01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2.

Tamanho: px
Começar a partir da página:

Download "01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2."

Transcrição

1 Lsta 8 Números complexos Resoluções Prof Ewerton Números Complexos (concetos báscos, adção, subtração, multplcação, gualdade e conjugado) 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja soma é: a) b) c) 0 d) e) x 5 = 8x x (x 3 8) = 0 x = 0 x = 0 ou (x )(x x 4) = 0 x = 0 ou x x 4 = 0, esta últma é uma equação do º grau cuja soma das raíes é 0) (Mack) O conjunto solução da equação 3 = 0, no conjunto dos números complexos é: a) {3, 3} b) c) {0, 3} d) {0} e) {3} 3 = 0 = 0 ou = 3 S = {0, 3} 03) (UFPA) Sendo = x (x 4), com x, temos que é numero real se, e somente se: a) x = 0 b) x 0 c) x = d) x e x e) x 0 e x e x x 4 = 0 x = ± 04) (UFRS) Sendo m, o número complexo = (m 3) (m 9) será um número real não nulo para: a) m = 3 b) m < 3 ou m > 3 c) 3 < m < 3 d) m = 3 e) m > 0

2 m 3 0 m 9 = 0 m = 3 05) (Vunesp) Consdere os números complexos = ( ) e = (x ), onde é a undade magnára e x é um número real Determne: a) o número complexo em função de x = ( )(x ) = x (x 4) b) os valores de x tas que Re() Im (), onde Re denota a parte real e Im denota a parte magnára do número complexo Re() Im () x < x 4 x < 6 S = {x x < 6} 06) (PUC-MG) O número complexo tal que 5 = 6 é gual a: a) b) 3 c) d) 4 e) 3 5 = 6 e = a b, assm, 5(a b) a b = 6 6a 4b = 6 a = e b = 4, logo = 4 07) (Insper) Consdere dos números reas p e q Suponha que e w são dos números complexos cuja soma é gual a p e cuja dferença é gual a q, um magnáro puro, sendo a undade magnára (tal que = ) Então a) é um magnáro puro b) e w são conjugados c) w é um magnáro puro d) w é um magnáro puro e) w é um magnáro puro w = p w = q w = p = p q = p q w= p p q p q w =, logo, e w são conjugados

3 Números complexos: Dvsão e potêncas naturas de 3) (Uncamp) Chamamos de undade magnára e denotamos por o número complexo tal que = Então vale: a) 0 b) c) d) ) (Faap) Calcular o quocente a) 3 b) 3 c) 3 d) 3 e) 5 = = = ) (Vunesp) Sendo a undade magnára, o valor de ( ) 35) a) b) c) d) a) 3 b) 3 c) 3 0 d) 3 0 e) 0 ( ) 0 = [() ] 5 = ( ) 5 = 5 5 = 3 36) (Cefet-CE) Calcule o valor de ( ) = = 4 50 = = 00 ( ) ( ) ( ) 37) (Ufam) Escreva o número complexo a) = 7 b) e) = 7 = 7 c) = sob a forma = a b = 7 d) é = 7

4 = = = = 7 5 = 4 Números complexos: Plano de Argand-Gauss e módulo 38) (Unesp) O número complexo = a b é vértce de um trângulo equlátero como mostra a fgura Sabendo que a área desse trângulo é gual a 36 3, determne b = a b 0 a A base mede a e a área do trângulo equlátero é A altura do trângulo equlátero é dada por ( a ) 3 = ( 6 6 3) Logo, ( a) 3 4 = 36 3 a = 6 = b b = 6 3 = = ) (Uncamp) O módulo do número complexo = é gual a a) 0 b) c) 3 d) 04 = = e 987 = 3 = = = ( ) = 40) (Unesp) A fgura representa, no plano complexo, um semcírculo de centro na orgem e rao Indque por Re(), Im() e a parte real, a parte magnára e o módulo de um número complexo = x y, respectvamente, onde ndca a undade magnára A únca alternatva que contém as condções que descrevem totalmente o y subconjunto do plano que representa a regão sombreada, ncluído sua frontera, é a) Re() 0, Im() 0 e b) Re() 0, Im() 0 e c) Re() >0 e x

5 d) Im() 0 e e) Re() 0 e Alternatva E 4) (Unfesp) No plano de Argand-Gauss (fgura), o ponto A é chamado afxo do número complexo = x y, cujo módulo (ndcado por ) é a medda do segmento OA e cujo argumento (ndcado por ) é o menor ângulo formado com OA, no sentdo anthoráro, a partr do exo Re() O número complexo = é chamado undade magnára Im( ) y A 0 x Re( ) a) Determnar os números reas x tas que = (x ) 4 é um número real = (x ) 4 = (x ) (x ) = (x 4 4)(x 4 4) = x 4 4x 4x 4x 6 6 4x 6 6 = (x 4 8x ) (8x 3),, logo 8x 3 = 0 x = 4 x = O número complexo = (x ) 4 é um número real para x = ou x = 0 = a 4 4 = 0 = b) Se uma das raíes quartas de um número complexo é o complexo 0, cujo afxo é ponto (0, a), a > 0, determne x 0 = (a) 4 = x y a 4 = x y x = a 4 e y = 0 = a 4 4 y = ( ) a 0 = a 4 4) (FGV)

6 a) Calcule a área o losango ABCD cujos vértces são os afxos dos números complexos 3, 6, 3 e 6, respectvamente A área do losango é dada por D d A =, ou seja, 6 A = = 36 b) Quas são as coordenadas dos vértces do losango A B C D que se obtém grando de 90º o losango ABCD, em torno da orgem do plano cartesano, no sentdo anthoráro Grando 90º no sentdo ant-horáro, tem-se: A (0, 3); B (6, 0); C (0, 3) e D (6, 0) B(0, 6) A (0, 3) B ( 6, 0) C( 3, 0) A(3, 0) D (6, 0) c) Por qual número devemos multplcar o número complexo cujo afxo é o ponto B para obter o número complexo cujo afxo é o ponto B C (0, ) D(0, 6) Seja = a b o número procurado 6 = 6 (a b) = a b = a = 0 e b =, logo, =

7 43) (FGV) A fgura mostra o selo emtdo em 977 pela então Repúblca Federal da Alemanha, em homenagem ao plano de Gauss a) Qual é a área do trângulo cujos vértces são os pontos A e B da fgura, e o tercero vértce é o ponto assocado ao número complexo ( ) (5 ) b) Qual é a soma das áreas as regões retangulares, e 3 a) Seja E o ponto assocado ao complexo ( ) (5 ) ( ) (5 ) = 5 = 5 0, logo, E (5, 0) A base EB mede 6 e a altura mede 9, assm, a área é A área do trângulo é gual a 7 ua b) A = S = ua A soma das regões, e 3 é 7 Números complexos: Forma trgonométrca 6 9 A = = 7 44) (Ufam) Os números complexos = 3 e w = r e = r (cos sen ), com r = w e 0 <, satsfaem a equação w = Então r e são respectvamente guas a: a) e 3 b) e 3 c) e 6 d) e 6 e) e 4

8 3 r(cos sen ) = r(cos sen ) = 3 3 r cos = r cos = 3 r cos rsen = r sen = r sen = 4 6 r = r = 4 cos 3 = 3 4 cos = = sen = sen 6 = 4 w = ( ) 45) (Cesgranro) Um número complexo possu módulo gual a e argumento 3 Sendo o conjugado de, a forma algébrca de é: a) 3 b) 3 c) 3 d) 3 e) ( 3 ) = ( cos sen ) ( cos sen ) = 3 46) (UFRS) Na fgura, o número complexo é: = 3 = a) b) c) d) e) 45º = e = 35º = (cos35º sen35º) = = 47) (UFJF) O número complexo de módulo 3 está representado no plano complexo É correto afrmar que é gual a: a) 3 3 Im 6 Re

