Professor Dacar Lista de Exercícios - Revisão Trigonometria

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Professor Dacar Lista de Exercícios - Revisão Trigonometria"

Transcrição

1 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento, um arco de medida dm determina um ângulo central, em radianos, igual a: a) π b) π c) π d) π. Ao descrever o tipo de salto de uma ginasta, um entendido a ele referiu: "Era como se seus dedos dos pés descrevessem no espaço um arco de circunferência de 1 cm de comprimento." Considerando que cada perna dessa ginasta, juntamente com seu pé esticado, estejam em linha reta e perfazem 60 cm, determine o valor do cosseno do ângulo de abertura de suas pernas da ginasta. (Adote: π =, 1) Resposta: 1. A Terra pode ser representada por uma esfera cujo raio mede 6.00 km. Na representação abaixo, está indicado o trajeto de um navio do ponto A ao ponto C, passando por B. Qualquer ponto da superfície da Terra tem coordenadas (x;y), em que x representa a longitude e y, a latitude. As coordenadas dos pontos A, B e C estão indicadas na tabela a seguir. e) π 6. (UFPR) No círculo a seguir, o raio vale cm e o arco AB vale cm. Usando π =,1, o valor aproximado, em graus, do ângulo α será: a) 78 b) 8 c) 86 d) 90 e) 9 Considerando π=, a distância mínima, em km, a ser percorrida pelo navio no trajeto ABC é igual a: a) b).800 c) d).600 e) 6.00 Resposta: A 1

2 6. (UFPR) O valor de y = cos1 + cos + cos + + cos177 + co178 + cos179 + cos180 é: a) b) 0 c) 1 d) 1 e) determinável apenas com o uso de uma calculadora ou de uma tabela trigonométrica. 1. Calcule senx e cosx, sabendo que: senx = cosx, no intervalo π < x < π Resposta: 1. Calcule: e sen 90 + cos 00 sen sen + cos 0 Resposta: 7. Resolva a equação cos³x cosx = 0, no intervalo 0 x < π, dê a soma de suas raízes. Resposta: π 8. (UFV-MG) O número de soluções da equação cos²x cosx = 0, para 0 x < π, é: a) b) c) 0 d) 1 e) 9. Resolva, no intervalo 0 x < π, a equação 1 + sen x - sen²x - 8sen³x = 0 Resposta: S= { π 6, π 6, 7π 6, 11π 6 }. Resolva a equação sen²x 1 = 0, no intervalo 0 x < π, e dê a soma de suas raízes. Resposta: π 1. A expressão senx + 1+cosx 1+cosx senx condições de existência, é igual a: a) senx b) 1 cosx c) senx d) senx e) cosx, verificadas as 1. Resolva, no intervalo 0 x < π, a equação: cosx = 1 + sen x Resposta: S = { π, π, π, 7π } 11. (FGV-SP) Os valores de m que satisfazem simultaneamente as relações senx = m+1 e cosx = m 1 são tais que seu produto vale: a) b) c) 1 d) 0 e) n.d.a. 16. (Fuvest) Dê o número de soluções da equação cos x + sen x = 1, resolvida no intervalo 0 x < π. Resposta: soluções. Resposta: B

3 17. (FATEC-SP) A expressão tem valor igual a: a) cos( π )+cosπ tg( π ) 0. (UFES) A soma das raízes da equação tg²x tgx = 0, 0 < x < π, é: a) 0 b) π b) 6 c) π c) 1 d) π d) 1 e) 1 e) π 18. (FAAP-SP) Se senx =, com x pertencente ao º quadrante, então, tgx é: a) b) 1 c) 1. Sendo0 < x < π, simplificando a expressão secx + senx cosecx + cosx, obtém-se: a) senx b) cosx c) tgx d) cotgx e) 1 d) e) Resposta: A 19. (PUC-RS) Se tga = 1 e a [0, π ], então, cosa é igual a: a) b) 6 c) 6 d). (FATEC-SP) Se f(x) = 1. secx +. sec (x ), então f ( π )é igual a: a) b) c) d) e) Resposta: E e)

