Exercícios Resolvidos Esboço e Análise de Conjuntos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Exercícios Resolvidos Esboço e Análise de Conjuntos"

Transcrição

1 Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,, + + +, + } Resolução: As superfícies e = + + () = + () são superfícies de revolução em torno do eio O ( é função apenas da distância r = + de (, ) a (, )). Assim, para esboçar o conjunto definido pelas condições,, (3) basta considerar a intersecção das superfícies com o plano coordenado O (ver figura ). (, ) = + = Figura : Intersecção das superfícies com o plano coordenado O A região descrita em (3) é a que se obtém rodando a figura em torno do eio O sobre o primeiro quadrante do plano O. Ou seja, é a região entre os gráficos dos parabolóides de revolução () e () sobre o quarto de círculo +,, O conjunto é a porção desta região que se encontra sob o plano + = (4) cuja intersecção com o primeiro octante é descrita na figura. Assim, é limitado inferiormente pelo parabolóide () e superiormente pelo parabolóide () ou pelo plano (4). Resta agora determinar a região do plano O sobre a qual é limitada superiormente pelo plano e a região sobre a qual é limitada superiormente pelo parabolóide (). Para isto é necessário calcular a intersecção do plano com os parabolóides.

2 + = Figura : O plano + = no primeiro octante A intersecção do plano com o parabolóide () é dada por { = + = { + + = = Portanto a projecção desta intersecção no plano O é o arco de circunferência + ( + ) = 5 4,, A região limitada por este arco e os eios coordenados O e O é a região onde + e portanto é a projecção de no plano O. A intersecção do plano com o parabolóide () é dada por { = + + = { + + = = A projecção desta intersecção no plano O é o arco de circunferência + ( + ) =,, A região limitada por este arco e os eios coordenados O e O é a região onde + + e portanto é a região onde é limitado superiormente pelo parabolóide (). A figura 3 descreve a projecção de no plano O. obre a região I, é formada pelos pontos entre os dois parabolóides e sobre a região II é formada pelos pontos entre o parabolóide () e o plano (4). Com esta informação podemos agora esboçar o conjunto na figura 4.

3 5 II + ( + ) = 5 4 I + ( + ) = Figura 3: Projecção de no plano O (,, ) I II Figura 4: Esboço do Conjunto Eercício Descreva detalhadamente os cortes perpendiculares aos eios coordenados sobre o sólido definido por = {(,, ) R 3 : + + < ; > ; > ; > } Resolução: Na figura 5 encontra-se um esboço do conjunto em que se representam os planos dados pelas equações + + = ; = ; = ; =. Note-se que no plano = as rectas = e + = intersectam-se no ponto de coordenadas (,, ). Portanto, para descrever os cortes em, perpendiculares aos eios coordenados, devemos fiar a variável no intervalo ], [ e cada uma das variáveis e no intervalo ], [.. Fiando < < obtemos o corte em descrito pelas inequações + < ; > ; > 3

4 + + = / = / + = Figura 5: Esboço do sólido. < < + + = + = / = / + = = Figura 6: Corte em perpendicular a. e que se representa na figura 6.. Para obter o corte em perpendicular ao eio fiamos a variável no intervalo ], [. A respectiva descrição é dada pelas inequações + < ; > ; > e a sua representação gráfica encontra-se na figura Dado que da inequação + + <, obtemos > ; > ; > ; > < < Portanto, sendo >, para fiar no intervalo ], [, devemos considerar dois casos: 4

5 < < / + + = / = / + = + = Figura 7: Corte em perpendicular a. < < / + + = + = / = / + = Figura 8: Corte em perpendicular a para < <. Para < <, temos o corte descrito por e que se representa na figura 8. < ; + < ; > Para < < a condição > é supérflua e o corte perpendicular ao eio é descrito por + < ; > ; > e representado na figura 9. 5

