( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO.

Tamanho: px
Começar a partir da página:

Download "( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO."

Transcrição

1 ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor ET DE U IÁI. Duas forças, que tenham o mesmo módulo e lnha de ação paralelas e sentdos opostos formam um bnáro. Decomposção de uma força dada em uma força aplcada em e um bnáro. epresentando por r, r, respectvamente, os vetores posção dos pontos de aplcações de,, encontramos para a soma dos momentos das duas forças em relação a : r + r ( ( r r r r r r vetor é chamado de momento de um bnáro, é um vetor perpendcular ao plano que contém as duas forças e de módulo: r senθ d náros equvalentes Dos bnáros que têm o mesmo momento são equvalentes. dção de bnáros + r ( r + s + s edução de um sstema de forças a uma força e um bnáro,, 3 onsdere um sstema de forças que atuam nos pontos,, 3 de um corpo rígdo, defndos pelos vetores posção r, r, r. omo fo vsto, 3 pode ser deslocado de, a um dado ponto se for adconado ao sstema, de força orgnal um bnáro de momento r dado por: em relação a. epetndo o procedmento para outras forças, podemos dzer que o sstema força-bnáro equvalente será defndo pelas equações: r ( Uma vez que o dado sstema de forças tenha sdo reduzdo a uma força e um bnáro em um ponto, pode-se faclmente reduz-lo a uma força e um bnáro em qualquer ponto. força resultante fcará nalterada, porém o novo momento será:

2 ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor + s SISTES EQUIVLETES DE ÇS E VETES Qualquer sstema de forças que atua num corpo rígdo pode ser reduzdo a um sstema forçabnáro que atua em e caracterza o efeto do sstema de forças sobre o corpo rígdo. Dos sstemas de forças são equvalentes, se puderem ser reduzdos ao mesmo sstema força-bnáro num dado ponto.,, 3 Dos sstemas de forças,, 3 ~são equvalentes, se e somente se, a soma das forças e a soma dos momentos, em relação a um dado ponto, das forças dos dos sstemas, forem respectvamente guas. s condções necessáras e sufcentes para que dos sstemas sejam equvalentes são: SISTES EQUIPLETES DE ÇS E VETES Dos sstemas de vetores que satsfazem as equações anterores são dtos eqüpolentes. Torsor. e o caso geral de um sstema de forças no espaço, o sstema força-bnáro equvalente em consste de uma força e um momento não perpendcular e não nulo.então, o sstema de forças não pode ser reduzdo a uma únca força ou a um únco bnáro. vetor bnáro, no entanto, pode ser substtuído por dos vetores bnáros obtdos pela decomposção de em uma componente segundo e uma componente contda num plano perpendcular a. Esse sstema força-bnáro partcular é chamado de torsor. força e o momento tendem, smultaneamente, a transladar o corpo rígdo na dreção de e a grá-lo em torno da lnha de ação de. lnha de ação de é conhecda como exo do torsor ou exo central. razão p é chamada de passo do torsor: p Podemos obter o valor de por: Para determnar o exo do torsor, podemos escrever uma equação que envolve o vetor posção r de um ponto arbtráro P do exo. plcando a força resultante e o vetor bnáro em P e escrevendo que o momento em relação a desse sstema força-bnáro é gual ao momento resultante. do sstema orgnal de forças, escrevemos: u: + r p + r

3 ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor Exemplo Um cubo de aresta a é submetdo a uma força P, como lustrado. Determnar o momento de P do cubo: (a em relação a. (b em relação à aresta. (c em relação à dagonal G do cubo. ( ( ˆ ˆ ˆ ( ( ˆ ˆ ˆ ap ( ˆ ˆ ˆ nˆ 3 j G ˆ G n G 3 j + j+ G ap G ( 6 ap G 6 Exemplo Determne as componentes do bnáro equvalente aos dos bnáros da fgura: 3 (a em relação a. r aˆ a P ( P ˆ j ( P ˆ P ( P ( ˆ r P a ˆ P ˆ ( ( ( ap ( ˆ ˆ ˆ + + j (b em relação à aresta. plcamos ao ponto as forças de 00, paralelas às já exstentes de 00 e de sentdos opostos. btemos dos bnáros formados por forças de 00, um contdo no plano xz e outro em um plano paralelo ao plano xy. s três bnáros da fgura podem ser representados por três vetores bnáros x, y e z paralelos aos exos coordenados e dados por: x y z ( ( ( ( ( ( m m m ˆ ˆ ap ˆ ˆ + j+ ˆ ap ( ˆ (c em relação à dagonal G do cubo. nˆ G G aˆ aj ˆ aˆ G a ˆ m ˆ(

4 ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor Exemplo 3 Substtur o bnáro e a força lustrados por uma únca força, equvalente, aplcada à alavanca. Determnar a dstânca do exo ao ponto de aplcação dessa força equvalente. Exemplo 4 Uma vga de 4.8m está submetda às forças ndcadas. eduzr o sstema de forças dado a: (a um sstema força-bnáro equvalente em. (b um sstema força-bnáro equvalente em. (c uma únca força ou resultante. 4 Incalmente, a força e o bnáro dados são substtuídos por um sstema força-bnáro equvalente em. Deslocamos a força para e somamos a ela um bnáro de momento gual ao momento da força em sua posção orgnal em relação a : j 60 ˆ m ( ˆ ˆ ( 400 Esse bnáro é adconado ao bnáro de momento -4.m formado pelas duas forças de 00, sendo obtdo um bnáro de -84 (.m. Esse bnáro pode ser elmnado pela aplcação de em um ponto escolhdo, de tal modo que: 84ˆ ˆ 0ˆ 0 84 cos 60 + sen ˆ j ( ( ( ˆ 0 84 cos ˆ 40mm (a um sstema força-bnáro equvalente em. r ( r 600 ˆ( j (.6ˆ 600 ˆ.8ˆ 00 ˆ 4.8ˆ 50 ˆ j + j + j 880ˆ( m 600 ( ; 880ˆ ( m ( ( ( (b um sstema força-bnáro equvalente em. Desejamos encontrar o sstema força-bnáro em equvalenteao sstema força-bnáro em determnado anterormente. força permanece nalterada, porém, o novo vetor bnáro deve ser determnado ˆ 4.80ˆ 600 ˆ + j 880 ˆ 880 ˆ + 000ˆ( m 600 ( ; 880ˆ ( m (c uma únca força ou resultante. r xˆ ˆ

5 ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor 880 x 600 x 3.3m Exemplo 5 Quatro rebocadores são usados para trazer um transatlântco ao cas. ada robocador exerce uma força de 5 nas dreções e sentdos lustrados. Determnar: (a o sstema força bnáro equvalente no mastro dantero. (b o ponto no casco onde um só rebocador mas poderoso deverá empurrar para produzr o mesmo efeto que os quatro rebocadores orgnas. ( r ( 7 ˆ 5 ˆ (.5 ˆ.7 ˆ + j j + ( ( ( ( ( 90 ˆ ( 7.7 ˆ ˆ+ 5ˆ + 0ˆ+ 5 55ˆ (b rebocador únco: r xˆ+ yj ˆ r xˆ+ yj ˆ 45. ˆ 49.0 ( ( ( 49.0 ˆ 949 ˆ 55 ˆ x x.3m 5 + (a ( r Exemplo 6 Três cabos são atados ao suporte. Substtur as forças exercdas pelos cabos por um sstema força-bnáro em..5ˆ.7 + 5ˆ ˆ+ 7.7 ( ( ( 45.ˆ 49.0 ĵ Determnamos ncalmente os vetores que lgam o ponto aos pontos de aplcações das forças e decompomos as forças em suas componentes cartesanas. E n ˆE 700nˆ E E

6 ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor E E 3ˆ 6 + ˆ ( E nˆ ˆ ˆ ˆ E j r 0.075ˆ 0.05ˆ + 300ˆ ˆ r 0.075ˆ 0.05ˆ 707ˆ 707ˆ r 0.ˆ 0.ˆ D D D + j 600ˆ+ 039 D sstema força-bnáro em equvalente às forças dadas consste em: 607ˆ ˆ r ( r ( ˆ ˆ ˆ 45ˆ ˆ ˆ r ˆ ˆ r D ˆ 30ˆ ˆ( m Exemplo 7 Uma laje suporta as quatro colunas ndcadas. Determne o módulo, a dreção e o sentdo das quatro cargas. Incalmente, reduzremos o sstema de forças dado a um sstema de forçabnáro equvalente na orgem das coordenadas. Esse sstema consste na resultante e no momento : 607ˆ ˆ r( m r ( ( ( r m ˆ 3 ( 60 80ˆ 3ˆ +.5ˆ 40 60ˆ 0ˆ.ˆ + 3ˆ ˆ 0ˆ 6 omo a força e o vetor bnáro são mutuamente perpendculares, o sstema força

7 ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor bnáro obtdo pode ser reduzdo a uma força. novo ponto de aplcação de será determnado, sobre a laje, de modo que o momento de em relação a seja gual a. epresentando por r o vetor posção e por x e z suas coordenadas, teremos: r ( ˆ ( xˆ+ z ˆ 40ˆ 400zˆ 400xˆ 360ˆ 40ˆ x.05m z 0.9m onclundo: 400 ; x.05m z 0.9m ˆ( Exemplo 8 Duas forças, ambas de módulo P, estão aplcadas ao cubo de aresta a da fgura. Substtua as duas forças por um torsor equvalente e determne: (a o módulo, a dreção e o sentdo da resultante. (b o passo do torsor. (c o ponto onde o exo do torsor corta o exo z. r ˆ ˆ E a + aj r ˆ ˆ D aj+ a ˆ ˆ + P + Pj P( ˆ+ re + rd ( ˆ ˆ ( ˆ ( ˆ ˆ a + aj P + aj + a Pj ˆ ˆ ˆ Pa Pa Pa ˆ ˆ ( (a orça resultante em : Verfca-se que a resultante tem módulo: P θ θ 45 θ x y z (b Passo do torsor: Substtundo os valores de e das equações anterores teremos: ( ˆ ˆ ( ˆ ˆ P + j Pa p P ( ( 0 0 Pa + + p P a p (c Exo do torsor: omento do torsor: a p P ( ˆ+ torsor é formado pela resultante e pelo momento. Para determnarmos o ponto em que o exo do torsor ntercepta o plano yz gualamos o momento do torsor em relação a ao momento total do sstema orgnal de forças: + r omo: r yj ˆ + zˆ Pa ˆ + ˆ j + yj ˆ + z ˆ P ˆ + ˆ j Pa ˆ + ˆ ( ( ( ( btemos y a. 7 Incalmente determna-se o sstema forçabnáro equvalente, na orgem. bservamos que os vetores-posção dos pontos de aplcação E e D das forças são:

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

Sistemas Equivalentes de Forças

Sistemas Equivalentes de Forças Nona E 3 Corpos CÍTULO ECÂNIC VETORIL R ENGENHEIROS: ESTÁTIC Ferdnand. Beer E. Russell Johnston, Jr. Notas de ula: J. Walt Oler Teas Tech Unverst Rígdos: Sstemas Equvalentes de Forças 2010 The cgraw-hll

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

4.1. Equilíbrio estático de um ponto material

4.1. Equilíbrio estático de um ponto material CAPÍTULO 4 Estátca As Três Les ou Prncípos undamentas da Mecânca Newtonana dscutdos no capítulo anteror sustentam todo o estudo da Estátca dos pontos materas, corpos rígdos e conjuntos de corpos rígdos.

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1 SC de Físca I - 2017-2 Nota Q1 88888 Nota Q2 Nota Q3 NOME: DRE Teste 1 Assnatura: Questão 1 - [3,5 pontos] Uma partícula de massa m se move sobre uma calha horzontal lsa com velocdade constante de módulo

Leia mais

F-128 Física Geral I. Aula Exploratória Cap. 3.

F-128 Física Geral I. Aula Exploratória Cap. 3. F-128 Físca Geral I ula Eploratóra Cap. 3 username@f.uncamp.br Soma de vetores usando componentes cartesanas Se, o vetor C será dado em componentes cartesanas por: C ( î ĵ)( î ĵ) ( )î ( )ĵ C C î C ĵ onde:

Leia mais

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori ecânca Geral II otas de UL 3 - Teora Prof. Dr. Cláudo S. Sartor QUILÍBRIO D PRTÍCUL. QUILÍBRIO D CORPOS RÍGIDOS. DIGR D CORPO LIVR. QUILÍBRIO D CORPOS RÍGIDOS 3 DISÕS. QUILÍBRIO D CORPOS RÍGIDOS SUBTIDOS

Leia mais

Isostática 2. Noções Básicas da Estática

Isostática 2. Noções Básicas da Estática Isostátca. Noções Báscas da Estátca Rogéro de Olvera Rodrgues .1. Força Força desgna um agente capa de modfcar o estado de repouso ou de movmento de um determnado corpo. É uma grandea vetoral e, como tal,

Leia mais

Curso Técnico em Informática. Eletricidade

Curso Técnico em Informática. Eletricidade Curso Técnco em Informátca Eletrcdade Eletrcdade Aula_0 segundo Bmestre Intensdade do Vetor B Condutor Retlíneo A ntensdade do vetor B, produzdo por um condutor retlíneo pode ser determnada pela Le de

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e)

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e) Resolução da Frequênca de Mecânca Clássca I/Mecânca Clássca 2003/2004 I Consdere um sstema de N partículas de massas m, =,..., N. a Demonstre que, se a força nterna exercda sobre a partícula pela partícula

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Laboratório de Mecânica Aplicada I Determinação de Centros de Gravidade

Laboratório de Mecânica Aplicada I Determinação de Centros de Gravidade Laboratóro de Mecânca Aplcada I Determnação de Centros de Gravdade Em mutos problemas de mecânca o efeto do peso dos corpos é representado por um únco vector, aplcado num ponto denomnado centro de gravdade.

Leia mais

01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2.

01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2. Lsta 8 Números complexos Resoluções Prof Ewerton Números Complexos (concetos báscos, adção, subtração, multplcação, gualdade e conjugado) 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

TICA. Sistemas Equivalentes de Forças MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Sistemas Equivalentes de Forças MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CPÍTULO 3 Copos ECÂNIC VETORIL PR ENGENHEIROS: ESTÁTIC TIC Fednand P. Bee E. Russell Johnston, J. Notas de ula: J. Walt Ole Teas Tech Unvest Rígdos: Sstemas Equvalentes de Foças 2010 The cgaw-hll Companes,

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

06) (PUC-MG) O número complexo z tal que 5z + z = i é igual a: a) 2 + 2i b) 2 3i c) 1 + 2i d) 2 + 4i e) 3 + i

06) (PUC-MG) O número complexo z tal que 5z + z = i é igual a: a) 2 + 2i b) 2 3i c) 1 + 2i d) 2 + 4i e) 3 + i concetos báscos, adção, subtração, multplcação, gualdade e conjugado 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja soma é:. b). c) 0.. e). 0) (Mack) O conjunto solução da equação + 3 =

Leia mais

(note que não precisa de resolver a equação do movimento para responder a esta questão).

(note que não precisa de resolver a equação do movimento para responder a esta questão). Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Unversdade Estadual do Sudoeste da Baha Departamento de Cêncas Exatas e Naturas 5 - Rotações, Centro de Massa, Momento, Colsões, Impulso e Torque Físca I Ferrera Índce 1. Movmento Crcular Unformemente

Leia mais

Mecânica Geral 1 - Notas de Aula 2 Equilíbrio de Corpos Rígidos Centro de Massa Prof. Dr. Cláudio Sérgio Sartori.

Mecânica Geral 1 - Notas de Aula 2 Equilíbrio de Corpos Rígidos Centro de Massa Prof. Dr. Cláudio Sérgio Sartori. Mecânca Geral 1 - otas de ula Equlíbro de Corpos Rígdos Centro de Massa Estátca do ponto materal. Estátca do corpo rígdo. Les de ewton Introdução: dnâmca estuda a relação entre os movmentos e suas causas,

Leia mais

Mecânica Geral 1 - Notas de Aula 2 Equilíbrio de Corpos Rígidos Centro de Massa Prof. Dr. Cláudio Sérgio Sartori.

Mecânica Geral 1 - Notas de Aula 2 Equilíbrio de Corpos Rígidos Centro de Massa Prof. Dr. Cláudio Sérgio Sartori. Mecânca Geral 1 - otas de ula Equlíbro de Corpos Rígdos Centro de Massa Prof. Dr. Cláudo Sérgo Sartor. Estátca do ponto materal. Estátca do corpo rígdo. Eemplos: plcação de forças em objetos: Les de ewton

Leia mais

Sistemas Reticulados

Sistemas Reticulados 9//6 EF6 EF6 Estruturas na rqutetura I I - Sstemas Retculados Estruturas na rqutetura I Sstemas Retculados E-US FU-US Estruturas Hperestátcas Sstemas Retculados & ão-lneardade do omportamento Estrutural

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

MATEMÁTICA MÓDULO 8 COMPLEXOS NA FORMA TRIGONOMÉTRICA 1. FORMA TRIGONOMÉTRICA DE COMPLEXOS PROBIZU

MATEMÁTICA MÓDULO 8 COMPLEXOS NA FORMA TRIGONOMÉTRICA 1. FORMA TRIGONOMÉTRICA DE COMPLEXOS PROBIZU COMPLEXOS NA FORMA TRIGONOMÉTRICA. FORMA TRIGONOMÉTRICA DE COMPLEXOS Seja z = (a, b) = a + b r a b módulo do complexo z. a b cos = ; sen = a rcos e b = rsen r r z r (cos sen ) r cs. Com [0, ], é o argumento

Leia mais

Matemática A. Previsão 1. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013

Matemática A. Previsão 1. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013 Prevsão Exame Naconal de Matemátca A 01 Prevsão 1 1ª fase Matemátca A Prevsão 1 Duração do teste: 180 mnutos 7.06.01 1.º Ano de Escolardade Resoluções em vídeo em www.explcamat.pt Prevsão de Exame págna1/8

Leia mais

1º Exame de Mecânica Aplicada II

1º Exame de Mecânica Aplicada II 1º Exame de Mecânca Aplcada II Este exame é consttuído por 4 perguntas e tem a duração de três horas. Justfque convenentemente todas as respostas apresentando cálculos ntermédos. Responda a cada pergunta

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág. ísca Setor Prof.: Índce-controle de Estudo ula 37 (pág. 88) D TM TC ula 38 (pág. 88) D TM TC ula 39 (pág. 88) D TM TC ula 40 (pág. 91) D TM TC ula 41 (pág. 94) D TM TC ula 42 (pág. 94) D TM TC ula 43 (pág.

Leia mais

Leis de conservação em forma integral

Leis de conservação em forma integral Les de conservação em forma ntegral J. L. Balño Departamento de Engenhara Mecânca Escola Poltécnca - Unversdade de São Paulo Apostla de aula Rev. 10/08/2017 Les de conservação em forma ntegral 1 / 26 Sumáro

Leia mais

2) Método das diferenças finitas

2) Método das diferenças finitas ) Método das derenças ntas.- Desenvolvmento do MDF a partr de séres de Taylor A expansão em séres de Taylor do valor de uma unção (, 0 x l é dada por: ( n ) n ( a)( x a) ( a)( x a) n = ( a) + ( a)( x a)

Leia mais

Física E Semiextensivo V. 3

Física E Semiextensivo V. 3 Físca E emextensvo V. 3 Exercícos 0) D É mpossível um dspostvo operando em cclos converter ntegralmente calor em trabalho. 0) A segunda le também se aplca aos refrgeradores, pos estes também são máqunas

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO MÉTODO DE CROSS

ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO MÉTODO DE CROSS DECvl ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO ÉTODO DE CROSS Orlando J. B. A. Perera 20 de ao de 206 2 . Introdução O método teratvo ntroduzdo por Hardy Cross (Analyss of Contnuous Frames by Dstrbutng Fxed-End

Leia mais

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem

Leia mais

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua Módulo I Ondas Planas Reflexão e Transmssão com ncdênca normal Reflexão e Transmssão com ncdênca oblíqua Equações de Maxwell Teorema de Poyntng Reflexão e Transmssão com ncdênca normal Temos consderado

Leia mais

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite 5 Relação entre Análse Lmte e Programação Lnear 5.. Modelo Matemátco para Análse Lmte Como fo explcado anterormente, a análse lmte oferece a facldade para o cálculo da carga de ruptura pelo fato de utlzar

Leia mais

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação:

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação: Capítulo 9 Colsões Recursos com copyrght ncluídos nesta apresentação: http://phet.colorado.edu Denremos colsão como uma nteração com duração lmtada entre dos corpos. Em uma colsão, a orça externa resultante

Leia mais

Lista de Matemática ITA 2012 Números Complexos

Lista de Matemática ITA 2012 Números Complexos Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto

Leia mais

Ajuste dos Mínimos Quadrados

Ajuste dos Mínimos Quadrados TLF 00/ Cap. IX juste dos mínmos quadrados Capítulo IX juste dos Mínmos Quadrados 9.. juste de uma lnha recta a dados epermentas 9 9.. Determnação dos parâmetros da recta, e B (Incertezas apenas em e guas

Leia mais

LEI DE OHM A R. SOLUÇÃO. Usando a lei de Ohm

LEI DE OHM A R. SOLUÇÃO. Usando a lei de Ohm LEI DE OHM EXEMPLO. Uma resstênca de 7 é lgada a uma batera de V. Qual é o valor da corrente que a percorre. SOLUÇÃO: Usando a le de Ohm V I 444 A 7 0. EXEMPLO. A lâmpada lustrada no esquema é percorrda

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Radiação Térmica Processos, Propriedades e Troca de Radiação entre Superfícies (Parte 2)

Radiação Térmica Processos, Propriedades e Troca de Radiação entre Superfícies (Parte 2) Radação Térmca Processos, Propredades e Troca de Radação entre Superfíces (Parte ) Obetvo: calcular a troca por radação entre duas ou mas superfíces. Essa troca depende das geometras e orentações das superfíces,

Leia mais

F-128 Física Geral I. Aula exploratória-11a UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-11a UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-11a UNICAMP IFGW username@f.uncamp.br Momento Angular O momento angular em relação ao ponto O é: r p de uma partícula de momento (Note que a partícula não precsa estar

Leia mais

F-128 Física Geral I. Aula exploratória-11b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-11b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-11b UNICAMP IFGW username@f.uncamp.br Momento Angular = r p O momento angular de uma partícula de momento em relação ao ponto O é: p (Note que a partícula não precsa

Leia mais

NÚMEROS COMPLEXOS (C)

NÚMEROS COMPLEXOS (C) Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca Undade C Capítulo Campos magnétcos esoluções dos exercícos propostos. Incalmente determnamos, pela regra da mão dreta n o, a dreção e o sentdo dos vetores ndução magnétca e que e orgnam no centro

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

CURSO A DISTÂNCIA DE GEOESTATÍSTICA

CURSO A DISTÂNCIA DE GEOESTATÍSTICA CURSO A DISTÂNCIA DE GEOESTATÍSTICA Aula 6: Estaconardade e Semvarânca: Estaconardade de a. ordem, Hpótese ntríseca, Hpótese de krgagem unversal, Crtéros para escolha, Verfcação, Representatvdade espacal,

Leia mais

PARTE II EQUILÍBRIO DA PARTÍCULA E DO CORPO RÍGIDO

PARTE II EQUILÍBRIO DA PARTÍCULA E DO CORPO RÍGIDO 1 PARTE II EQUILÍBRIO DA PARTÍULA E DO ORPO RÍGIDO Neste capítulo ncalente trataos do equlíbro de partículas. E seguda são apresentadas as defnções dos centros de gravdade, centros de assa e centródes

Leia mais

2 Análise de Campos Modais em Guias de Onda Arbitrários

2 Análise de Campos Modais em Guias de Onda Arbitrários Análse de Campos Modas em Guas de Onda Arbtráros Neste capítulo serão analsados os campos modas em guas de onda de seção arbtrára. A seção transversal do gua é apromada por um polígono conveo descrto por

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Eletrotécnica AULA Nº 1 Introdução

Eletrotécnica AULA Nº 1 Introdução Eletrotécnca UL Nº Introdução INTRODUÇÃO PRODUÇÃO DE ENERGI ELÉTRIC GERDOR ESTÇÃO ELEVDOR Lnha de Transmssão ESTÇÃO IXDOR Equpamentos Elétrcos Crcuto Elétrco: camnho percorrdo por uma corrente elétrca

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Centro de massa - Movimento de um sistema de partículas

Centro de massa - Movimento de um sistema de partículas Centro de massa - Movmento de um sstema de partículas Centro de Massa Há um ponto especal num sstema ou objeto, chamado de centro de massa, que se move como se toda a massa do sstema estvesse concentrada

Leia mais

Mecânica Aplicada II MEMEC+LEAN e MEAER

Mecânica Aplicada II MEMEC+LEAN e MEAER Departamento de Engenhara Mecânca Área Centífca de Mecânca Aplcada e Aeroespacal Mecânca Aplcada II MEMEC+LEAN e MEAER Época Especal 2011/12 Duração: 3h00m 20/07/2012 Instruções: Justfque todas as respostas

Leia mais

Dados ajustáveis a uma linha recta

Dados ajustáveis a uma linha recta Capítulo VI juste dos Mínmos Quadrados Dados ajustáves a uma lnha recta Determnação das constantes e B Incerteza nas meddas de Incerteza na determnação de e B juste dos mínmos quadrados a outras curvas:

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL

LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL LISTA DE REVISÃO DE MATEMÁTICA º ANO 2º TRIMESTRE PROF. JADIEL 1) O valor de z sabendo que 6 z é: z A) 6 B) 6 C) 8 + D) 8 E) 8 2) Qual o valor de z para que z z 2? A) z 2 B) z 1 2 C) z D) z E) z 1 ) Consdere

Leia mais

3 A técnica de computação intensiva Bootstrap

3 A técnica de computação intensiva Bootstrap A técnca de computação ntensva ootstrap O termo ootstrap tem orgem na expressão de língua nglesa lft oneself by pullng hs/her bootstrap, ou seja, alguém levantar-se puxando seu própro cadarço de bota.

Leia mais

5 Formulação para Problemas de Potencial

5 Formulação para Problemas de Potencial 48 Formulação para Problemas de Potencal O prncpal objetvo do presente capítulo é valdar a função de tensão do tpo Westergaard obtda para uma trnca com abertura polnomal (como mostrado na Fgura 9a) quando

Leia mais

Aerodinâmica I. Verificação de Códigos. Objectivo: verificar que o programa não tem erros

Aerodinâmica I. Verificação de Códigos. Objectivo: verificar que o programa não tem erros e Verfcação de Códgos Objectvo: verfcar que o programa não tem erros - O erro numérco tende para zero quando o tamanho da malha / passo no tempo tendem para zero? p ( φ ) = φ φ e + αh exact - A ordem de

Leia mais

Professor: Murillo Nascente Disciplina: Física Plantão

Professor: Murillo Nascente Disciplina: Física Plantão Professor: Murllo Nascente Dscplna: Físca Plantão Data: 22/08/18 Fontes de Campo Magnétco 1. Experênca de Oersted Ao aproxmarmos um ímã de uma agulha magnétca, esta sofre um desvo. Dzemos que o ímã gera

Leia mais

APLICAÇÕES À GEOMETRIA DIFERENCIAL9

APLICAÇÕES À GEOMETRIA DIFERENCIAL9 APLICAÇÕES À GEOMETRIA DIFERENCIAL9 Gl da Costa Marques Fundamentos de Matemátca II 9.1 Introdução 9. Tangentes e perpendculares a Curvas 9..1 Vetores Normas a uma Curva e Rao de Curvatura 9. Dferencal

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012 Físca Geral I - F -18 Aula 1 Momento Angular e sua Conservação º semestre, 01 Momento Angular Como vmos anterormente, as varáves angulares de um corpo rígdo grando em torno de um exo fxo têm sempre correspondentes

Leia mais

Física Geral 3001 Cap 4 O Potencial Elétrico

Física Geral 3001 Cap 4 O Potencial Elétrico Físca Geral 3001 Cap 4 O Potencal Elétrco (Cap. 26 Hallday, Cap. 22 Sears, Cap 31 Tpler vol 2) 10 ª Aula Sumáro 4.1 Gravtação, Eletrostátca e Energa Potencal 4.2 O Potencal Elétrco 4.3 Superíces equpotencas

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

As leis de Kirchhoff. Capítulo

As leis de Kirchhoff. Capítulo UNI apítulo 11 s les de Krchhoff s les de Krchhoff são utlzadas para determnar as ntensdades de corrente elétrca em crcutos que não podem ser convertdos em crcutos smples. S empre que um crcuto não pode

Leia mais

Referências bibliográficas: H. 31-5, 31-6 S. 29-7, 29-8 T Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física

Referências bibliográficas: H. 31-5, 31-6 S. 29-7, 29-8 T Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Unversdade Federal do Paraná Setor de êncas Exatas epartamento de Físca Físca III Prof. r. Rcardo Luz Vana Referêncas bblográfcas: H. 31-5, 31-6 S. 9-7, 9-8 T. 5-4 ula - Le de mpère ndré Mare mpère (*

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Trabalho e Energia. Curso de Física Básica - Mecânica J.R. Kaschny (2005)

Trabalho e Energia. Curso de Física Básica - Mecânica J.R. Kaschny (2005) Trabalho e Energa Curso de Físca Básca - Mecânca J.R. Kaschny (5) Lembrando nosso epermento de queda lvre... z z 1 v t 1 z = z - v t - gt ( ) z- z v = g = t Contudo, se consderarmos obtemos: v z z 1 t

Leia mais

GABARITO ERP19. impedância total em pu. impedância linha em pu; impedância carga em pu; tensão no gerador em pu.

GABARITO ERP19. impedância total em pu. impedância linha em pu; impedância carga em pu; tensão no gerador em pu. GABARITO ERP9 Questão mpedânca total em pu. mpedânca lnha em pu; mpedânca carga em pu; tensão no gerador em pu. Assm, tem-se que: ( ). Mas, ou seja: : ( ).. Logo: pu. () A mpedânca da carga em pu,, tem

Leia mais

Vamos apresentar um breve resumo dos conceitos mais importantes relativos ao funcionamento de circuitos em corrente alternada.

Vamos apresentar um breve resumo dos conceitos mais importantes relativos ao funcionamento de circuitos em corrente alternada. Corrente Alternada amos apresentar um breve resumo dos concetos mas mportantes relatvos ao funconamento de crcutos em corrente alternada. Uma tensão alternada é uma dferença de potencal que vara no tempo.

Leia mais

Prof. A.F.Guimarães Questões Eletricidade 6 Resistores

Prof. A.F.Guimarães Questões Eletricidade 6 Resistores Questão 1 (UNIMP) Um fusível é um nterruptor elétrco de proteção que quema, deslgando o crcuto, quando a corrente ultrapassa certo valor. rede elétrca de 110 V de uma casa é protegda por fusível de 15.

Leia mais

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-10b UNICAMP IFGW username@f.uncamp.br O teorema dos exos paralelos Se conhecermos o momento de nérca I CM de um corpo em relação a um exo que passa pelo seu centro de

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Modelagem do Transistor Bipolar

Modelagem do Transistor Bipolar AULA 10 Modelagem do Transstor Bpolar Prof. Rodrgo Rena Muñoz Rodrgo.munoz@ufabc.edu.br T1 2018 Conteúdo Modelagem do transstor Modelo r e Modelo híbrdo Confgurações emssor comum, base comum e coletor

Leia mais

3 Algoritmos propostos

3 Algoritmos propostos Algortmos propostos 3 Algortmos propostos Nesse trabalho foram desenvolvdos dos algortmos que permtem classfcar documentos em categoras de forma automátca, com trenamento feto por usuáros Tas algortmos

Leia mais

CAPÍTULO IV PROPRIEDADES GEOMÉTRICAS DA SEÇÃO TRANSVERSAL

CAPÍTULO IV PROPRIEDADES GEOMÉTRICAS DA SEÇÃO TRANSVERSAL CPÍTULO IV PROPRIEDDES GEOMÉTRICS D SEÇÃO TRNSVERSL Propredades Geométrcas da Seção Transversal 4. Propredades Geométrcas da Seção Transversal 4.. Introdução O presente trabalho é desenvolvdo paralelamente

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undade C Capítulo 4 Força agnétca esoluções dos exercícos propostos P.33 Característcas da força agnétca : dreção: perpendcular a e a, sto é: da reta s C u D r sentdo: deternado pela regra da

Leia mais

Mecânica Aplicada II MEMEC+LEAN e MEAER

Mecânica Aplicada II MEMEC+LEAN e MEAER Departamento de Engenhara Mecânca Área Centífca de Mecânca Aplcada e Aeroespacal Mecânca Aplcada II MEMEC+LEAN e MEAER 2 a Época 2 o semestre 2011/12 Duração: 3h00m 28/06/2012 Instruções: Justfque todas

Leia mais

2 Experimentos com Mistura

2 Experimentos com Mistura Modelagem em Expermentos com Mstura e Mstura-Processo Expermentos com Mstura Formulações de Expermentos com Mstura (EM) são freuentemente encontradas nas ndústras uímcas, farmacêutcas, de almentos e em

Leia mais

FÍSICA II ANUAL VOLUME 5 LEI DE KIRCHHOFF AULA 21: EXERCÍCIOS PROPOSTOS. Se: i = i 1. + i 2 i = Resposta: B 01.

FÍSICA II ANUAL VOLUME 5 LEI DE KIRCHHOFF AULA 21: EXERCÍCIOS PROPOSTOS. Se: i = i 1. + i 2 i = Resposta: B 01. NUL VOLUM 5 ÍSI II UL : LI KIHHO XÍIOS POPOSTOS 0. omo a corrente que passa pelas lâmpadas L, L e L 4 é a mesma, sso faz com que dsspem mesma potênca, tendo então o mesmo brlho. esposta: 0. 0 0 0 0 0 0,

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

Mecânica Aplicada II MEMEC+LEAN e MEAER

Mecânica Aplicada II MEMEC+LEAN e MEAER Departamento de Engenara Mecânca Área Centífca de Mecânca Aplcada e Aeroespacal Mecânca Aplcada II MEMEC+LEAN e MEAER 2 o Teste 2 o semestre 2009/10 Duração: 130m 09/06/2010 Instruções: Justfque todas

Leia mais

SISMICA DE REFRACÇÃO

SISMICA DE REFRACÇÃO SISMICA DE REFRACÇÃO Ondas elástcas e parâmetros de propagação As elocdades das ondas P e S respectamente, p e s estão relaconadas com as constantes elástcas e a densdade do materal. As relações são: k

Leia mais

Método do limite superior

Método do limite superior Introdução O método do lmte superor é uma alternata analítca apromada aos métodos completos (e: método das lnhas de escorregamento) que possu um domíno de aplcabldade muto asto e que permte obter alores

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais