Leia mais

Cálculo II Lista 4. com respostas

Cálculo II Lista 4. com respostas Cálculo II Lista 4. com respostas Exercício 1. Esboce a curva de nível de f(x, ) que passa pelo ponto P e desenhe o vetor gradiente de f em P: (a) f(x, ) = x ; P = ( 2, 2); 2 (b) f(x, ) = x 2 + 4 2 ; P

Leia mais

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.

Leia mais

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica 4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-0 Cálculo Diferencial e Integral I (Instituto de Física Primeira Lista de Eercícios - Professor: Aleandre Lymberopoulos. Calcule, quando

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

MAT 105- Lista de Exercícios

MAT 105- Lista de Exercícios 1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

a definição de derivada parcial como limite do que aplicar as regras de derivação.)

a definição de derivada parcial como limite do que aplicar as regras de derivação.) 2 a LISTA DE MAT 2454 - CÁLCULO II - POLI 2 o semestre de 2003. Ache as derivadas parciais de primeira ordem das funções : (a f(x, y = arctg y (b f(x, y, z, t = x y x z t 2. Seja f : IR IR uma função derivável.

Leia mais

Aula 4. Coordenadas polares. Definição 1. Observação 1

Aula 4. Coordenadas polares. Definição 1. Observação 1 Aula Coordenadas polares Nesta aula veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana Embora os sistemas cartesianos sejam muito utilizados, há curvas

Leia mais

8.11 EXERCÍCIOS pg. 379

8.11 EXERCÍCIOS pg. 379 8 EXERCÍCIOS pg 79 Demarcar os seguintes pontos no sistema e coorenaas polares (a) P (, ) (b) P (, ) (c) P (, ) () P (, ) Em caa um os itens, assinalar o ponto ao em coorenaas polares e epois escrever

Leia mais

Cálculo II - Superfícies no Espaço

Cálculo II - Superfícies no Espaço UFJF - DEPARTAMENTO DE MATEMÁTICA Cálculo II - Superfícies no Espaço Prof. Wilhelm Passarella Freire Prof. Grigori Chapiro 1 Conteúdo 1 Introdução 4 2 Plano 6 2.1 Parametrização do plano...................................

Leia mais

4.1 Superfície Cilíndrica

4.1 Superfície Cilíndrica 4. SUPERFÍCIES QUÁDRICAS CÁLCULO VETORIAL - 2017.2 4.1 Superfície Cilíndrica Uma superfície cilíndrica (ou simplesmente cilindro) é a superfície gerada por uma reta que se move ao longo de uma curva plana,

Leia mais

As listas de exercícios podem ser encontradas nos seguintes endereços: ou na pasta J18, no xerox (sala1036)

As listas de exercícios podem ser encontradas nos seguintes endereços:  ou na pasta J18, no xerox (sala1036) As listas de eercícios podem ser encontradas nos seguintes endereços: www.mat.ufmg.br/calculoi ou na pasta J8, no ero (sala06) TERCEIRA LISTA DE EXERCÍCIOS. Derive: a) y = 6 + b) y = c) d) y = + y = 0

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

(*) livro Cálculo Diferencial e Integral de Funções de Várias Variáveis, de Diomara e Cândida

(*) livro Cálculo Diferencial e Integral de Funções de Várias Variáveis, de Diomara e Cândida Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Lista de Cálculo II- Funções de Várias Variáveis (*) livro Cálculo Diferencial e Integral de Funções de Várias

Leia mais

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução

Leia mais

2 o Roteiro de Atividades: reforço da primeira parte do curso de Cálculo II Instituto de Astronomia e Geofísica

2 o Roteiro de Atividades: reforço da primeira parte do curso de Cálculo II Instituto de Astronomia e Geofísica o Roteiro de Atividades: reforço da primeira parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Critérios de Convergência e divergência de integrais

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

Vectores e Geometria Analítica

Vectores e Geometria Analítica Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário

Leia mais

Lista 2. (d) f (x, y) = x y x

Lista 2. (d) f (x, y) = x y x UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno - 207/ Prof. Zeca Eidam Lista 2 Funções reais de duas e três variáveis.

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017)

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017) Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma Cálculo Diferencial e Integral I 07/II a Lista de Integrais (07//07 Faça a antidiferenciação. Verifique o resultado, calculando a

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

SISTEMAS DE COORDENADAS

SISTEMAS DE COORDENADAS 1 SISTEMAS DE COORDENADAS 2.1 Coordenadas polares no R² Fonte: Cálculo A. Funções. Limite. Derivação. Integração. Diva Marília Flemming. Mírian Buss Gonçalves. Até o presente momento, localizamos um ponto

Leia mais

QUESTÕES ANPEC CÁLCULO A VÁRIAS VARIÁVEIS. 5. Em cada opção assinale se falsa ou verdadeira:

QUESTÕES ANPEC CÁLCULO A VÁRIAS VARIÁVEIS. 5. Em cada opção assinale se falsa ou verdadeira: QUESTÕES ANPEC CÁLCULO A VÁRIAS VARIÁVEIS QUESTÃO Calcule o comprimento do vetor z e que minimiza o valor da função QUESTÃO Ache os valores de e correspondentes ao máimo da função 0 0 e satisfazem a equação

Leia mais

4 + x6 3a. Lista de Exercícios. (3x + 1) 2 dx (3) x cos(nx)dx, n N (9) cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) x 2 x + 1dx (21)

4 + x6 3a. Lista de Exercícios. (3x + 1) 2 dx (3) x cos(nx)dx, n N (9) cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) x 2 x + 1dx (21) UFPR - Universidade Federal do Paraná Setor de Ciências Eatas Departamento de Matemática Prof. José Carlos Eidam PROFMAT - MA - Fundamentos de Cálculo Integrais definidas e indefinidas. Calcule as integrais

Leia mais

Cálculo IV EP11 Tutor

Cálculo IV EP11 Tutor Fundação Centro de Ciências e Educação uperior a istância do Estado do Rio de Janeiro Centro de Educação uperior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor Eercício : eja a superfície parametriada

Leia mais

5. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique.

5. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique. 4 ā Lista de Exercícios de SMA-332- Cálculo II 1. Mostre que as funções dadas são diferenciáveis. a) f(x, y) = xy b) f(x, y) = x + y c) f(x, y) = x 2 y 2 d) f(x, y) = 1 xy e) f(x, y) = 1 x + y f) f(x,

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 UFS - PROMAT Disciplina: Geometria Diferencial Professor: Almir Rogério Silva Santos Lista de Exercícios. Seja α : I R 3 uma curva regular. (a) Mostre que α é uma reta se α (t) e α (t) são linearmente

Leia mais

Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas

Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas EXERCÍCIOS: Circunferência 1. Escreva a equação da circunferência de centro em C e de raio r, onde: a) C está

Leia mais

Matemática 2 Engenharia Eletrotécnica e de Computadores

Matemática 2 Engenharia Eletrotécnica e de Computadores Matemática Engenharia Eletrotécnica e de Computadores Eercícios Compilados por: Alzira Faria Ana Cristina Meira Ana Júlia Viamonte Carla Pinto Jorge Mendonça Teórico-prática. Indique o domínio das funções:

Leia mais

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva.

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. MAT 11 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 015 LISTA Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. 1. Sejam A = (1, 1, 1), B = (0, 0, 1) e r : X = (1, 0, 0) + λ(1, 1,

Leia mais

4.1 Superfície Cilíndrica

4.1 Superfície Cilíndrica 4.1 Superfície Cilíndrica Uma superfície cilíndrica (ou simplesmente cilindro) é a superfície gerada por uma reta que se move ao longo de uma curva plana, denominada diretriz, paralelamente a uma reta

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas). MAT 105- Lista de Exercícios 1. Prolongue o segmento com extremos em (1, -5) e (3, 1) de um comprimento de (10) unidades. Determine as coordenadas dos novos extremos. 2. Determine o centro e o raio da

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

2a. Lista de Exercícios

2a. Lista de Exercícios UFPR - Universidade Federal do Paraná Departamento de Matemática Prof. José Carlos Eidam CM04 - Cálculo I - Turma C - 0/ a. Lista de Eercícios Teoremas do valor intermediário e do valor médio. Seja h()

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

Cálculo I - Lista 7: Integrais II

Cálculo I - Lista 7: Integrais II Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo - Prof. Responsável: Andrés Vercik. Use o teorema fundamental do calculo para achar a derivada da função. g( ) = + tdt g ( ) =

Leia mais

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2 Lista Cálculo II -B- 007- Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 007- Domínio, curva de nível e gráfico de função real de duas variáveis

Leia mais

Geometria Analítica II - Aula 5 108

Geometria Analítica II - Aula 5 108 Geometria Analítica II - Aula 5 108 IM-UFF Aula 6 Superfícies Cilíndricas Sejam γ uma curva contida num plano π do espaço e v 0 um vetor não-paralelo ao plano π. A superfície cilíndrica S de diretriz γ

Leia mais

MAT111 - Cálculo I - IO

MAT111 - Cálculo I - IO II - Integrais Indefinidas MAT - Cálculo I - IO - 0 a Lista de Eercícios Calcule as integrais indefinidas abaio: 7 + +. d.. tg d. 7. 0.. 6. 9... 8... 7. 0. sen cos d 8. d. + d. +d 7. d (arcsen) 0. e d.

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw.

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP5 Aula 9 Mudança de Variáveis na

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

3x 9. 2)lim x 3. x 4 x 2. 5) lim. 2x 3 x 2 + 7x 3 2 x + 5x 2 4x 3 9) lim sen(sen x) 11)lim 1 cosx. 18) lim. x 1 3. x 1 x 1.

3x 9. 2)lim x 3. x 4 x 2. 5) lim. 2x 3 x 2 + 7x 3 2 x + 5x 2 4x 3 9) lim sen(sen x) 11)lim 1 cosx. 18) lim. x 1 3. x 1 x 1. 1 a Lista de Cálculo I - Escola Politécnica - 2003 Limite de Funções 1. Calcule os seguintes limites, caso eistam: 5 1) lim 0 1 2 + 56 4) lim 7 2 11 + 28 7) lim 10) lim + 1 + 1 9 + 1 13) lim tg(3) cossec(6)

Leia mais

Lista 1. (1,0). (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação.

Lista 1. (1,0). (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação. UFPR - Universidade Federal do Paraná Departamento de Matemática CM04 - Cálculo II Prof. José Carlos Eidam Lista Derivadas parciais, gradiente e diferenciabilidade. Ache as derivadas parciais de primeira

Leia mais