9 b) c) d) ( ) = 3 cos sen = = ) (PUC-SP) Na fgura, o ponto P é a magem de um número complexo, representada no plano de Gauss Se OP =, então é gual a: a) 4 4 b) 4 4 c) 4 4 d) 8 e) 8 P Im O 35º Re = ( cos35º sen35º ) = 8 4( ) = = ( ) = Números complexos: Forma trgonométrca e operações 49) (Ufes) Sejam os números complexos = sen40º cos40º e = cos40º sen40º O argumento prncpal do número é gual a a) 0º b) 0º c) 40º d) 80º e) 60º = (sen40º cos40º)(cos40º sen40º) = (cos50º sen50º)[cos(40º) sen(40º)] = (cos0º sen0º)

10 50) Sejam os números complexos = (cos7º sen7º) e = (cos8º sen8º) Determne a forma algébrca de ( ) ( ) cos 7º sen 7º = cos8º sen8º = 6 cos( 35º ) sen ( 35º ) = 6 cos( 7º 8º ) sen ( 7º 8º ) = 6 = 3 3 = e = 3cos sen, determne as formas algébrcas de e 5) Dados ( ) 6 cos sen = 6( cos sen ) 3cos sen = 6 3cos sen 4 4 = 8 cos sen = = 8 ( ) 6 cos sen = 3cos sen = cos sen 5) (Mack) Se ( cos sen ) = cos sen 3 = = 3 =, então 8 vale: 4 4 a) 6 b) 6 c) 8 d) 6 e) 6 ( cos sen 8 = ) 8 ( 8 8 ) ( cos sen ) = 6 = 8 6( 0) 4 4 =

11 53) (UFMG) Se = r(cos q sen q) é um número complexo na forma trgonométrca, mostra-se que n = r n (cos nq sen nq) para todo n Essa fórmula é conhecda como fórmula de De Movre a) Demonstre a fórmula de De Movre para n =, ou seja, demonstre que = r (cos q sen q) = r(cos q sen q) = [r(cos q sen q)] = r (cos q cos qsen q sen q) = r [(cos q sen q) (sen q cos q)] = r (cos q sen q) cqd b) Determne todos os valores de n, n, para os quas ( 3 ) n seja magnáro puro Seja 3 = ( ) cos 3 = sen = = 3 = 6 =, logo, = ( cos sen ) e n = n ( cos n sen n ) 6 6 Para que n seja magnáro puro é necessáro e sufcente que n = h; h n = 3 h; h cos n = 0 6 sen n 0 6

06) (PUC-MG) O número complexo z tal que 5z + z = i é igual a: a) 2 + 2i b) 2 3i c) 1 + 2i d) 2 + 4i e) 3 + i

06) (PUC-MG) O número complexo z tal que 5z + z = i é igual a: a) 2 + 2i b) 2 3i c) 1 + 2i d) 2 + 4i e) 3 + i concetos báscos, adção, subtração, multplcação, gualdade e conjugado 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja soma é:. b). c) 0.. e). 0) (Mack) O conjunto solução da equação + 3 =

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro?

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro? Matemátca Prof.: Joaqum Rodrgues NÚMEROS COMPLEXOS INTRODUÇÃO Questão 0 Resolver as equações: a x = 0 + S = {, } + 6 S = {, } x + S = { +, } 6x + 0 S = { +, } b x = 0 c x = 0 d x = 0 e x x + = 0 f x 8x

Leia mais

NÚMEROS COMPLEXOS (C)

NÚMEROS COMPLEXOS (C) Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6

Leia mais

a) 3 c) 5 d) 6 b) i d) i

a) 3 c) 5 d) 6 b) i d) i Colégo Marsta Docesano de Uberaba ª Lsta de eercícos de Compleos Prof. Maluf Se é a undade magnára, para que a b seja um número real, a relação c d entre a, b, c e d deve satsfaer: 0 - (UNESP SP/00) a)

Leia mais

EXERCÍCIOS DE MATEMÁTICA Prof. Mário

EXERCÍCIOS DE MATEMÁTICA Prof. Mário EXERCÍCIOS DE MATEMÁTICA Prof. Máro e-mal: maroffer@yahoo.com.br 0 Conjuntos dos Números Complexos 0. Undade magnára º) Determne as raíes magnáras da equação x + 75 = 0 º) Encontre as raíes magnáras da

Leia mais

Números Complexos na Forma Algébrica

Números Complexos na Forma Algébrica Colégo Adventsta Portão EIEFM MATEMÁTICA Números Complexos º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardm Dscplna: Matemátca Lsta º Bmestre Aluno(a): Número: Turma: Números Complexos na Forma Algébrca

Leia mais

Lista de Matemática ITA 2012 Números Complexos

Lista de Matemática ITA 2012 Números Complexos Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto

Leia mais

Números Complexos na Forma Algébrica

Números Complexos na Forma Algébrica Colégo Adventsta Portão EIEFM MATEMÁTICA Números Complexos º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardm Dscplna: Matemátca Lsta º Bmestre/0 Aluno(a): Número: Turma: Números Complexos na Forma Algébrca

Leia mais

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos.

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos. Resolução das atvdades comlementares Matemátca M Números Comleos. Resolva as equações no camo dos números comleos. a 0 {, } b 8 0 a 0 D?? D 8 D Cálculo das raíes? S {, } b 8 0 D?? 8 Cálculo das raíes D

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações.

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Números Complexos Conceto, formas algébrca e trgonométrca e operações. Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos: Qual o resultado da

Leia mais

MATEMÁTICA MÓDULO 8 COMPLEXOS NA FORMA TRIGONOMÉTRICA 1. FORMA TRIGONOMÉTRICA DE COMPLEXOS PROBIZU

MATEMÁTICA MÓDULO 8 COMPLEXOS NA FORMA TRIGONOMÉTRICA 1. FORMA TRIGONOMÉTRICA DE COMPLEXOS PROBIZU COMPLEXOS NA FORMA TRIGONOMÉTRICA. FORMA TRIGONOMÉTRICA DE COMPLEXOS Seja z = (a, b) = a + b r a b módulo do complexo z. a b cos = ; sen = a rcos e b = rsen r r z r (cos sen ) r cs. Com [0, ], é o argumento

Leia mais

Álgebra ( ) ( ) Números complexos.

Álgebra ( ) ( ) Números complexos. Números complexos Resolva as equações no campo dos a) x² 49 = 0 x² - x = 0 x² - x = 0 d) x² - x = 0 Dado = (4a ) - (a - ) determne o número real a tal que seja: a) magnáro puro real Sendo = (4m -) (n -),

Leia mais

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL

LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL LISTA DE REVISÃO DE MATEMÁTICA º ANO 2º TRIMESTRE PROF. JADIEL 1) O valor de z sabendo que 6 z é: z A) 6 B) 6 C) 8 + D) 8 E) 8 2) Qual o valor de z para que z z 2? A) z 2 B) z 1 2 C) z D) z E) z 1 ) Consdere

Leia mais

ELETROTÉCNICA (ENE078)

ELETROTÉCNICA (ENE078) UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenhara Cvl ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mal: rcardo.henrques@ufjf.edu.br Aula Número: 19 Importante... Crcutos com a corrente

Leia mais

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS COMÉRCIO EXTERIOR - REGULAR TERCEIRA SÉRIE NOME: EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS TESTES 1) Cnjunt sluçã da equaçã z z 0, n cnjunt ds númers cmplexs, é: a), 0, - c) d) e) 0 5 ) O cnjugad d númer

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line MATEMÁTICA PRÉ-VESTIBULAR LIVRO DO PROFESSOR 006-009 IESDE Brasl S.A. É probda a reprodução, mesmo parcal, por qualquer processo, sem autoração por escrto dos autores e do detentor dos dretos autoras.

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto Números Complexos Conceto, formas algébrca e trgonométrca e operações. Autor: Glmar Bornatto Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos:

Leia mais

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS TE0 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS Números Complexos Introdução hstórca. Os números naturas, nteros, raconas, rraconas e reas. A necessdade dos números complexos. Sua relação com o mundo

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

NÚMEROS COMPLEXOS. z = a + bi,

NÚMEROS COMPLEXOS. z = a + bi, NÚMEROS COMPLEXOS. DEFINIÇÃO No cojuto dos úmeros reas R, temos que a = a. a é sempre um úmero ão egatvo para todo a. Ou seja, ão é possível extrar a ra quadrada de um úmero egatvo em R. Dessa mpossbldade

Leia mais

Matemática A. Previsão 1. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013

Matemática A. Previsão 1. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013 Prevsão Exame Naconal de Matemátca A 01 Prevsão 1 1ª fase Matemátca A Prevsão 1 Duração do teste: 180 mnutos 7.06.01 1.º Ano de Escolardade Resoluções em vídeo em www.explcamat.pt Prevsão de Exame págna1/8

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ LI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m n é qualquer conunto de m. n elementos dspostos

Leia mais

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3 Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por

Leia mais

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A NOTAÇÕES N = f1; ; ; g C conjunto dos números comlexos R conjunto dos números reas undade magnára = 1 [a; b] = fx R; a x bg jzj módulo do número z C [a; b[ = fx R; a x < bg z conjugado do número z C ]a;

Leia mais

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00.

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00. Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Slva - Ensno Médo - 3º ano Lsta de Revsão 1. (Upe-ssa 017) Márca e Marta juntas pesam 115 kg; Marta e Mônca pesam juntas 113 kg; e Márca e Mônca pesam

Leia mais

SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1

SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1 SE18 - Matemática LMAT 6B1-1 - Números Complexos: Forma T rigonométrica Questão 1 (Mackenzie 1996) Na figura a seguir, P e Q são, respectivamente, os afixos de dois complexos z 1 e z 2. Se a distância

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBUAR a Fase RESOUÇÃO: Proa Mara Antôna Gouvea Questão Um quadrado mágco é uma matr quadrada de ordem maor ou gual a cujas somas dos termos de cada lnha de cada coluna da

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

NÚMEROS COMPLEXOS. Prof.ª Mª João Mendes Vieira

NÚMEROS COMPLEXOS. Prof.ª Mª João Mendes Vieira Prof.ª Mª João Mendes Vera Os Bablónos em 1700 AC já conhecam regras para resolver Equações do º grau. Os Gregos demonstraram essas regras e conseguram, por processos geométrcos, obter raízes rraconas.

Leia mais

CAPÍTULO IV PROPRIEDADES GEOMÉTRICAS DA SEÇÃO TRANSVERSAL

CAPÍTULO IV PROPRIEDADES GEOMÉTRICAS DA SEÇÃO TRANSVERSAL CPÍTULO IV PROPRIEDDES GEOMÉTRICS D SEÇÃO TRNSVERSL Propredades Geométrcas da Seção Transversal 4. Propredades Geométrcas da Seção Transversal 4.. Introdução O presente trabalho é desenvolvdo paralelamente

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

F-128 Física Geral I. Aula Exploratória Cap. 3.

F-128 Física Geral I. Aula Exploratória Cap. 3. F-128 Físca Geral I ula Eploratóra Cap. 3 username@f.uncamp.br Soma de vetores usando componentes cartesanas Se, o vetor C será dado em componentes cartesanas por: C ( î ĵ)( î ĵ) ( )î ( )ĵ C C î C ĵ onde:

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1 SC de Físca I - 2017-2 Nota Q1 88888 Nota Q2 Nota Q3 NOME: DRE Teste 1 Assnatura: Questão 1 - [3,5 pontos] Uma partícula de massa m se move sobre uma calha horzontal lsa com velocdade constante de módulo

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Unversdade Estadual do Sudoeste da Baha Departamento de Cêncas Exatas e Naturas 5 - Rotações, Centro de Massa, Momento, Colsões, Impulso e Torque Físca I Ferrera Índce 1. Movmento Crcular Unformemente

Leia mais

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2 Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1

Leia mais

INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE MATEMÁTICA RETA FINAL (LPM) INSTRUÇÕES

INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE MATEMÁTICA RETA FINAL (LPM) INSTRUÇÕES INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE MATEMÁTICA RETA FINAL (LPM) INSTRUÇÕES. Esta prova tem duração de quatro horas.. Não é permtdo dear o local de eame antes de decorrdos duas horas do níco da

Leia mais

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO.

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO. ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor ET DE U IÁI. Duas forças, que tenham o mesmo módulo e lnha de ação paralelas e sentdos opostos formam um bnáro. Decomposção de uma força dada

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B

NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B COLÉGIO ADVENTISTA DE SÃO JOSÉ DO RIO PRETO NOME DO ALUNO N DISCIPLINA: Matemática DATA: 7/0/01 CURSO: Ensino Médio ANO: º A / B BIMESTRE: 1º Complexos: PROFESSOR: Alexandre da Silva Bairrada 1i 1i 1.

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (2 ạ fase) GRUPO I (Versão 1) Assim, 2! 3! 4 = 48 é a resposta pedida.

Proposta de resolução do Exame Nacional de Matemática A 2017 (2 ạ fase) GRUPO I (Versão 1) Assim, 2! 3! 4 = 48 é a resposta pedida. Proosta de resolução do Eame Naconal de Matemátca A 7 ( ạ fase) GRUPO I (Versão ) P P I I I. 3 3! 3! = 6 = 8 Estem quatro maneras dstntas de os algarsmos ares estarem um a segur ao outro (PPIII ou IPPII

Leia mais

PARTE I Componente teórica

PARTE I Componente teórica Gua de resolução TOPOGRAFIA Mestrado Integrado em ngenhara Cvl 1.º Semestre 016/017 1.ª Época 14 de janero de 017, 11h0m - Duração: h0m Sem consulta Materal admtdo só na parte II: calculadora PART I Componente

Leia mais

NÚMEROS COMPLEXOS AULAS 01 e

NÚMEROS COMPLEXOS AULAS 01 e NÚMEROS COMPLEXOS AULAS 01 e 0-009 0)Sendo z 1 = + i e z = -1 + i, calcule: a) z 1 + z -01) Resolver em IR a equação x +1 = 0 b) z 1 - z 00) Resolver a equação x +1 = 0 c) z 1. z z1 d) z i: a unidade imaginária.

Leia mais

Instituto Latino-Americano de Ciências da Vida e Da Natureza Curso 6 + B 1 ALUNO: 5. Se mnp1 = 3 2mnp, calcule m + n + p.

Instituto Latino-Americano de Ciências da Vida e Da Natureza Curso 6 + B 1 ALUNO: 5. Se mnp1 = 3 2mnp, calcule m + n + p. os esportes? três esportes, quantos pratcam só dos o total de esportstas é 76 e 10 deles pratcam posconados nos círculos pntados 8 pratcam Encontre ofutebol, valor de 3Sbasquete na segunte e 40expressão:

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua Módulo I Ondas Planas Reflexão e Transmssão com ncdênca normal Reflexão e Transmssão com ncdênca oblíqua Equações de Maxwell Teorema de Poyntng Reflexão e Transmssão com ncdênca normal Temos consderado

Leia mais

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e)

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e) Resolução da Frequênca de Mecânca Clássca I/Mecânca Clássca 2003/2004 I Consdere um sstema de N partículas de massas m, =,..., N. a Demonstre que, se a força nterna exercda sobre a partícula pela partícula

Leia mais

PROPOSTAS DE RESOLUÇÃO. Capítulo 8

PROPOSTAS DE RESOLUÇÃO. Capítulo 8 MATEMÁTICA,.ª CLASSE Actvdades de vestgação PROPOSTAS DE RESOLUÇÃO Pág. Não, porque a descoberta do tesouro ão depede do poto ode se ca a marcha. Localação: da palmera: P = a + b do sâdalo: S = c + d do

Leia mais

Exercícios extras Matemática Aplicada Números Complexos

Exercícios extras Matemática Aplicada Números Complexos SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 3 TURMA(S):

Leia mais

Matemática capítulo 1

Matemática capítulo 1 Matemática capítulo Eercícios propostos 0. Escreva as raízes abaio em função da unidade imaginária: = b) = 4 = 0. Resolva as equações abaio: 7 + = 0 b) + 0 = 0 4 = 0 0. Resolva as equações abaio: 7 = 0

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções)

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções) QUESTÕES DISCURSIVAS Módulo 0 (com resoluções D (Fuvest-SP/00 Nos tens abaxo, denota um número complexo e a undade magnára ( Suponha a Para que valores de tem-se? b Determne o conjunto de todos os valores

Leia mais

Grupo A. 3. alternativa C. Então: y = alternativa B. = 8 6i. 5. alternativa A = i

Grupo A. 3. alternativa C. Então: y = alternativa B. = 8 6i. 5. alternativa A = i Grup A. alternatva B ( x ) + ( y 5) ( y + ) + ( x + ) x y + x y 7y y 5 x + x + y 8 y x + y 8 x + 8 x 5 Entã: x y 5 5 9. n ( x; y), m ( x; y), q ( x; y), p(x; y) m + n + p + q ( x; y) + (x; y) + (x; y)

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO

Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: MATEMÁTICA Série: º ANO ATIVIDADES DE REVISÃO PARA O REDI (º BIMESTRE) ENSINO MÉDIO Data: /0/0. x y Questão 0) Dados os sistemas S : e x y

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase Soluções Nível Unverstáro XXVII Olmpíada Braslera de Matemátca GABARITO Prmera Fase SOLUÇÃO DO PROBLEMA : Pelo enuncado, temos f(x) = (x )(x + )(x c) = x 3 cx x + c, f'(x) = 3x cx, f '( ) = ( + c) e f

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 3 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE

EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 3 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO Nº PROPOSTA DE RESOLUÇÃO 1º ANO DE ESCOLARIDADE Ste: http://recursos-para-matematcawebnodept/ Facebook: https://wwwfacebookcom/recursosparamatematca

Leia mais

Revisão números Complexos

Revisão números Complexos ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

Mecânica Aplicada II MEMEC+LEAN e MEAER

Mecânica Aplicada II MEMEC+LEAN e MEAER Departamento de Engenhara Mecânca Área Centífca de Mecânca Aplcada e Aeroespacal Mecânca Aplcada II MEMEC+LEAN e MEAER 2 a Época 2 o semestre 2011/12 Duração: 3h00m 28/06/2012 Instruções: Justfque todas

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A) Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A

Leia mais

b) Determine o conjunto de todos os valores de z para os quais (z + i)/(1 + iz) é um número real.

b) Determine o conjunto de todos os valores de z para os quais (z + i)/(1 + iz) é um número real. 1 Projeto Jovem Nota 10 Números Complexos Lista 2 Professor Marco Costa 1. (Fuvest 2003) Nos itens abaixo, z denota um número complexo e i a unidade imaginária (i = -1). Suponha z i. a) Para quais valores

Leia mais

, para. Assim, a soma (S) das áreas pedida é dada por:

, para. Assim, a soma (S) das áreas pedida é dada por: (9) - wwweltecapnascobr O ELITE RESOLE FUEST 9 SEGUND FSE - MTEMÁTIC MTEMÁTIC QUESTÃO Na fgura ao lado, a reta r te equação x + no plano cartesano Ox lé dsso, os pontos B, B, B, B estão na reta r, sendo

Leia mais

Matemática 7. Capítulo 1. Complexos, Polinômios e Equações Algébricas

Matemática 7. Capítulo 1. Complexos, Polinômios e Equações Algébricas Matemática 7 Complexos, Polinômios e Equações Algébricas Capítulo 1 PVD-07-MA74 01. Dados z 1 = 1 + i; z = i e z 3 = i, então: a) z 1 + z = z 3 b) z 1 z = z 3 c) z 1 z = z 3 d) z 1 z z 3 = + 6i e) z 1

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Revisão de Férias MATEMÁTICA III SETOR SISTEMA DE ENSINO VETOR 1

Revisão de Férias MATEMÁTICA III SETOR SISTEMA DE ENSINO VETOR   1 Revsão de Féras MATEMÁTICA III SETOR 171 1. (Fuvest) Dentre os canddatos que fzeram provas de matemátca, português e nglês num concurso, 0 obtveram nota mínma para aprovação nas três dscplnas. Além dsso,

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto Processamento de Imagem Prof. MSc. André Yoshm Kusumoto andrekusumoto.unp@gmal.com Operações pontuas globas em magens Uma operação pontual global em uma magem dgtal r é a função f(r) aplcada a todo pxel

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

Proposta de resolução GRUPO I

Proposta de resolução GRUPO I Novo Espaço Matemátca A º ano Proposta de teste de avalação fnal [mao 6] Proposta de resolução GRUPO I Há rapazes, nclundo o Ru Como este não faz parte do grupo, dos restantes 9 rapazes são escolhdos O

Leia mais

Números Complexos 2017

Números Complexos 2017 Números Complexos 07. (Eear 07) Se i é a unidade imaginária, então i i i é um número complexo que pode ser representado no plano de Argand-Gauss no quadrante. a) primeiro b) segundo c) terceiro d) quarto.

Leia mais

SISMICA DE REFRACÇÃO

SISMICA DE REFRACÇÃO SISMICA DE REFRACÇÃO Ondas elástcas e parâmetros de propagação As elocdades das ondas P e S respectamente, p e s estão relaconadas com as constantes elástcas e a densdade do materal. As relações são: k

Leia mais

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4?

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4? Segmento: ENSINO MÉDIO Dscplna: MATEMÁTICA Tpo de Atvdade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/2016 Turma: 3 A PROBABILIDADE 1) No lançamento de um dado, determnar a probabldade de se obter: a) o número

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

Curso Técnico em Informática. Eletricidade

Curso Técnico em Informática. Eletricidade Curso Técnco em Informátca Eletrcdade Eletrcdade Aula_0 segundo Bmestre Intensdade do Vetor B Condutor Retlíneo A ntensdade do vetor B, produzdo por um condutor retlíneo pode ser determnada pela Le de

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se

Leia mais

2 Análise de Campos Modais em Guias de Onda Arbitrários

2 Análise de Campos Modais em Guias de Onda Arbitrários Análse de Campos Modas em Guas de Onda Arbtráros Neste capítulo serão analsados os campos modas em guas de onda de seção arbtrára. A seção transversal do gua é apromada por um polígono conveo descrto por

Leia mais

TESTES DE CONTROLO Teste 6

TESTES DE CONTROLO Teste 6 TESTES DE CNTRL Teste 6 GRUP I Na resposta a cada um dos cnco tens deste grupo selecona a únca opção correta. Escreve na tua fola de respostas apenas o número de cada tem e a letra que dentfca a únca opção

Leia mais

LISTA DE EXERCÍCIO DE MATEMÁTICA

LISTA DE EXERCÍCIO DE MATEMÁTICA LISTA DE EXERCÍCIO DE MATEMÁTICA SÉRIE: º ANO TURMA: DATA DA PROVA: / /00 PROFESSOR: ARI ALUNO(A): NOTA VALOR. (PUC-MG) O valor de - 5 + - 5 é: 5-5 b) 5 + 5 c) 5 d) + 5 e) Resp.: E 0. Dê o valor de:. 0.:

Leia mais

DVD do professor. banco De questões

DVD do professor. banco De questões coneões com Capítulo 8 números compleos capítulo 8. Escreva na forma algébrica os números compleos abaio. a) i i b) i i i c) e o i. (UEL-PR) Qual é a parte real do número compleo 5 a bi, com a e b reais

Leia mais

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos Tarefa 01 Cursista: Maria Amelia de Moraes Corrêa Tutora: Maria Cláudia Padilha Tostes 1 S u m á

Leia mais

ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO MÉTODO DE CROSS

ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO MÉTODO DE CROSS DECvl ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO ÉTODO DE CROSS Orlando J. B. A. Perera 20 de ao de 206 2 . Introdução O método teratvo ntroduzdo por Hardy Cross (Analyss of Contnuous Frames by Dstrbutng Fxed-End

Leia mais

Professor: Murillo Nascente Disciplina: Física Plantão

Professor: Murillo Nascente Disciplina: Física Plantão Professor: Murllo Nascente Dscplna: Físca Plantão Data: 22/08/18 Fontes de Campo Magnétco 1. Experênca de Oersted Ao aproxmarmos um ímã de uma agulha magnétca, esta sofre um desvo. Dzemos que o ímã gera

Leia mais