6 + + = / < < / = / + = + = Figura 9: Corte em perpendicular a para < <. Eercício 3 Esboce detalhadamente o subconjunto de R 3 limitado pelos planos coordenados e pelos planos + + = 3, + = e =. Discuta as superfícies que se obtêm quando é cortado por planos paralelos aos planos coordenados. Resolução: Do sistema de equações { + + = 3 + = obtemos { + = = ou seja, o plano dado pela equação + + = 3 e o plano dado pela equação + = intersectam-se segundo a recta definida por + =, =. Esta recta intersecta o plano coordenado = no ponto (,, ). O plano dado pela equação = e o plano dado por + + = 3 intersectam-se segundo a recta definida por + =, =. Esta recta intersecta o plano = no ponto (,, ). Note-se também que o plano definido por + = passa pela origem e que o conjunto é simétrico em relação ao plano =. Portanto, podemos concluir que Na direcção do eio eistem duas regiões a distinguir: uma em que < < e outra em que < <. Para a região em que < <, os cortes com fio (perpendiculares ao eio ) são triângulos limitados pelos eios e e pela recta de equação + = 3, tal como se ilustra na figura. Para < <, os cortes com fio são também triângulos limitados pelos eios e e pela recta de equação + =. Na direcção do eio eistem também duas regiões distintas: uma em que < < e outra em que < <. 6

7 = (,, ) + + = 3 < < + = 3 (,, ) + = Figura : Esboço de e corte segundo < < fio. Para a região em que < <, os cortes perpendiculares ao eio são quadriláteros limitados pelo eio, pela recta =, pela recta + = 3 e pela recta = tal com se mostra na figura. = (,, ) + + = 3 (,, ) + = < < + = 3 = Figura : Esboço de e corte segundo < < fio. Para a região em que < <, os cortes com fio são triângulos limitados pelo eio, pela recta + = 3 e pela recta = como se ilustra na figura. Devido à simetria de, na direcção do eio passa-se o mesmo que na direcção do eio com as devidas modificações. 7

8 = (,, ) + + = 3 (,, ) + = < < + = 3 = Figura : Esboço de e corte segundo < < fio. Eercício 4 Descreva detalhadamente os cortes perpendiculares aos eios coordenados sobre o sólido definido da forma seguinte: = {(,, ) R 3 : + + < ; < ; > ; > } Resolução: Na figura 3 apresenta-se um esboço do sólido em que o ponto P, que resulta da intersecção entre o plano =, o plano = e a superfície esférica + + =, tem coordenadas (,, ). + + = = P Figura 3: Esboço do sólido. Consideremos um corte sobre e perpendicular ao eio, ou seja, consideremos a intersecção de com um plano em que a coordenada é constante. Dado que + + < e > então < < em. 8

9 + + = < < = P = Q + = Figura 4: Corte segundo um plano em que é constante. Tendo fiado no intervalo ], [, obtemos o corte em + < ; < ; > e que se representa na figura 4. Trata-se de um sector circular de raio, entre o eio positivo e a recta =. A circunferência de raio e a recta = intersectam-se ( ) sobre o ponto Q de coordenadas,. + + = < < / R < < / = P Figura 5: Corte segundo um plano em que < < é constante.. Para o corte segundo um plano perpendicular ao eio, fiamos < <. Dado que + + < ; < então <, o que significa que < < Assim, sendo <, temos dois casos a considerar: 9

10 + + = / < < R + = = P Figura 6: Corte segundo um plano em que < < é constante. < < que produ o corte definido por e representado na figura 5. + < ; < < < < que produ o corte definido por e representado na figura 6. + < ; > ; > + + = < < / R T + = / = P Figura 7: Corte segundo o plano em que < < é constante. 3. Do caso anterior, temos < < e o respectivo corte é dado por + < ; > que se representa na figura 7. O ponto T de intersecção entre a circunferência de raio e a recta = tem coordenadas (, ).

11 Eercício 5 Considere o sólido definido por, = {(,, ) R 3 : + < < ; > ; > }. Descreva detalhadamente os cortes de perpendiculares aos eios coordenados. Resolução: O sólido situa-se no semi-espaço <, é limitado inferiormente pelo cone de equação = + e superiormente pelo parabolóide descrito por =. Como o vértice do parabolóide = é o ponto (,, ), a coordenada assume todos os valores do intervalo [, ]. eja ρ = +,i.e., a distância ao eio O. Para determinar a intersecção entre o cone e o parabolóide, resolve-se a equação ρ + ρ =, donde se conclui que a intersecção ocorre numa circunferência de raio R = ( 5 )/, contida no plano = R. Assim, para os cortes perpendiculares ao eio O há dois casos a considerar: [, R] e [R, ]. No primeiro caso o corte é limitado pela intersecção com o cone, enquanto no segundo caso o corte é limitado pela intersecção com a bola. As figuras 8 e 9 ilustram estes cortes. = + = Figura 8: Corte perpendicular ao eio O, com [, R] Das figuras 8 e 9, concluímos que, em, varia entre e R. Para cortes perpendiculares ao eio O há também dois casos a considerar: [, R ] e [ R, R]. No primeiro caso a figura que se obtém é limitada à direita pela intersecção com o plano = e, no segundo caso, a figura é limitada à direita pela intersecção com a bola e o cone. As figuras e ilustram estes cortes. Analisando de novo as figuras 8 e 9, concluímos que varia entre e R/, em. Para os cortes perpendiculares ao eio O há apenas um caso a considerar, que é ilustrado pela figura

12 = + = Figura 9: Corte perpendicular ao eio O, com [R, ] = = R Figura : Corte perpendicular ao eio O, com [, R ] Eercício 6 Considere a região V R 3 definida pelas seguintes condições { 4 ( + ), se + a) Esboce a região V. 3 ( + ), se < + 3. b) Descreva detalhadamente os cortes obtidos pela intersecção de V com os planos horiontais, ou seja, constante para 4. Resolução: a) V é o volume compreendido entre plano e os parabolóides de equações = 4 ( + ), quando +, e = 3 ( + ), quando < + 3 (ver figura 3). Obtemos

13 = R = R Figura : Corte perpendicular ao eio O, com [ R, R] = R = R Figura : Corte perpendicular ao eio O, [, R ] assim um sólido de revolução, limitado por cima pela superfície obtida por revolução à volta do eio dos do gráfico da função { = 4 = f() =, se = 3, se < 3. De facto, um corte vertical de V segundo =, para, fornece uma área que está compreendida entre o eio dos, com 3, e o gráfico de f() (ver figura 4). b) Como V é um sólido de revolução, sendo o eio de simetria, os cortes com fio vão ser círculos. Para = 4, vamos ter o corte {(,, ) R 3 : =, + (4 )/} que representa um disco de raio (4 )/ centrado no eio dos e à altura =. Para = <, vamos ter o corte {(,, ) R 3 : =, + 3 } que representa um disco de raio 3 centrado no eio dos e à altura =. 3

14 4 = 4 ( + ) = 3 ( + ) 3 Figura 3: Esboço de V 4 = 4 = 3 3 Figura 4: Gráfico da função f 4

15 Eercício 7 Considere o conjunto R 3 definido por = {(,, ) R 3 : < <, > +, < < 4, + + ( ) > }. a) Esboce o conjunto. b) Descreva detalhadamente os cortes por planos perpendiculares aos eios dos e dos. Resolução: a) A região é limitada pelos planos verticais = e =, pelos planos horiontais = e = 4, pela superfície cónica = + = ± +, e pela superfície esférica de centro em (,, ) e raio, dada pela equação + + ( ) =. O sólido tem portanto o aspecto indicado na Figura = 6 = Figura 5: Esboço do sólido. b) Os planos perpendiculares ao eio O são os definidos por equações da forma = c com c constante (que podemos assumir, senão a intersecção com seria vaia). O corte por este plano é formado pelo conjunto {(c,, ) R 3 : c <, > c +, < < 4, c + + ( ) > } No plano (, ) esta região consiste no conjunto dos pontos que estão à direita da recta = c, acima da hipérbole = c +, na faia < < 4 e que satisfaem a relação + ( ) > c. Esta inequação é automáticamente satisfeita se c < c uma ve que + ( ). Por outro lado, mesmo para c, se c c então o círculo + ( ) c está contido na região à esquerda da recta vertical = c e, portanto, a relação + ( ) > c pode ser ignorada (é mais fraca do que a condição > c). Note-se que c = c c = c c = c = 5

16 (onde usámos o facto de c ser ) logo temos de entrar em conta com a relação c + + ( ) > apenas se c. Outra forma de pensar nisto é a seguinte: é o valor a partir do qual um plano paralelo ao plano não toca no buraco do cone. Corresponde ao raio do buraco multiplicado pelo coseno de 45 graus. Assim, para c, o corte do sólido pelo plano = c tem o aspecto indicado na Figura c = c + c c c 6 c Figura 6: Cortes de por planos = c com c. O maior valor que c pode tomar para que a intersecção de com = c seja não vaia é a abcissa do ponto sobre a circunferência de raio 4 que fa um ângulo de 45 graus com o eio dos (esta é a coordenada do vértice de mais próimo do observador na Figura 5). Este valor é 4 cos π 4 =. Outra maneira de chegar a este valor máimo de c seria calcular qual é o valor de c em que a recta vertical = c e a hipérbole = c + se intersectam em = 4. Para c temos então que o corte pelo plano = c é o indicado na Figura 7 (a única diferença é que a condição de estar fora da esfera de raio centrada em (,, ) não tem influência no corte). 4 = c + c c 6 c Figura 7: Cortes de por planos = c com c. Os cortes por planos perpendiculares ao eio dos, isto é por planos = c com c 4 faem-se de forma análoga: o corte é o conjunto dos pontos {(,, c) R 3 : < <, + < c, + > (c ) }. 6

17 e (c ) c ou c 3 a última condição é automática (os planos horiontais a altura c não intersectam o buraco para estes valores de c) e portanto o corte consiste num sector do círculo de raio c (ver Figura 8). c c + = c = Figura 8: Cortes de por planos = c com c ou 3 c 4. e c 3 então o corte consiste num sector entre as circunferências de raio (c ) e c (ver Figura 9). c + = c c (c ) = Figura 9: Cortes de por planos = c com c 3. 7

Exercícios Resolvidos Esboço de Conjuntos. Cortes

Exercícios Resolvidos Esboço de Conjuntos. Cortes Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço de Conjuntos. Cortes Eercício Descreva detalhadamente os cortes perpendiculares aos eios coordenados

Leia mais

Exercícios Resolvidos Mudança de Coordenadas

Exercícios Resolvidos Mudança de Coordenadas Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida

Leia mais

Teorema de Fubini. Cálculo de volumes

Teorema de Fubini. Cálculo de volumes Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Fubini. Cálculo de volumes Teorema de Fubini O teorema de Fubini (cf. [,, 3] permite relacionar

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

Exercícios Resolvidos Integral de Linha de um Campo Escalar

Exercícios Resolvidos Integral de Linha de um Campo Escalar Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Eercícios Resolvidos Integral de Linha de um ampo Escalar Eercício onsidere o caminho g : [, ] R definido por g(t) = (e

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

Gráco de funções de duas variáveis

Gráco de funções de duas variáveis UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 09 Assunto:Gráco de funções de duas variáveis, funções de três variáveis reais a valores reais, superfícies de nível,funções limitadas Palavras-chaves:

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

UC: Análise Matemática II. Representação geométrica para Integrais Múltiplos - Volumes

UC: Análise Matemática II. Representação geométrica para Integrais Múltiplos - Volumes ETI / EI, 1 o Ano UC: Análise Matemática II Representação geométrica para Integrais Múltiplos - Volumes Elaborado de: Diana Aldea Mendes e Rosário Laureano Departamento de Métodos Quantitativos Fevereiro

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em  acannas/amiii Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 24.05.20.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;

Leia mais

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47 ÍNDICE Números e operações Geometria e medida Relação de ordem em R 4 Intervalos de números reais 8 Valores aproimados de resultados de operações Eercícios resolvidos 6 Eercícios propostos 0 Eercícios

Leia mais

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016 INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a

Leia mais

Preparação para o Teste de Maio 2012 (GEOMETRIA)

Preparação para o Teste de Maio 2012 (GEOMETRIA) Nº8 Matemática: ºA Preparação para o Teste de Maio (GEOMETIA) Grupo I. Num referencial o.n. Oy, considera um ponto A pertencente ao semieio positivo O e um ponto B pertencente ao semieio positivo Oy. Quais

Leia mais

SUPERFÍCIES QUÁDRICAS

SUPERFÍCIES QUÁDRICAS 1 SUPERFÍCIES QUÁDRICAS Dá-se o nome de superfície quádrica ou simplesmente quádrica ao gráfico de uma equação do segundo grau, nas variáveis, e, da forma: A + B + C + D + E + F + G + H + I + K = 0, que

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75 MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,

Leia mais

Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade

Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 29.01.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Matemática A. Teste Intermédio de Matemática A. Versão 2. Teste Intermédio. Versão 2. Duração do Teste: 90 minutos º Ano de Escolaridade

Matemática A. Teste Intermédio de Matemática A. Versão 2. Teste Intermédio. Versão 2. Duração do Teste: 90 minutos º Ano de Escolaridade Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 29.01.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Proposta de Teste Intermédio Matemática A 11.º ano

Proposta de Teste Intermédio Matemática A 11.º ano Nome da Escola no letivo 20-20 Matemática 11.º ano Nome do luno Turma N.º Data Professor - - 20 GRUP I s cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções,

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Proposta de Teste Intermédio Matemática A 11.º ano

Proposta de Teste Intermédio Matemática A 11.º ano GRUPO I. Vamos calcular o valor da função objetivo, L, em cada um dos vértices da região admissível. Vértice L O 0 0 L = 0 + 0 = 0 0 L = + 0 = L = + = C L = + = D 0 L = 0 + = função objetivo atinge o máimo,

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 7 GRUPO I 1. Num certo prisma, cada uma das bases tem n vértices. Quantas faces e quantas

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

SISTEMAS DE COORDENADAS

SISTEMAS DE COORDENADAS 1 SISTEMAS DE COORDENADAS 2.1 Coordenadas polares no R² Fonte: Cálculo A. Funções. Limite. Derivação. Integração. Diva Marília Flemming. Mírian Buss Gonçalves. Até o presente momento, localizamos um ponto

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Preparação para o Cálculo

Preparação para o Cálculo Preparação para o Cálculo Referencial cartesiano Representação gráfica Um referencial cartesiano é constituído por duas rectas perpendiculares (fias), com ponto de intersecção O: O diz-se a origem do referencial;

Leia mais

Teorema de Fubini e Mudança de Variáveis (Resolução Sumária)

Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) 9 de Maio de 9. Escreva fdv como um integral iterado nas duas ordens de integração possíveis, onde o conjunto é: (a) O triângulo de vértices

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

4. Superfícies e sólidos geométricos

4. Superfícies e sólidos geométricos 4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das

Leia mais

Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas

Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas Cursos de Estatística, Informática, Ciências de Informação Geográfica ALGA, Ficha 10 Cónicas EXERCÍCIOS: Circunferência 1. Escreva a equação da circunferência de centro em C e de raio r, onde: a) C está

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria

MATEMÁTICA A - 11o Ano Geometria -Trigonometria MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;

Leia mais

Agrupamento de Escolas Eugénio de Castro Escola Básica de Eugénio de Castro Planificação Anual

Agrupamento de Escolas Eugénio de Castro Escola Básica de Eugénio de Castro Planificação Anual CONHECIMENTO DE FACTOS E DE PROCEDIMENTOS. RACIOCÍNIO MATEMÁTICO. COMUNICAÇÃO MATEMÁTICA. RESOLUÇÃO DE PROBLEMAS Reconhecer propriedades da relação de ordem em IR. Definir intervalos de números reais.

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P (A B) P (A B) P (B) P (A B) P (A B) P (B) vem que: P (A B) 6 0 60 0 Como P (A B) P (A) + P (B) P (A B), temos que:

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 1) 1 Notação R n = R R R x R n : x = (x 1, x 2,, x n ) ; x

Leia mais

UNIDADE 1 ESTATÍSTICA E PROBABILIDADES 9 tempos de 45 minutos

UNIDADE 1 ESTATÍSTICA E PROBABILIDADES 9 tempos de 45 minutos EBIAH 9º ANO PLANIFICAÇÃO A LONGO E MÉDIO PRAZO EBIAH PLANIFICAÇÃO A MÉDIO PRAZO 9º ANO - 1º Período Integração dos alunos 1 tempo ESTATÍSTICA A aptidão para entender e usar de modo adequado a linguagem

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Matemática A. Versão 1 RESOLUÇÃO GRUPO I. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Duração do Teste: 90 minutos

Matemática A. Versão 1 RESOLUÇÃO GRUPO I. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Duração do Teste: 90 minutos Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 06.05.0 0.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março RESLUÇÃ GRUP I. Resposta

Leia mais

Ficha de avaliação nº2 Versão A1

Ficha de avaliação nº2 Versão A1 st ireção-eral dos stabelecimentos scolares SRAI ireção de Serviços da Região Algarve ARUPAMNT SLAS JÚLI ANTAS LAS (145415) Matemática A- 10ºAN 1/11/013 Ano letivo 013/014 icha de avaliação nº Versão A1

Leia mais

Matemática A. Versão 1 RESOLUÇÃO GRUPO I. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Duração do Teste: 90 minutos

Matemática A. Versão 1 RESOLUÇÃO GRUPO I. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Duração do Teste: 90 minutos Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 7.0.0.º Ano de Escolaridade Decreto-Lei n.º 7/00, de 6 de Março RESOLUÇÃO GRUPO I. Resposta (B)

Leia mais

FUNÇÃO QUADRÁTICA. Vamos fazer agora o estudo da função, tendo em conta a sua representação geométrica.

FUNÇÃO QUADRÁTICA. Vamos fazer agora o estudo da função, tendo em conta a sua representação geométrica. FUNÇÃO QUADRÁTICA Definição: Uma função quadrática é uma função f definida por f () a b c, a 0 a, b e c são números reais. - O domínio de uma função quadrática é o conjunto dos números reais. - O gráfico

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

Escola Secundária c/3º CEB de Lousada

Escola Secundária c/3º CEB de Lousada Escola Secundária c/3º CEB de Lousada Planificação Anual da Disciplina de Matemática 9º Ano Ano Lectivo: 2011/2012 CONTEÚDOS 1º PERÍODO OBJECTIVOS E COMPETÊNCIAS Nº de Tempos (45min.) Equações -Equações

Leia mais

x 2 a 2 + y2 c 2 = 1, b 2 + z2 Esta superfície é simétrica relativamente a cada um dos planos coordenados e relativamente

x 2 a 2 + y2 c 2 = 1, b 2 + z2 Esta superfície é simétrica relativamente a cada um dos planos coordenados e relativamente Capítulo 2 Cálculo integral 2.1 Superfícies quádricas Uma superfície quádrica é um subconjunto de R 3 constituído por todos os pontos de R 3 que satisfazem uma equação com a forma A + B + Cz 2 + Dxy +

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tarefa nº do plano de trabalho nº 7. Considere a função f() -. a. Encontre a epressão analítica da função inversa de f.

Leia mais

Aula 15 Parábola. Objetivos

Aula 15 Parábola. Objetivos MÓDULO 1 - AULA 15 Aula 15 Parábola Objetivos Descrever a parábola como um lugar geométrico determinando a sua equação reduzida nos sistemas de coordenadas com eixo x paralelo à diretriz l e origem no

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

3. Algumas classes especiais de superfícies

3. Algumas classes especiais de superfícies 3. ALGUMAS CLASSES ESPECIAIS DE SUPERFÍCIES 77 3. Algumas classes especiais de superfícies Nesta secção descrevemos algumas das classes de superfícies mais simples. Superfícies quádricas As superfícies

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 5º Teste de avaliação versão2. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 5º Teste de avaliação versão2. Grupo I Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A 5º Teste de avaliação versão Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1

TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1 TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1 Grupo I 1. Se uma recta é paralela ao eixo SD, qualquer vector director dessa recta tem primeira e segunda coordenadas iguais a zero. Resposta B 2.

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2. Escola Secundária com 3º ciclo D. Dinis 10º no de Matemática TEM 1 GEMETRI N PLN E N ESPÇ I 3º Teste de avaliação versão Grupo I s cinco questões deste grupo são de escolha mqaúltipla. Para cada uma delas

Leia mais

MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA

MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA ÍNDICE Números e operações Geometria e medida 1 Relação de ordem em R 4 2 Intervalos de números reais 8 3 Valores

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada 1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

INSTITUTO FEDERAL DE BRASILIA 3ª Lista GABARITO DATA: 14/09/2016

INSTITUTO FEDERAL DE BRASILIA 3ª Lista GABARITO DATA: 14/09/2016 INSTITUTO FEDERAL DE BRASILIA ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA GABARITO DATA: 14/09/016 1) No plano cartesiano, 0xy, a circunferência C tem centro no ponto P (, 1), e a reta t é tangente a C no ponto

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

GDC I AULA TEÓRICA 07

GDC I AULA TEÓRICA 07 GDC I AULA TEÓRICA 07 Perspectiva linear de quadro plano: - Determinação de pontos de fuga de direcções de figuras planas contidas em orientações (dadas) ortogonais e oblíquas ao quadro. - O rebatimento

Leia mais

ESCOLA SECUNDÁRIA FERREIRA DIAS

ESCOLA SECUNDÁRIA FERREIRA DIAS ESCOLA SECUNDÁRIA FERREIRA DIAS ENSINO RECORRENTE DE NÍVEL SECUNDÁRIO POR MÓDULOS CAPITALIZÁVEIS CURSO DE CIÊNCIAS E TECNOLOGIAS DISCIPLINA : MATEMÁTICA A ANO: 10.º - CONJUNTO DOS MÓDULOS 1-2-3 DURAÇÃO

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla.

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP4 Aula 7 Integrais Triplas Objetivo

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I Escola Secundária com 3º ciclo D. Dinis 0º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 6 Estes trabalhos de casa, até ao fim do período, vão continuar a ser constituídos por

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

Planificação Anual Matemática 9º Ano Ano lectivo 2014/2015

Planificação Anual Matemática 9º Ano Ano lectivo 2014/2015 nº 1 de (EB23) Organização e tratamento de dados Desenvolver nos alunos a capacidade de compreender e de produzir informação estatística bem como de a utilizar para resolver problemas e tomar decisões

Leia mais

EXERCÍCIOS RESOLVIDOS - SUPERFÍCIES - Ano lectivo 2010/2011

EXERCÍCIOS RESOLVIDOS - SUPERFÍCIES - Ano lectivo 2010/2011 EXERCÍCIOS RESOLVIDOS - SUPERFÍCIES - Ano lectivo 2010/2011 Este documento contém um conjunto de exercícios resolvidos sobre o tema das superfícies. Os exercícios foram retirados de provas de frequências

Leia mais

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto

Leia mais

Aula 18 Cilindros quádricos e identificação de quádricas

Aula 18 Cilindros quádricos e identificação de quádricas MÓDULO 2 - AULA 18 Aula 18 Cilindros quádricos e identificação de quádricas Objetivos Estudar os cilindros quádricos, analisando suas seções planas paralelas aos planos coordenados e estabelecendo suas

Leia mais