4 . (UFV-MG) Sabendo que senx = 1 eπ < x < π, o valor de a) b) c) d) e) cosecx secx cotgx 1 é: 6. (UFPA) Um arco côngruo de 1π a) π rad b) π rad c) π rad d) π rad e) 7π rad Resposta: B rad é:. Resolva, no intervalo 0 x < π, as inequações: a) sen x 1 < 0 Resposta: {0 x < π ou π < x < π ou 7π < x < π} 7. (UMSP-SP) Assinale a alternativa correta. a) sen1>sen b) sen<sen c) sen>sen6 d) sen6>sen7 e) sen7>sen π Resposta: A b) sen x + senx Resposta: {0 x 7π 6 ou 11π 6 c) sen x cosx 1 0 Resposta: {0 x π ou π x < π} x < π ou x = π} 8. Qual dos números é o maior? Justifique. a) sen80º ou sen1.19º? b) cos( º) ou cos190º? Respostas: a) O maior é sen 80º. b) O maior é cos 190º.. (UFPA) Qual a 1ª determinação positiva de um arco de 1.000º? a) 70º b) 80º c) 90º d) 00º e) º Resposta: B

5 9. Os polígonos inscritos nas circunferências trigonométricas a seguir são regulares. Dê a expressão dos números reais com imagens nos vértices dos polígonos: 1. (FATEC-SP) Se x é um número real tal que sen²x senx =, então x é igual a: a) π + hπ, h Z b) π + hπ, h Z c) π + hπ, h Z d) π + hπ, h Z e) π + hπ, h Z. (UNIFEB-SP) A solução da equação: tg²x + secx + 1 = 0 é: a) kπ + π 6, k Z b) kπ + π, k Z c) kπ, k Z d) kπ + π, k Z e) n.d.a. Respostas: a) { πn, n Z} b) { πn, n Z} c){ πn, n Z} 6. (UFUbe-MG) O conjunto solução da equação: sen²x = cos²x é: a) { (k+1)π, k Z} b){kπ + π, k Z} 0. Resolva, no intervalo0 x < π, a equação: tg (x + π ) = 1 Resposta: {0, π} c){kπ π, k Z} d) { kπ, k Z} e) { kπ, k Z} Resposta: A

6 . (UNESP) Para todo x R, a expressão: cos (x + π ) sen(π x) é equivalente a: a) cos x b) 0 c) sen x cos x d) sen x e) sen x Resposta: E 8. (UMSP-SP) O valor de cos 7º.cos 1º é: a) 1 b) 1 c) d) 1. (CESGRANRIO-RJ) Seja a um arco do 1º quadrante e b um arco do º quadrante, tal que cos a = 0,8 e sen b = 0,6. O valor de sen(a + b) é: a) 1,00 b) 0,96 c) 0,70 d) 0,8 e) 0,00 Resposta: E 6. A expressão sen(1º + x) + sen(1º x) é igual a: a) senx b) cos x c) 1 d) cosx e) senx e) 9. (UNIFOR-CE) A expressão (sen x + cos x ) é equivalente a: a) 1 b) 0 c) cos x d) 1 + senx e) 1 + cosx 0. Se sen x. cos x = k, então os possíveis valores de k pertencem à qual intervalo? Resposta: 1 k 1 1. O valor de (tgº + cotgº).sen 0º é: 7. (FEI-SP) Sendo: sen(8π a). cos ( π a) + sec(π) = cosn a Determine n. Resposta: a) 1 b) 1 c) d) e) 6

7 . (UNIFOR-CE) O número de soluções da equação sen(x) = senx, no intervalo [0, π ], é: a) b) c) d) e) 6 7. (PUC-SP). (UMSP-SP) No intervalo [0, π], o número de valores de x tais que sen²x + cos(x) = 1 é: a) 0 b) 1 c) d) e) maior do que Resposta: E (A equação é verificada por qualquer valor do intervalo dado).. Determine k tal que senx = k+ Resposta: k. (UNISINOS-RS) Seja f (x) = senx. O valor máximo da imagem desta função é: a) 1 b) 1 c) d) e) A figura acima é parte do gráfico da função: a) f(x) =. sen ( x ) a) f(x) = sen(x) c) f(x) = 1 + sen(x) d) f(x) =. cos ( x ) e) f(x) =. cos(x) Resposta: A 8. (UFES - adaptada) A imagem I e o período P da função real de variável real f(x) = senx. cosx,são: a) I = [ 1, 1 ] e P = π 6. (PUCCamp-SP) Na função trigonométrica y = + sen (x π ), o período e o conjunto imagem são iguais a, respectivamente: b) I = [ 1, 1 ] e P = π c)i = [ 1, 1 ] e P = π a) π e [, ] d) I = [ 1, 0] e P = π b) π e [, ] c) π e [ 1, 1] d) 9π e [ 1, 1] e) I = [ 1, 0] e P = π Resposta: Alternativa E e) π e [, ] Resposta: E 7

8 9. (AMAN-RJ) O gráfico que melhor representa a função y = senx, para π < x < π é: 0. Uma empresa prevê que a quantidade demandada de um produto para os próximos meses pode ser determinada por: Q(t) = sen ( t.π ), em que t=1 6 representa o mês de janeiro, t= representa o mês de fevereiro e assim por diante e Q(t) é o número de unidades demandadas. Responda: a) Qual o período e o conjunto imagem dessa função? b) Para que valores de t a quantidade é máxima? c) Para que valores de t a quantidade é mínima? Resposta: a) P = 1 / I = [0,00], b) t = 9 ou t = 1, c) t = ou t = 1 Resposta: Alternativa A 8

9 Lista Fuvest I.(Fuvest ª fase) Um arco x está no terceiro quadrante do círculo trigonométrico e verifica a equação cosx + senx =. Determine os valores de senx e cosx. Resposta: senx= 1 e cosx= 6 II.(Fuvest 008) Para se calcular a altura de uma torre, utilizou-se o seguinte procedimento ilustrado na figura: um aparelho (de altura desprezível) foi colocado no solo, a uma certa distância da torre, e emitiu um raio em direção ao ponto mais alto da torre. O ângulo determinado entre o raio e o solo foi de α = π radianos. A seguir, o aparelho foi deslocado metros em direção à torre e o ângulo então obtido foi de β radianos, com tgβ =. IV.(Fuvest ª fase) A medida x, em radianos, de um ângulo satisfaz π < x < π e verifica a equação sen x + sen x + sen x = 0. Assim, a) determine x. b) calcule cos x + cos x + cos x. Respostas: a) x = π / b) cos x + cos x + cos x = 0 V.(Fuvest ª fase) Seja x no intervalo ]0, π [ satisfazendo a equação tg x + sec x =. Assim, calcule o valor de a) sec x. b) sen (x + π ) Respostas: a) / b) É correto afirmar que a altura da torre, em metros, é a) b) c) 6 d) 7 e) 8 Resposta: Alternativa C III. (Fuvest ª fase) No triângulo ABC, tem-se que AB >AC, AC = e cosc = 8. Sabendo-se que o ponto R pertence ao segmento BC e é tal que AR = AC e BR BC = 7, calcule a) a altura do triângulo ABC relativa ao lado BC. b) a área do triângulo ABR. VI.(Fuvest 0 - ª fase) Sejam x e y dois números reais, com 0 < x < π e π < y < π, satisfazendo sen y = e 11 senx + cos(y x) =. Nessas condições, determine a) cos y b) sen x. Respostas: a) / b) 169 (Fuvest 011) Sejam x e y nu meros reais positivos tais que x + y = π. Sabendo-se que sen(y x) = 1, o valor de tg y tg x e igual a a) b) c) 1 d) 1 Respostas: a) unidades comprimento / b) unidades de área de e) 1 8 Resposta: Alternativa A 9

10 VII.(Fuvest 01 - ª fase) No triângulo acutângulo ABC, ilustrado na figura, o comprimento do lado BC mede 1, o ângulo interno de vértice C mede α, e o ângulo interno de vértice B mede α. Sabe-se, também, que cos(α) + cosα + 1 = 0. IX.(Fuvest 01 - ª fase) Um guindaste, instalado em um terreno plano, tem dois braços articulados que se movem em um plano vertical, perpendicular ao plano do chão. Na figura, os pontos O, P 1 e P representam, respectivamente, a articulação de um dos braços com a base, a articulação dos dois braços e a extremidade livre do guindaste. O braço OP 1 tem comprimento 6 e o braço P 1P tem comprimento. Num dado momento, a altura de P é, P está a uma altura menor do que P 1 e a distância de O a P é. Sendo Q o pé da perpendicular de P ao plano do chão, determine Nessas condições, calcule a) o valor de sen α; b) o comprimento do lado AC. Respostas: a) 1 1 / b) 1 VIII.(Fuvest 01) Um caminhão sobe uma ladeira com inclinação de 1º. A diferença entre a altura final e a altura inicial de um ponto determinado do caminhão, depois de percorridos 0 m da ladeira, será de, aproximadamente, a) o seno e o cosseno do ângulo P ÔQ entre a reta OP e o plano do chão; b) a medida do ângulo OP 1P entre os braços do guindaste; c) o seno do ângulo P 1ÔQ entre o braço OP 1 e o plano do chão. Respostas: a) sen(p ÔQ) = cos(p ÔQ) = sen(p 1ÔQ) = e / b) OP 1P = 90 / c) a) 7 m b) 6 m c) 0 m d) m e) 67 m Resposta: Alternativa B

Professor Dacar Lista de Revisão - Trigonometria

Professor Dacar Lista de Revisão - Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento 3 metros, sabendo que ele está contido em uma circunferência de diâmetro igual a 24 metros. 45 2. (UFPR) Em uma circunferência de 12 dm de comprimento,

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2 Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

Faculdade Pitágoras Unidade Betim

Faculdade Pitágoras Unidade Betim Faculdade Pitágoras Unidade Betim Atividade de Aprendizagem Orientada Nº 4 Profª: Luciene Lopes Borges Miranda Nome/ Grupo: Disciplina: Cálculo III Tempo da atividade: h Curso: Engenharia Civil Data da

Leia mais

Tópico 2. Funções elementares

Tópico 2. Funções elementares Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano

Leia mais

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA Escola Secundária de Francisco Franco Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA 1. Na figura está representado o círculo trigonométrico e um triângulo [OPR]. O ponto P desloca-se ao longo

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

MATRIZ - FORMAÇÃO E IGUALDADE

MATRIZ - FORMAÇÃO E IGUALDADE MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma

Leia mais

Polígonos Regulares Inscritos e Circunscritos

Polígonos Regulares Inscritos e Circunscritos Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é

Leia mais

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa 1 1. (Fgv 2001) a) No plano cartesiano, considere a circunferência de equação x +y -4x=0 e o ponto P(3,Ë3). Verificar se P é interior, exterior ou pertencente à circunferência. b) Dada a circunferência

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 7.01.011 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sua folha de respostas,

Leia mais

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG)

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG) (Unimontes-MG) (PUC-RS) Quando um relógio está marcando horas e minutos, o menor ângulo formado pelos seus ponteiros é de: Considere o relógio localizado na entrada do MCT. a) º0 b) º0 c) 7º d) º Considerando

Leia mais

LISTA DE EXERCÍCIOS MATEMÁTICA

LISTA DE EXERCÍCIOS MATEMÁTICA LISTA DE EXERCÍCIOS MATEMÁTICA P E P - º BIMESTRE 9º ANO Aluno (a): Turno: Turma: Unidade Data: / /05 EXERCÍCIOS P Potenciação/Radiciação QUESTÃO 0 Calcule as seguintes potências: A. B. 0 6 C. (-) D. E.

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

Resolução comentada Lista sobre lei dos senos e lei dos cossenos

Resolução comentada Lista sobre lei dos senos e lei dos cossenos Resolução comentada Lista sobre lei dos senos e lei dos cossenos 1 1. A figura mostra o trecho de um rio onde se deseja construir uma ponte AB. De um ponto P, a 100m de B, mediu-se o ângulo APB = 45º e

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

SISTEMA DE EQUAÇÕES DO 2º GRAU

SISTEMA DE EQUAÇÕES DO 2º GRAU SISTEMA DE EQUAÇÕES DO 2º GRAU Os sistemas a seguir envolverão equações do 2º grau, lembrando de que suas soluções constituem na determinação do par ordenado { (x, y )(x, y ) }. Resolver um sistema envolvendo

Leia mais

MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x

MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x MATEMÁTICA 01. O preço pago por uma corrida de táxi normal consiste de uma quantia fixa de R$ 3,50, a bandeirada, adicionada de R$ 0,25 por cada 100 m percorridos, enquanto o preço pago por uma corrida

Leia mais

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011 Material Extra 011 MATEMÁTICA C PROFº LAWRENCE 01. (Cefet - MG) Um menino com altura de 1,0m empina um papagaio, em local apropriado, com um carretel de 10m de linha, conforme a figura abaixo. A altura

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa 1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

Exercícios Trigonometria

Exercícios Trigonometria Exercícios Trigonometria Temas Abordados: Funções Trigonométricas e Equações; Arcos na Circunferência; Redução ao Primeiro Quadrante; Razões Trigonométricas.. (Upe 0) Um relógio quebrou e está marcando

Leia mais

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223. MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ECONOMIA Profa. Maria Antônia C. Gouveia QUESTÃO 0 Laura caminha pelo menos km por dia. Rita também caminha todos os dias, e a soma das distâncias diárias

Leia mais

1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Nome: nº Professor(a): Série: 1ª EM Data: / /2013 Turmas: 3101 / 3102 / 3103 Sem limite para crescer Bateria de Exercícios de Matemática II 1 Determine os valores de x e y, sabendo que os triângulos ABC

Leia mais

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre 1 MATEMÁTICA II Aula 5 Trigonometria na Circunferência Professor Luciano Nóbrega 1º Bimestre 2 ARCOS e ÂNGULOS A medida de um arco é, por definição, a medida do ângulo central correspondente. As unidades

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

Equações Trigonométricas

Equações Trigonométricas Equações Trigonométricas. (Insper 04) A figura mostra o gráfico da função f, dada pela lei 4 4 f(x) (sen x cos x) (sen x cos x) O valor de a, indicado no eixo das abscissas, é igual a a) 5. b) 4. c). d)

Leia mais

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00

Leia mais

MATEMÁTICA TRIGONOMETRIA

MATEMÁTICA TRIGONOMETRIA MATEMÁTICA TRIGONOMETRIA 1. UFGO Considere segmentos de reta AE e BD, interceptando-se no ponto C, os triângulos retângulos ABC e CDE, e o triângulo BCE, conforme a figura abaixo. 1 Sabendo-se que as medidas

Leia mais

Lista de Geometria 1 - Professor Habib

Lista de Geometria 1 - Professor Habib Lista de Geometria 1 - Professor Habib b) Para que valores de x e de y a área ocupada pela casa será máxima? 1. Na figura a seguir, as medidas são dadas em cm. Sabendo que m//n//t, determine o valor de

Leia mais

Escola Secundária de Alcochete. 11.º Ano Matemática A Geometria no Plano e no Espaço II

Escola Secundária de Alcochete. 11.º Ano Matemática A Geometria no Plano e no Espaço II Escola Secundária de Alcochete 11.º Ano Matemática A Geometria no Plano e no Espaço II Equações Trigonométricas O que são? São equações que envolvem o uso de funções trigonométricas. Mas... Ainda não se

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura:

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura: REVISÃO RELAÇÕES TRIGONOMÉTRICAS E REDUÇÃO AO PRIMEIRO QUADRANTE DO CICLO TRIGONOMÉTRICO TURMA: ª SÉRIE DO ENSINO MÉDIO PROF. LUCAS FACTOR Trigonometria no Triangulo Retângulo Considere o triangulo retângulo

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

SIMULADO. Matemática 1 (UFCG-PB) 2 (IBMEC)

SIMULADO. Matemática 1 (UFCG-PB) 2 (IBMEC) (UFCG-PB) (IBMEC) Um jornalista anuncia que, em determinado momento, o público presente em um comício realizado numa praça com formato do trapézio isósceles ABCD, com bases medindo 00 m e 40 m (vide figura

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

III. A área do triângulo ABC é igual a r. 2

III. A área do triângulo ABC é igual a r. 2 (Mackenzie SP/1998/Julho) área do triângulo da figura é 5 0 60 Então, supondo 1, 7, o perímetro do triângulo é: a) 7 b) 9 c) 41 d) 4 e) 45 Gab: (PU MG/001) Em certo município, para implantar uma avenida,

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto

PROFESSOR: Guilherme Franklin Lauxen Neto ALUNO TURMA: 2 Ano DATA / /2015 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /2015 1) Dado um cilindro de revolução de altura 12 cm e raio da base 4 cm, determine: a) a área da base do cilindro.

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

10 FGV. Na figura, a medida x do ângulo associado é

10 FGV. Na figura, a medida x do ângulo associado é urso de linguagem matemática Professor Renato Tião 6. Sabendo que ângulos geométricos têm medidas entre 0º e 180º, ângulos adjacentes têm um lado em comum, ângulos complementares têm a soma de suas medidas

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela

Leia mais

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Agronomia / Arquitetura e Urbanismo / Engenharia Civil Prof. Luiz Miguel de Barros luizmiguel.barros@yahoo.com.br Revisão Aula 1 O que é topografia?

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

RESUMO TEÓRICO. Ângulos Notáveis. 30 o 45 o 60 o 120 o 135 o 150 o. sen. cos

RESUMO TEÓRICO. Ângulos Notáveis. 30 o 45 o 60 o 120 o 135 o 150 o. sen. cos 1 RESUMO TEÓRICO Ângulos Notáveis 0 o 45 o 60 o 10 o 15 o 150 o sen 1 1 cos 1 1 R sen C c sen B b sen A a ˆ ˆ ˆ cos c b c b a ATIVIDADES 1) Calcule a medida do lado BC a seguir: PARTE A ) Um paralelogramo

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Exercícios de Números Complexos com Gabarito

Exercícios de Números Complexos com Gabarito Exercícios de Números Complexos com Gabarito ) (UNIFESP-007) Quatro números complexos representam, no plano complexo, vértices de um paralelogramo. Três dos números são z = i, z = e z = + ( 5 )i. O quarto

Leia mais

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225.

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225. 1. (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma que o mais baixo e o mais alto tenham larguras respectivamente iguais a 60 cm e a 30 cm, conforme a figura:

Leia mais

Microsoft Word - DTec_05_-_Escalas-exercicios_2-questoes - V. 01.doc

Microsoft Word - DTec_05_-_Escalas-exercicios_2-questoes - V. 01.doc Página 1 de 7 EXERCÍCIOS DE ESCALAS Exercícios baseados em material didático da disciplina de Cartografia ministrada pelo Prof Severino dos Santos no Curso de Georeferenciamento Aplicado à Geodésia. o

Leia mais

EXERCÍCIOS COMPLEMENTARES

EXERCÍCIOS COMPLEMENTARES EXERCÍCIO COMPLEMENTARE ÁREA DE FIGURA PLANA PROF.: GILON DUARTE Questão 01 Uma sala retangular tem comprimento x e largura y, em metros. abendo que (x + y) (x y) =, é CORRETO afirmar que a área dessa

Leia mais

Exercícios de Matemática Trigonometria Relações Trigonométricas

Exercícios de Matemática Trigonometria Relações Trigonométricas Exercícios de Matemática Trigonometria Relações Trigonométricas 1. (Fatec) A figura a seguir é um prisma reto, cuja base é um triângulo equilátero de 10Ë2cm de lado e cuja altura mede 5 cm. 4. (Ita) Um

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

EXERCICIOS APROFUNDAMENTO MATEMATICA TRIGONOMETRIA

EXERCICIOS APROFUNDAMENTO MATEMATICA TRIGONOMETRIA 1. (Unifesp 015) O metano (CH 4) possui molécula de geometria tetraédrica (figura 1). Do ponto de vista matemático, isso significa que, em uma molécula de metano, os 4 átomos de hidrogênio localizam-se

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

TRIGONOMETRIA ENSINO MÉDIO

TRIGONOMETRIA ENSINO MÉDIO No instante em que o tronco de madeira de 20 m de TEXTO PARA A PRÓXIMA QUESTÃO (Puccamp) Construída a toque de caixa pelo regime militar, Tucuruí inundou uma área de 2 000 km, sem que dela se retirasse

Leia mais

TRIGONOMETRIA III) essa medida é denominada de tangente de α e indicada

TRIGONOMETRIA III) essa medida é denominada de tangente de α e indicada MTEMÁTIC TRIGONOMETRI. TRIÂNGULO RETÂNGULO.. Definição Define-se como triângulo retângulo a qualquer triângulo que possua um de seus ângulos internos reto (medida de 90º). Representação e Elementos Catetos:

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

01) 45 02) 46 03) 48 04) 49,5 05) 66

01) 45 02) 46 03) 48 04) 49,5 05) 66 PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função

Leia mais

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160 Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três

Leia mais

Técnico de Nível Médio Subsequente em Geologia. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega

Técnico de Nível Médio Subsequente em Geologia. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega Técnico de Nível Médio Subsequente em Geologia 1 ula 2 Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega 2 ELEMENTOS DE UM TRIÂNGULO RETÂNGULO a b ß c Lembre-se: soma das medidas dos ângulos

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Assunto: Revisão Matemática Prof. Ederaldo Azevedo Aula 2 e-mail: ederaldoazevedo@yahoo.com.br Metro é uma unidade básica para representação de medidas de comprimento no Sistema Internacional(SI). Prefixos

Leia mais

MATEMÁTICA PROFESSOR AMBRÓSIO ELIAS CÔNICAS

MATEMÁTICA PROFESSOR AMBRÓSIO ELIAS CÔNICAS QUESTÕES: CÔNICAS 01. Determine o centro, o comprimento do eixo maior, o comprimento do eixo menor, a distância focal, as coordenadas dos focos, a excentricidade e o gráfico das elipses: (x 6)² y² (y 4)²

Leia mais

5-(UFMA MA-98) Num triângulo retângulo, as projeções dos catetos sobre a hipotenusa medem 4cm e 1cm respectivamente. A área desse triângulo mede:

5-(UFMA MA-98) Num triângulo retângulo, as projeções dos catetos sobre a hipotenusa medem 4cm e 1cm respectivamente. A área desse triângulo mede: Relações Métricas nos Triângulos Retângulos Professor lístenes unha 1-(Mack SP-97) Num triângulo, retângulo, um cateto é o dobro do outro. Então a razão entre o maior e o menor dos segmentos determinados

Leia mais

Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação

Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação Física Atividade 3 os anos Glorinha ago/09 Nome: Nº: Turma: Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação Essa atividade tem o objetivo de revisar alguns conceitos estudados

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais