Exercícios Resolvidos Integral de Linha de um Campo Escalar

Tamanho: px
Começar a partir da página:

Download "Exercícios Resolvidos Integral de Linha de um Campo Escalar"

Transcrição

1 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Eercícios Resolvidos Integral de Linha de um ampo Escalar Eercício onsidere o caminho g : [, ] R definido por g(t) = (e t cos(πt), e t sen(πt)). a) alcule o comprimento L(g) do caminho g. b) alcule a coordenada do centróide da curva representada por g. Resolução: Na Figura encontra-se representada a linha descrita pelo caminho g. Figura : a) Dado que g é de classe, o comprimento é dado pelo integral Sendo e então, L(g) = g (t) dt. g (t) = (e t cos(πt) πe t sen(πt), e t sen(πt) + πe t cos(πt)) L(g) = g (t) dt = g (t) = + π e t + π e t dt = + π (e ). b) Por definição, a coordenada do centróide é dada pelo integral = L(g) (g(t)) g (t) dt = Integrando por partes duas vees obtemos = (e ) e (e )( + π ). e t cos(πt)dt.

2 Eercício Um aro circular de raio rola sem desliar ao longo de uma linha recta. alcule o comprimento da trajectória descrita por um ponto do aro entre dois contactos consecutivos com o solo. Resolução: Podemos colocar o aro no plano O a rolar ao longo do eio O de tal forma que, no início do movimento, o centro se encontra no ponto (, ) e o ponto do aro em questão se encontra na origem. O facto de o aro rolar sem desliar significa que quando o centro se desloca uma distância s ao longo do eio O, o ponto no aro descreve, em relação ao centro do aro, um arco de circunferência de comprimento s. Por eemplo, num quarto de volta do aro, o centro sofrerá um deslocamento de comprimento π. A curva assim descrita por um ponto do aro chama-se ciclóide. s s π Figura : Esboço da ciclóide O movimento do ponto do aro pode ser decomposto em dois: o movimento do centro do aro e o movimento do ponto em relação ao centro. Se usarmos a distância percorrida pelo aro como parâmetro, a trajectória do centro é descrita pelo caminho g : [, π] R definido por g (s) = (s, ). Por outro lado, a trajectória do ponto no aro em relação ao centro é descrita pelo caminho g : [, π] R definido por g (s) = (cos( π s), sen( π s)) = ( sen s, cos s), já que o vector que une o centro ao ponto do aro começa por faer um ângulo de π com o eio O e roda no sentido dos ponteiros do relógio. Portanto, a trajectória do ponto no aro é descrita pela soma destes dois caminhos g(s) = g (s) + g (s) = (s sen s, cos s). O comprimento deste caminho é dado pela epressão π = g (s) ds onde = g([, π]). omo g (s) = ( cos s, sen s)

3 temos g (s) = cos s + cos s + sen s = ( cos s) e, portanto, = = π = ( cos s)ds du ( u) u du + u = 8 ( ) onde na passagem da primeira para a segunda linha se usou a mudança de variável u = cos s. Eercício 3 Um avião a hélice desloca-se em linha recta a uma velocidade constante igual a. A hélice do avião tem raio r e roda a velocidade constante, efectuando ω voltas por unidade de tempo. Determine o comprimento da trajectória descrita por um etremo da hélice quando o avião se desloca L unidades de comprimento. Resolução: Podemos imaginar o avião a deslocar-se ao longo do eio O e de tal forma que, no instante inicial, o centro da hélice se encontra na origem. Então a trajectória percorrida pelo centro da hélice é descrita pelo caminho g : [, L] R 3, definido por g (t) = (t,, ). Por outro lado, a hélice roda a uma velocidade constante em relação ao centro, num plano perpendicular ao eio O. Na Figura 3 apresenta-se a trajectória do etremo da hélice e a respectiva projecção no plano =. = π Figura 3: Trajectória do etremo da hélice 3

4 Em relação ao centro, um etremo da hélice descreve uma circunferência definida pelo caminho g : [, L] R 3 g (t) = (, r cos(πωt), r sen(πωt)). Assim, a trajectória de um etremo da hélice é descrita pela soma dos dois caminhos em R 3, ou seja, é descrita pelo caminho g : [, L] R 3, definido por g(t) = (t, r cos(πωt), r sen(πωt)). O comprimento deste caminho é dado pelo integral L = g (t) dt onde = g([, L]). Sendo então g (t) = (, πωr sen(πωt), πωr cos(πωt)), g (t) = + π r ω sen (πωt) + π r ω cos (πωt) = + π r ω e, portanto, = L + π r ω Eercício Um fio, com densidade de massa ρ(,, ) = ( + ), tem a configuração da intersecção das superfícies alcule a massa de. S = {(,, ) R 3 : = + } P = {(,, ) R 3 : + = }. Resolução: Na Figura encontra-se representada a intersecção do cone S com o plano P que é paralelo ao eio O. A massa do fio é dada pelo integral de linha m = ρ. Para calcular este integral de linha é conveniente determinar um caminho de classe que descreva a curva. omecemos por determinar a equação da projecção de no plano O, que designamos por : { = + = + = ( ) + + (+) =. Portanto, a projecção é uma elipse centrada no ponto (,, ) com eio maior de comprimento e eio menor de comprimento tal como se representa na Figura. Assim, a curva pode ser descrita pelo caminho g(t) = (cos t, sen t, sen t), t [, π],

5 S P S P Figura : Intersecção do cone S com o plano P e respectiva projecção no plano = onde se usou o facto de que, quando t percorre o intervalo [, π], a função (cos t, sen t, ) descreve a projecção, e Então, temos e, portanto, = ( (g(t))) = ( ( sen t )) = sen t. m = g (t) = ( sen t, cos t, cos t) g (t) = sen t + cos t + cos t = + cos t ρ(g(t)) = cos t( sen t + ) = sen(t), π ρ(g(t)) g (t) dt = π sen(t) + cos tdt = π = = sen(t) + cos tdt [ ( + cos t) (3 3 ). ] π 5

Linhas. Integrais de Linha

Linhas. Integrais de Linha Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Linhas. Integrais de Linha Linhas e Caminhos. Um segmento de recta 3 Consideremos o segmento de recta

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Exercícios Resolvidos Esboço de Conjuntos. Cortes

Exercícios Resolvidos Esboço de Conjuntos. Cortes Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço de Conjuntos. Cortes Eercício Descreva detalhadamente os cortes perpendiculares aos eios coordenados

Leia mais

Exercícios Resolvidos Variedades

Exercícios Resolvidos Variedades Instituto Superior Técnico Departamento de atemática Secção de Álgebra e Análise Eercícios Resolvidos Variedades Eercício 1 Considere o conjunto = {(,, ) R : + = 1 ; 0 < < 1}. ostre que é uma variedade,

Leia mais

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t. MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE

Leia mais

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii

ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em  acannas/amiii Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA

Leia mais

Exercícios Resolvidos Mudança de Coordenadas

Exercícios Resolvidos Mudança de Coordenadas Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida

Leia mais

Cálculo III-A Lista 8

Cálculo III-A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se

Leia mais

CÁLCULO IV - MAT Calcule a integral de linha do campo vetorial f ao longo da curva que indica-se em cada um dos seguintes itens.

CÁLCULO IV - MAT Calcule a integral de linha do campo vetorial f ao longo da curva que indica-se em cada um dos seguintes itens. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO IV - MAT0041 1 a Lista de exercícios 1.

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Trigonometria 1 (Revisões) 12.º Ano

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Trigonometria 1 (Revisões) 12.º Ano Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo de 00/04 Trigonometria 1 (Revisões) 1º no Nome: Nº: Turma: 1 Um cone, cuja base tem raio r e cuja geratriz tem comprimento l, roda

Leia mais

ANÁLISE MATEMÁTICA III A OUTONO Sobre Medida Nula

ANÁLISE MATEMÁTICA III A OUTONO Sobre Medida Nula Departamento de Matemática Secção de Álgebra e Análise Última actualização: 6/Out/5 ANÁLISE MATEMÁTICA III A OUTONO 5 PATE II INTEGAÇÃO EM N EXECÍCIOS COM POSSÍVEIS SOLUÇÕES ABEVIADAS acessível em http://www.math.ist.utl.pt/

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com º ciclo D. Dinis º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taa de Variação e Derivada TPC nº 7 (entregar no dia 04-02-20).

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

UC: Análise Matemática II. Representação geométrica para Integrais Múltiplos - Volumes

UC: Análise Matemática II. Representação geométrica para Integrais Múltiplos - Volumes ETI / EI, 1 o Ano UC: Análise Matemática II Representação geométrica para Integrais Múltiplos - Volumes Elaborado de: Diana Aldea Mendes e Rosário Laureano Departamento de Métodos Quantitativos Fevereiro

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se encontra

Leia mais

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES 008 LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES. Calcular a soma superior e inferir de f ( =. sen( no intervalo [0,] com divisões.,86 u.a. e,6 u.a.. Esboce o gráfico e aproime com

Leia mais

Exercícios Resolvidos Integral de Linha de um Campo Vectorial

Exercícios Resolvidos Integral de Linha de um Campo Vectorial Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ercícios Resolvidos Integral de inha de um ampo Vectorial ercício onsidere o campo vectorial F,, z =,, z. alcule o integral

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área I UFRGS - INSTITUTO DE MATEMÁTIA Departamento de Matemática Pura e Aplicada MAT068 - Turma - 07/ Prova da área I -6 7 8 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento 2 Cinemática A cinemática tem como objeto de estudo o movimento de sistemas mecânicos procurando descrever e analisar movimento do ponto de vista geométrico, sendo, para tal, irrelevantes os fenómenos

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

1. Superfícies Quádricas

1. Superfícies Quádricas . Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Justifique convenientemente as suas respostas e indique os principais cálculos

Justifique convenientemente as suas respostas e indique os principais cálculos Ano lectivo 006/07 Exame de Geometria Diferencial 5/7/07 Justifique convenientemente as suas respostas e indique os principais cálculos Duração: h30m Soluções 1. Determine: a) Uma parametrização da curva

Leia mais

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2 Lista Cálculo II -B- 007- Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 007- Domínio, curva de nível e gráfico de função real de duas variáveis

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

Cálculo III-A Módulo 9 Tutor

Cálculo III-A Módulo 9 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Tutor Eercício : alcule a integral de linha diretamente e, também, pelo teorema

Leia mais

Cálculo III-A Módulo 7

Cálculo III-A Módulo 7 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Módulo 7 Aula 13 Aplicações da Integral de Linha de ampo Escalar Objetivo Apresentar

Leia mais

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ;

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ; Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/004 Ficha Prática nº. 5: Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo

Leia mais

(a) Determine a velocidade do barco em qualquer instante.

(a) Determine a velocidade do barco em qualquer instante. NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte

Leia mais

Cálculo III-A Módulo 9

Cálculo III-A Módulo 9 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Aula 17 Teorema de Green Objetivo Estudar um teorema que estabelece uma ligação

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

1. Mostre que os seguintes conjuntos são variedades e indique a respectiva dimensão: DF = 1 1 1

1. Mostre que os seguintes conjuntos são variedades e indique a respectiva dimensão: DF = 1 1 1 a Ficha de Eercícios de AMIII Resolução Sumária 1. Mostre que os seguintes conjuntos são variedades e indique a respectiva dimensão: (a) S = (,, z) R 3 3 + 3 + z 3 = 1 } ; (b) C = (,, z) R 3 + = + + 1,

Leia mais

Capítulo 3 GEOMETRIA DE MASSAS 3.1 INTRODUÇÃO 3.2 CENTRO DE MASSA E CENTRO DE GRAVIDADE

Capítulo 3 GEOMETRIA DE MASSAS 3.1 INTRODUÇÃO 3.2 CENTRO DE MASSA E CENTRO DE GRAVIDADE Capítulo 3 EOMETR DE MSSS 3. NTRODUÇÃO Neste capítulo será feito o estudo de várias propriedades e características geométrico-mecânicas de linhas, superfícies e volumes, as quais constituirão uma ferramenta

Leia mais

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTRODUÇÃO AO CÁLCULO VETORIAL Gil da Costa Marques TÓPICO Fundamentos da Matemática II.1 Introdução. Funções vetoriais de uma variável. Domínio e conjunto imagem.4 Limites de funções vetoriais de uma

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria

MATEMÁTICA A - 11o Ano Geometria -Trigonometria MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;

Leia mais

Análise Matemática III Resolução do 2 ō Teste e 1 ō Exame - 20 de Janeiro horas

Análise Matemática III Resolução do 2 ō Teste e 1 ō Exame - 20 de Janeiro horas Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Análise Matemática III Resolução do ō Teste e ō Exame - de Janeiro - 9 horas. O sólido tem simetria cilíndrica em torno do

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

Cálculo IV EP10 Tutor

Cálculo IV EP10 Tutor Fundação entro de iências e Educação Superior a istância do Estado do Rio de Janeiro entro de Educação Superior a istância do Estado do Rio de Janeiro álculo IV EP Tutor Eercício : alcule a integral de

Leia mais

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III Eercícios teórico-práticos FILIPE SANTOS MOREIRA Física 3 (EQ) Eercícios TP Índice Índice i Derivadas e integrais

Leia mais

Física I 2010/2011. Aula 13 Rotação I

Física I 2010/2011. Aula 13 Rotação I Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

Aula 31 Funções vetoriais de uma variável real

Aula 31 Funções vetoriais de uma variável real MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução

Leia mais

x n+1 = 1 2 x n (2 valores) Considere a equação recursiva no modelo de Fisher, Wright e Haldane

x n+1 = 1 2 x n (2 valores) Considere a equação recursiva no modelo de Fisher, Wright e Haldane .9.8.7.6.5.4.3.2.1 1 22/11/211 1 o teste A41N1 - Análise Matemática - BIOQ Nome... N o... 1. (2 valores) Calcule a soma da série 9 1 + 9 1 + 9 1 +... 9 1 + 9 1 + 9 1 + = 9 1 1 + 1 1 + 1 1 + 1 «1 +... =

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 13. rot F n ds.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 13. rot F n ds. Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 3 Eercício : Verifique o Teorema de tokes, calculando as duas integrais do enunciado,

Leia mais

Deduzimos a equação do ciclóide na proxima seção.

Deduzimos a equação do ciclóide na proxima seção. Chapter Curvas Paramétricas Introdução e Motivação: No estudo de curvas cartesianas estamos acostumando a tomar uma variável como independente e a outra como dependente, ou seja = f() ou = h(). Porem,

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

3xz dx + 4yz dy + 2xy dz, do ponto A = (0, 0, 0) ao ponto B = (1, 1, 2), ao longo dos seguintes caminhos:

3xz dx + 4yz dy + 2xy dz, do ponto A = (0, 0, 0) ao ponto B = (1, 1, 2), ao longo dos seguintes caminhos: Lista álculo III -A- 201-1 10 Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 201-1 Integral de Linha de ampo Vetorial Teorema de Green ampos

Leia mais

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii)

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii) MINISTÉRIO DA EDUCAÇÃO DESEMPENHO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a Dayse Batistus, Dr a.

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Exercícios Resolvidos Integrais de Linha. Teorema de Green

Exercícios Resolvidos Integrais de Linha. Teorema de Green Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova de Recuperação - 14/02/200 - Gabarito 1. Uma massa é abandonada com velocidade inicial igual a zero de modo que atinge o solo 10 segundos depois de solta. Desprezando

Leia mais

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k 1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,

Leia mais

MAT Lista de exercícios para a 3 a prova

MAT Lista de exercícios para a 3 a prova Universidade de São Paulo Instituto de Matemática e Estatística MAT - Lista de eercícios para a a prova Valentin Ferenczi de maio de 9. Estude a função dada com relação a máimos e mínimos locais e globais.

Leia mais

Recredenciamento Portaria MEC 347, de D.O.U (Nova) Matemática, Licenciatura

Recredenciamento Portaria MEC 347, de D.O.U (Nova) Matemática, Licenciatura Portaria ME 7, de 5.. D.O.U.... (Nova) Matemática, Licenciatura Módulo de Pesquisa: Práticas de ensino em matemática, contetos e metodologias Disciplina: Fundamentos de Matemática III no/semestre: / Unidade

Leia mais

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA 1. Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens estavam em R. Essas funções são chamadas de funções com valores

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

FICHA DE TRABALHO 2 - RESOLUÇÃO

FICHA DE TRABALHO 2 - RESOLUÇÃO Secção de Álgebra e Análise, Departamento de Matemática, Instituto Superior Técnico Análise Matemática III A - 1 o semestre de 2003/04 FICHA DE TRABALHO 2 - RESOLUÇÃO 1) Seja U R n um aberto e f : U R

Leia mais

MATEMÁTICA A - 11o Ano Geometria - Produto escalar

MATEMÁTICA A - 11o Ano Geometria - Produto escalar MMÁI - 11o no Geometria - roduto escalar ercícios de eames e testes intermédios 1. onsidere, num referencial o.n., dois pontos distintos, e eja o conjunto dos pontos desse plano que verificam a condição.

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente

Leia mais

Cálculo I - Lista 7: Integrais II

Cálculo I - Lista 7: Integrais II Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo - Prof. Responsável: Andrés Vercik. Use o teorema fundamental do calculo para achar a derivada da função. g( ) = + tdt g ( ) =

Leia mais

Cálculo III-A Lista 1

Cálculo III-A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,].

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Exercício 7. Usar as rectas tangentes às curvas nos pontos x 1 indicados, para obter estimativas dos valores das funções nos pontos x 2.

Exercício 7. Usar as rectas tangentes às curvas nos pontos x 1 indicados, para obter estimativas dos valores das funções nos pontos x 2. Capítulo. Cálculo Integral Cálculo I - EC, EEC, EM 28/9 [Complementos de derivadas] Optimização. Aproimação linear. Derivação implícita. Derivada da função inversa. Regra de l'hôpital. Derivadas de ordem

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática. N DE ESLRIDDE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item

Leia mais

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

FICHA DE TRABALHO N.º 5 MATEMÁTICA A - 10.º ANO GEOMETRIA ANALÍTICA E CÁLCULO VECTORIAL NO PLANO

FICHA DE TRABALHO N.º 5 MATEMÁTICA A - 10.º ANO GEOMETRIA ANALÍTICA E CÁLCULO VECTORIAL NO PLANO Geometria nalítica e álculo Vectorial no Plano FIH E TRLH N.º 5 MTEMÁTI - 0.º N GEMETRI NLÍTI E ÁLUL VETRIL N PLN onhece a Matemática e dominarás o Mundo. Galileu Galilei GRUP I ITENS E ESLH MÚLTIPL. Num

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) Considere a função f definida por f()= + 1. Determine: a) o domínio da função. b) os intervalos onde o gráfico de f é crescente e onde é decrescente.

Leia mais

III-1 Comprimento de Arco

III-1 Comprimento de Arco Nesta aula vamos iniciar com o tratamento de integral que não calcula apenas área sob uma curva. Especificamente, o processo ainda é unidimensional, mas envolve conceitos de geometria (especificamente

Leia mais

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é.

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é. Um disco de raio R rola, sem deslizar, com velocidade angular ω constante ao longo de um plano horizontal, sendo que o centro da roda descreve uma trajetória retilínea. Suponha que, a partir de um instante

Leia mais

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA TRIÂNGULO RETÂNGULO 1. Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de

Leia mais

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução

Leia mais

2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno

2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 4 5 6 7 8 9 10 11 12 1 14 15 16 17 18 Avaliação da Aprendizagem em Processo

Leia mais

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Exercícios Resolvidos Teorema da Divêrgencia. Teorema de tokes Exercício 1 Considere a superfície definida por e o campo

Leia mais

Integrais de Linha e de Superfície (Resolução Sumária)

Integrais de Linha e de Superfície (Resolução Sumária) Integrais de Linha e de uperfície Resolução umária 9 de Maio de 29. Calcule a área da superfície curva de um cone circular recto de altura h > e raio da base a >. Resolução: Uma parametrização desta superfície

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Teste de avaliação Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Teste de avaliação Grupo I ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A 0 05 007 Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

UNIDADE III LISTA DE EXERCÍCIOS

UNIDADE III LISTA DE EXERCÍCIOS Universidade Federal da Bahia Instituto de Matemática. - Departamento de Matemática. Disciplina: MATA álculo B UNIDADE III LISTA DE EXERÍIOS Atualizada. Derivada Direcional e Gradiente alcule o gradiente

Leia mais

As listas de exercícios podem ser encontradas nos seguintes endereços: ou na pasta J18, no xerox (sala1036)

As listas de exercícios podem ser encontradas nos seguintes endereços:  ou na pasta J18, no xerox (sala1036) As listas de eercícios podem ser encontradas nos seguintes endereços: www.mat.ufmg.br/calculoi ou na pasta J8, no ero (sala06) TERCEIRA LISTA DE EXERCÍCIOS. Derive: a) y = 6 + b) y = c) d) y = + y = 0

Leia mais

Prof. A.F.Guimarães Questões Cinemática 5 Movimento Circular

Prof. A.F.Guimarães Questões Cinemática 5 Movimento Circular Questão Prof FGuimarães Questões Cinemática 5 Movimento Circular (MCK) Os ponteiros dos relógios convencionais descrevem, em condições normais, movimentos circulares uniformes (MCU) relação entre a velocidade

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada

Leia mais

) a sucessão de termo geral

) a sucessão de termo geral 43. Na figura está desenhada parte da representação R \. gráfica de uma função f, cujo domínio é { } As rectas de equações =, y = 1 e y = 0 são assímptotas do gráfico de f. Seja ( n ) a sucessão de termo

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais