ANEXO A Equações do Fluxo de Carga

Tamanho: px
Começar a partir da página:

Download "ANEXO A Equações do Fluxo de Carga"

Transcrição

1 Anexo A 1 ANXO A quções do Fluxo de Crg Neste Anexo, resent-se todo o desenvolviento r obtenção ds equções de fluxo de crg considerndo linhs de trnsissão e trnsfordores r este fi, for dotds coo rinciis referêncis os seguintes trblhos: Monticelli (1983, 1999 le ressltr que este texto fz rte d Dissertção de Mestrdo do rofdrrhel Augusto de Benedito, resentd n Universidde de ão ulo (U e 007 O docuento n íntegr ode ser obtido trvés do seguinte site d Bibliotec Digitl d U: htt://wwwtesesusbr/indexh?otionco_jui&fileid17&teid160&id77a 5D8A17&lngt-br

2 Anexo A A1 qucionento dos Fluxos de otênci ntre Brrs A seguir, são desenvolvids s exressões de fluxo de otênci entre brrs, considerndo linhs de trnsissão e trnsfordores Linhs de Trnsissão O odelo π equivlente de u linh de trnsissão, ilustrdo trvés d figur A1, é coosto or três râetros: resistênci série r ; retânci série x ; e suscetânci unt dos râetros é dd or b Considerndo que exressão d iedânci série e teros z r jx, (A1 e o tio de nálise de circuito lejd é nodl, fic necessário trblhr co os râetros série e teros d condutânci e suscetânci d linh, logo, ditânci série do ro fic: ou, y 1 r x z g j, (A r r g x x x r x e b (A3 r r x Figur A1: Modelo π equivlente de u linh de trnsissão undo o odelo π reresent u linh de trnsissão, tê-se r e x ositivos, o que ilic g ositivo e b negtivo (ou indutivo Já o eleento ositivo, ois o unt de linh é do tio ccitivo b é

3 Anexo A 3 A rtir d inseção d corrente, ostrd n figur A1, not-se que el é ford or dus coonentes: u e série (ro d iedânci z e outr unt (ro d suscetânci relções: sendo, j e b Assi, trvés d nálise nodl tê-se s seguintes y ( y ( j,, (A4 (A5 Co bse ns relções de tensões e correntes, segue-se o equcionento do fluxo de otênci colex corresondente u linh de trnsissão: y y [ y j ( j y ( j j j( (A6 Considerndo, j, e jsen j cos, e cos jsen, e y g, tê-se: (A7 ( g ( g (cos jsen erndo rte rel e iginári d equção (A7 (ci, obté-se os fluxos tivos e retivos: ( b b cos cos sen sen (A8 iilrente, os fluxos e são obtidos: ( b b cos cos sen sen, (A9 sendo Considerndo equção (A9 d seguinte for: ( b cos cos e sen sen b cos cos, ode-se reescrever sen sen, (A10

4 Anexo A 4 b Trnsfordores O odelo equivlente de trnsfordores utilizdos e estudos de fluxo de crg e estição de estdos, é coosto or u iedânci z e série e u utotrnsfordor idel no ldo riário, co u relção de trnsforção dd or t Tl odelo ode ser visulizdo trvés d figur A seguir: Figur A: Modelo equivlente de trnsfordores co relção colex de trnsforção dd or t jϕ ou t 1 Couente os ddos d rede são reresentdos confore figur A-b (MONTCLL, 1999, oré, r fcilitr e silificr o equcionento de fluxo de otênci, reresentção dotd neste estudo será d figur A- Logo, cso os ddos do trnsfordor estej de cordo co reresentção d figur A- b, bst converter relção d seguinte for: t 1 (A11 t or exelo: se é ddo u trfo de 500/750 K co relção de t de 1050 : 1 no ldo de bix (500 K e se defsge de fse, então, t 10 / c Trnsfordor e Fse De for gerl, odelge de trnsfordores e fse coreende u iedânci ou ditânci série e u uto-trnsfordor idel (se erds no núcleo cuj relção de trnsforção é dd or 1: A figur A3 reresent este tio de trfo interligndo s brrs e

5 Anexo A 5 Figur A3: Reresentção de u trnsfordor e fse Coo ode ser visulizdo, denot u onto de referênci r relção de trnsforção Assi, relção d gnitude de tensão neste onto el brr é dd or, ou sej, Coo neste cso não existe defsento ngulr entre e (, relção entre s tensões colexs é dd or: j j (A1 A rtir do odelo idel, isto é, se erd de otênci no trnsfordor, seguinte relção é válid: 0 0, (A13 logo, Relizndo nálise nodl do odelo de trnsfordor, ilustrdo n figur A3, e teros ds corrente colexs e, tê-se s seguintes equções: ( (, (A14 coo, segue-se que, (A15 e y ( y y y (A16 Co bse ns relções de tensões e correntes, segue seguir o equcionento do fluxo de otênci colex d brr r brr :

6 Anexo A 6 y y j j [ j [ j j j( y j j, (A17 considerndo j, e jsen j cos, e e cos jsen, e y g, tê-se: g jsen g (A18 ( (cos ( erndo rte rel e iginári d exressão (A18, obtê-se os fluxos tivos e retivos, resultndo: cos cos sen sen (A19 eguindo o eso rocediento, te-se o equcionento do fluxo de otênci d brr r brr : y j [ y j y j j( j, (A0 sendo j, e jsen j cos, e e cos jsen, e y g, tê-se: ( g ( g (cos jsen, (A1 e retivos: erndo rte rel e iginári d equção (A1, obtê-se os fluxos tivos cos cos sen sen (A d Trnsfordor Defsdor uro Os trfos defsdores são equientos czes de controlr relção de fse, ou defsge entre s tensões do riário e do secundário, e ssi, rover controle de fluxo de otênci tiv entre s brrs A figur A4 reresent este tio de trfo interligndo s brrs e

7 Anexo A 7 Figur A4: Reresentção de u trnsfordor defsdor Anlisndo o odelo, é u onto de referênci r relção de trnsforção, ssi, relção d tensão colex neste onto el brr é dd or jϕ e, ou sej, jϕ, sendo φ o vlor d defsge cusd elo trfo el nálise nodl do circuito, exressão d corrente colex fic: e e y ( e ( y (A3 coo jϕ y y (A4 De for nálog te-se corrente : ( y y jϕ (A5 Co bse ns relções de tensões e correntes, segue-se seguir o equcionento do fluxo de otênci colex d brr r brr : y j y j [ y y j j( ϕ y y j (A6 j( ϕ j ( ϕ endo, e cos( jsen(, e cos( jsen(, e y g, tê-se: g ϕ jsen ϕ g (A7 ( [cos( ( ( erndo-se rte rel d iginári, te-se:

8 Anexo A 8 cos( cos( (A8 eguindo etodologi descrit ci, te-se o fluxo de otênci colex d brr r : y j y j y y y j jϕ y j( ϕ j jϕ, (A9 j( ϕ sendo e cos( ϕ jsen( ϕ, e y g, segue-se: ( g ( g cos( ϕ jsen( erndo-se rte rel d iginári, te-se: ϕ, (A30 g b cos( cos( ϕ ϕ ϕ ϕ (A31 e Modelo Unificdo Linh-Trfo Generlizndo o odelo equivlente de linhs de trnsissão, trfos e fse e trfos defsdores, obtê-se o odelo (figur A5 r fluxo de otênci entre dus brrs: Figur A5: Modelo π generlizdo r equcionento de fluxo de otênci Onde 1: t reresent relção de trnsforção do uto-trnsfordor idel, e t jϕ result: Co isso, exressão generlizd de fluxo de otênci d brr r brr

9 Anexo A 9 ( b b cos( cos( (A3 Já exressão generlizd de fluxo d brr r brr fic: ( b b cos( ϕ ϕ ϕ cos( (A33 ϕ Observção A1: Observe que o efeito do trnsfordor está relciondo brr, isto orque o trfo está conectdo est brr Assi, é de vitl iortânci observr que relção não fz rte do equcionento, logo, deve-se tor cuiddo n hor de se ileentr os fluxos d brr r brr Observção A: N exressão generlizd de (equção (A31, o tero rece ultilicndo b, o que fisicente não existe, oré, não é errdo o seu uso, já que se o disositivo for u linh de trnsissão vle 1, não fetndo de for errône exressão de fluxo retivo e o disositivo envolvido for u trfo, ou sej, não cus nenhu rejuízo exressão r tis equções, s vriáveis ostrdos n tbel A1 seguir:, ϕ e b é igul zero, b ssue vlores rticulres, Tbel A1: lores rticulres ds vriáveis equiento, ϕ e b e virtude do

10 Anexo A 10 f Derivds rciis ds quções de Fluxo e Relção os stdos Considerndo s equções de fluxo de otênci generlizds d brr r brr, e s vriáveis de estdo,, e, s exressões ds derivds rciis dos fluxos tivos e retivos e relção os estdos fic d seguinte for: - r fluxos tivos: cos( - r fluxos retivos: ( b cos( b cos( cos( cos( cos( cos( cos( (A34 (A35, te-se: Agor, considerndo s equções generlizds de fluxo d brr r brr - r fluxos tivos: cos( - r fluxos retivos: ϕ ϕ ϕ cos( ϕ cos( cos( ϕ ϕ ϕ ϕ (A36

11 Anexo A 11 ( b cos( b ϕ ϕ ϕ cos( ϕ cos( cos( ϕ ϕ ϕ ϕ (A37 A qucionento ds njeções de otênci Brrs quções de njeções de otênci e Brrs r se obter o equcionento ds injeções de otênci e brrs, rieirente deve-se obter o vlor líquido de injeção de corrente nu brr genéric considerndo todos os fluxos de corrente incidentes sobre el A figur A6 ilustr est situção: Figur A6: Correntes incidentes ossíveis nu brr genéric r Assi, r o cso gerl, seguinte equção é válid:, (A38 Ω 1,, N, onde é u nó genérico, é u nó djcente, Ω é o conjunto de nós djcentes, e N é o núero de nós do siste Atrvés ds relções colexs de corrente r linhs de trnsissão e trnsfordores (defsdores ou não desenvolvids n seção nterior, esboç-se for unificd de fluxo de corrente d brr r brr :

12 Anexo A 1 j [ [ ϕ 39 (A Dess for ode ser reescrit or [ ( ( Ω Ω A equção (A39 ode ser rerrnjd n for tricil coo (A40 Y, (A41 sendo: o vetor de injeção de corrente no nó, co diensão N x 1; Y triz de ditânci do siste, co diensão N x N ; o vetor de tensão no nó, co diensão N x 1 Os eleentos d triz Y não ertencentes digonl rincil, são fordos d seguinte for: Y Já os eleentos d digonl rincil de Y são: fic: Y ( y y Ω (A4 (A43 Assi, for tricil colet d injeção de corrente d brr genéric Y Y Y Ω K, (A44 onde K é o núero de brrs djcentes brr, incluindo el eso A triz Y é couente decoost e rte rel e iginári, sendo ests reresentds resectivente or G e B, ou elhor, exressão d injeção de corrente resultnte torn-se: K Y G jb Logo, ( G jb (A45 D exressão de injeção de otênci colex e u brr, segue o equcionento seguir:

13 Anexo A 13 j j [ Ω Ω [ ( Ω Ω ( g [ ( ( g (cos( Ω Ω ( ( jsen( erndo-se rte rel d iginári, te-se: Ω Ω Ω Ω Ω ( b cos( Ω j( ϕ cos( teros d triz de ditânci Y, s equções ci fic: K K ( G ( G cos sen B B sen cos Ω Ω (A46 (A47 (A48 b Derivds rciis ds quções de njeções e Relção os stdos Considerndo s equções de injeções de otênci generlizds d brr, e s vriáveis de estdo,, e, s exressões ds derivds rciis ds injeções tivs e retivs e relção os estdos, result: - r injeções tivs: teros dos râetros do odelo π : Ω Ω cos( cos( cos( cos( teros d triz de ditânci do : (A49

14 Anexo A 14 Ω ( G ( G G ( G - r injeções retivs: Ω cos sen sen ( G B B B cos cos sen teros dos râetros do odelo π : [ Ω Ω cos( cos ( b B teros d triz de ditânci do : Ω ( G ( G ( G B sen cos cos Ω B ( G B B sen cos sen sen sen cos( B cos( cos cos( (A50 (A51 (A5 Observção A3: É iortnte lebrr que exressão Ω diz reseito tods s brrs djcentes brr, ou sej, coreende eleentos for d digonl rincil A3 qucionento ds Mgnitudes de Tensões e Brrs

15 Anexo A 15 Coo os edidores de tensão ede diretente o vlor d gnitude dess grndez, logo, su exressão e relção o estdo de tensão ( é diret: (A53 Consequenteente, s derivds rciis de els vriáveis de estdos fic: 0 0 (A A4 Coosição d Mtriz Jcobin A coosição d triz jcobin ( H deende diretente d seqüênci ou osição ds vriáveis de estdo e do vetor de edids Ficndo ssi, critério de cd u, o osicionento de cd derivd rcil de edid e relção o estdo ferido A figur A7 ostr u ossível estruturção d triz jcobino

16 Anexo A 16 Figur A7: ossível estrutur d triz jcobino r u lno de edids co injeções de otênci, fluxos de otênci e gnitudes de tensão Observção A4: estição de estdo, brr de referênci é utilizd ens coo referênci ngulr, diferenteente do roble de fluxo de crg, r o qul brr de referênci tbé serve r surir s crgs do siste Assi, no roble de estição odese escolher qulquer brr coo referênci ngulr, oré, colun de H referente o ângulo de referênci deve ser eliind do rocesso

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma.

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma. FEP Pêndulo de Torção nstituto de Físic d Universidde de São Pulo Pêndulo de Torção Objetivo: Estudr deendênci do eento de inérci de u coro co relção à su for. ntrodução teóric O torque é definido coo:

Leia mais

MATEMÁTICA II - Engenharias/Itatiba MATRIZES

MATEMÁTICA II - Engenharias/Itatiba MATRIZES MTEMÁTI II - Engenhris/Ittib o Semestre de 9 Prof Murício Fbbri -9 Série de Eercícios MTRIZES Um mtriz de dimensões m n é um conjunto ordendo de mn elementos, disostos em um grde retngulr de m linhs e

Leia mais

Prof. A.F.Guimarães Questões Cinemática 4 Gráficos

Prof. A.F.Guimarães Questões Cinemática 4 Gráficos Questão (UEL) O gráfico seguir reresent o oiento de u rtícul. Prof..F.Guirães Questões Cineátic Gráficos instnte s, deois is do instnte s té o instnte s e finlente do instnte 8s té o instnte s. O ite está

Leia mais

6.1 Derivação & Integração: regras básicas

6.1 Derivação & Integração: regras básicas 6. Derivção & Integrção: regrs básics REGRAS BÁSICAS DE DERIVAÇÃO. Regr d som:........................................ (u + k v) = u + k v ; k constnte. Regr do Produto:.....................................................

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

Laboratório de Circuitos Polifásicos e Magnéticos

Laboratório de Circuitos Polifásicos e Magnéticos Circuitos Polifásicos e Mgnéticos Clever Pereir (UFMG) Lbortório de Circuitos Polifásicos e Mgnéticos PÁCA 1 DEEMNAÇÃO DO CCUO EQUALENE DE ANSFOMADOES MONOFÁSCOS EM EGME PEMANENE SENODAL PAA OPEAÇÃO EM

Leia mais

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS Universidde ederl Rurl do Semi-Árido ENÔMENOS DE TRANSPORTE MECÂNICA DOS LUIDOS ESTÁTICA DOS LUIDOS UERSA Universidde ederl Rurl do Semi-Árido Prof. Roberto Vieir Pordeus Nots de ul enômenos de Trnsorte

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Universidde de São Pulo Instituto de Físic FÍSIC MODRN I U 5 Pro. Márci de lmeid Rizzutto Pelletron sl 0 rizzutto@i.us.br o. Semestre de 05 Monitor: Gbriel M. de Souz Sntos Págin do curso: htt:discilins.sto.us.brcourseview.h?id=55

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Com relação a transformador de corrente (TC), julgue o item subsequente.

Com relação a transformador de corrente (TC), julgue o item subsequente. Caderno de Questo es - Engenharia Ele trica: Transforadores TC/TP, de Pote ncia, de Uso Geral e Ensaios -Vol Co relação a transforador de corrente (TC), julgue o ite subsequente. 89.(TRE-RJ/CESPE/0) U

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

Fig. 1. Problema 1. m = T g +a = 5kg.

Fig. 1. Problema 1. m = T g +a = 5kg. ÍSICA - LISA - 09/. U bloco está suspenso e u elevdor que sobe co celerção de /s (figur ). Nests condições tensão n cord (peso prente) é de 60 N. Clcule ss do bloco e seu peso rel (5 kg; 50 N). ig.. roble.

Leia mais

TRIGONOMETRIA. Para graduar uma reta basta escolher dois pontos e associar a eles os números zero e um.

TRIGONOMETRIA. Para graduar uma reta basta escolher dois pontos e associar a eles os números zero e um. TRIGONOMETRIA Pr grdur um ret bst escolher dois ontos e ssocir eles os números zero e um. A B 0 Com isto, ode-se reresentr n ret qulquer número rel. Pr grdur um circunferênci utilizremos o rio igul, onde

Leia mais

Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos Classificação dos quadripolos

Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos Classificação dos quadripolos -07-04 Qudriolo é u circuito eléctrico co dois teriis de etrd e dois teriis de síd. Neste disositivo são deterids s corretes e tesões os teriis de etrd e síd e ão o iterior do eso. Clssificção dos udriolos

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Prof. lvro Muriel Lim Mchdo justmento de Observções Qundo s medids não são feits diretmente sobre s grndezs procurds, ms sim

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 3 quadrimestre 2012 EN607 Trnsformds em Sinis e Sistems Lineres List de Exercícios Suplementres 3 qudrimestre 0. (0N) (LATHI, 007, p. 593) Pr o sinl mostrdo n figur seguir, obtenh os coeficientes d série de Fourier e esboce

Leia mais

Gabarito Sistemas Lineares

Gabarito Sistemas Lineares Gbrito Sistes ineres Eercício : () rieir inh :. > Segund inh :. > Terceir inh :. Qurt inh :. α á( α ) > ogo, não stisfz o Critério ds inhs. (b) rieir inh : > Segund inh : 6 > Terceir inh : > Qurt inh :

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

FÍSICA MODERNA I AULA 19

FÍSICA MODERNA I AULA 19 Uiversidde de São ulo Istituto de Físic FÍSIC MODRN I U 9 rof. Márci de lmeid Rizzutto elletro sl rizzutto@if.us.br o. Semestre de 0 Moitor: Gbriel M. de Souz Stos ági do curso: htt:discilis.sto.us.brcourseview.h?id=905

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

Capítulo VI GEOMETRIA ANALÍTICA NO PLANO

Capítulo VI GEOMETRIA ANALÍTICA NO PLANO Cítulo VI GEOMERIA ANALÍICA NO LANO Cítulo VI Geometri Anlític no lno Cítulo VI istem de Coordends no lno. Dois sistems, de coordends rectngulres no lno dizem-se igulmente orientdos se for ossível trnsortr

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

2. POTÊNCIAS E RAÍZES

2. POTÊNCIAS E RAÍZES 2 2. POTÊNCIAS E RAÍZES 2.. POTÊNCIAS COM EXPOENTES INTEIROS Vios teriorete lgus sectos históricos ds otêcis e dos logritos, e coo lgus rocessos ue levr à costrução dos esos. Pssreos seguir u desevolvieto

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Técnicas de Análise de Circuitos

Técnicas de Análise de Circuitos Coordendori de utomção Industril Técnics de nálise de Circuitos Eletricidde Gerl Serr 0/005 LIST DE FIGURS Figur - Definição de nó, mlh e rmo...3 Figur LKC...4 Figur 3 Exemplo d LKC...5 Figur 4 plicção

Leia mais

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC. ramal 5981

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC. ramal 5981 CC Visão Coutionl Trnsforções Lineres Instituto Tenológio de Aeronáuti Prof. Crlos Henrique Q. Forster Sl IEC rl 598 Tóios d ul Reresentção (nlíti) de ontos e vetores Trnsforções lineres Método dos ínios

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico

Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico Circuitos Elétricos Experimento 1 Experimento 1: Sistem Trifásico 1. Objetivo: Medição de tensões e correntes de linh e de fse em um sistem trifásico. 2. ntrodução: As tensões trifásics são normlmente

Leia mais

Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico

Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico Circuitos Elétricos Experimento 1 Experimento 1: Sistem Trifásico 1. Objetivo: Medição de tensões e correntes de linh e de fse em um sistem trifásico. 2. ntrodução: As tensões trifásics são normlmente

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

P r o f. F l á v i o V a n d e r s o n G o m e s

P r o f. F l á v i o V a n d e r s o n G o m e s UNERSDADE FEDERAL DE JU DE FORA Análise de Sistems Elétricos de Potênci 6. Curto-Circuito Assimétrico: Fse-Terr P r o f. F l á v i o n d e r s o n G o m e s E - m i l : f l v i o. g o m e s @ u f j f.

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

SOLUÇÃO COMENTADA ITA 2005/2006 MATEMÁTICA

SOLUÇÃO COMENTADA ITA 2005/2006 MATEMÁTICA MATEMÁTICA Sej E u ponto eterno u circunferênci Os segentos EA e ED intercept ess circunferênci nos pontos B e A, e C e D, respectivente A cord AF d circunferênci intercept o segento ED no ponto G Se EB

Leia mais

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1. Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3

Leia mais

SOLUÇÃO COMECE DO BÁSICO

SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO CB1. [D] Sendo nulo o oento e relção o poio, teos: Mg 5 2Mg 10 x 2,5 10 x x 7,5 c SOLUÇÃO CB2. [D] Arthur é u corpo rígido e equilírio: Pr que ele estej e equilírio de

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

F-128 Física Geral I. Aula exploratória-09b UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-09b UNICAMP IFGW F128 2o Semestre de 2012 F-8 Físic Gerl I Aul exlortóri-09b UNICAMP IFGW userne@ifi.unic.br F8 o Seestre e 0 Forçs e interção O resulto líquio forç e interção é fzer rir o oento liner s rtículs. Pel t f t f lei e Newton: f Ft

Leia mais

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que:

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que: MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO º GRAU - Dd unção = +, determine Dd unção = +, determine tl que = Escrev unção im, sendo que: = e - = - - = e = c = e - = - A ret, gráico de

Leia mais

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha) Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,

Leia mais

GGE RESPONDE IME 2012 MATEMÁTICA 1

GGE RESPONDE IME 2012 MATEMÁTICA 1 0. O segundo, o sétio e o vigésio sétio teros de u Progressão Aritéti () de núeros inteiros, de rzão r, for, nest orde, u Progressão Geoétri (PG), de rzão q, o q e r IN* (nturl diferente de zero). Deterine:

Leia mais

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas Análise de Circuitos Trifásicos Desequilibrdos Utilizndo-se Componentes Simétrics Prof. José Rubens Mcedo Jr. Exercício: Um determind crg trifásic, ligd em estrel flutunte, é limentd pels seguintes tensões

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos Sistems Elétricos de Potênci 5. Análise de Curto-Circuito ou Flts 5. Curto-Circuitos Assimétricos Proessor: Dr. Rphel Augusto de Souz Benedito E-mil:rphelbenedito@utpr.edu.br disponível em: http://pginpessol.utpr.edu.br/rphelbenedito

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtento de Engenhri Elétric Conversão de Energi Aul 5.5 Máquins de Corrente Contínu Prof. Clodoiro Unsihuy-Vil Bibliogrfi FTZGERALD, A. E., KNGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: co ntrodução

Leia mais

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2] 6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

Física Geral e Experimental I (2011/01)

Física Geral e Experimental I (2011/01) Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Lei de Coulomb 1 = 4πε 0

Lei de Coulomb 1 = 4πε 0 Lei de Coulomb As forçs entre crgs elétrics são forçs de cmpo, isto é, forçs de ção à distânci, como s forçs grvitcionis (com diferenç que s grvitcionis são sempre forçs trtivs). O cientist frncês Chrles

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 08 - Fse Propost de resolução Cderno... Como eperiênci se repete váris vezes, de form independente, distribuição de probbiliddes segue o modelo binomil P X k n C k p

Leia mais

( ) y. ( ) x 1. FUNÇÃO EXPONENCIAL. a a a + f é contínua em R ; f é estritamente decrescente ; f é estritamente crescente ; x y.

( ) y. ( ) x 1. FUNÇÃO EXPONENCIAL. a a a + f é contínua em R ; f é estritamente decrescente ; f é estritamente crescente ; x y. . FUNÇÃO EXPONENCIAL DEFINIÇÃO Chm-se unção eonencil de se, à unção: : R R, > 0 0 Cso rticulr: ( e GRÁFICO 0 < < Oservções: D R, CD R ; é contínu em R ; é estritmente decrescente ; A rect de equção 0 é

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105 Colégio Snt Mri Exercícios de P.A. e P.G. Professor: Flávio Verdugo Ferreir. (UFBA) A som dos 0 e 0 termos d seqüênci bixo é: 8 n n 8. n ) -6 b) -8 c) 0 d)8 e) 6. (Unifor CE) Considere seqüênci n, 8 Qul

Leia mais

Elementos Finitos Isoparamétricos

Elementos Finitos Isoparamétricos Cpítulo 5 Elementos Finitos Isoprmétricos 5.1 Sistems de Referênci Globl e Locl Considere o elemento liner, ilustrdo n Figur 5.1, com nós i e j, cujs coordends são x i e x j em relção o sistem de referênci

Leia mais

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação Método SIMPLEX Mrcone Jmilson Freits Souz Deprtmento de Computção Progrm de Pós-Grdução em Ciênci d Computção Universidde Federl de Ouro Preto http://www.decom.ufop.br/prof/mrcone E-mil: mrcone@iceb.ufop.br

Leia mais

Resolução do exercício proposto na experiência da associação em paralelo das bombas hidráulicas

Resolução do exercício proposto na experiência da associação em paralelo das bombas hidráulicas Resolução do exercício proposto n experiênci d ssocição em prlelo ds bombs hidráulics. equção d CCI pr ssocição em prlelo, onde tudo o que or considerdo deve ser devidmente justiicdo. ( γ Q ) + entrm γ

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

Uma Formulação Híbrida Trifásica x Monofásica para o Fluxo de Potência

Uma Formulação Híbrida Trifásica x Monofásica para o Fluxo de Potência X SMPÓSO DE ESPECALSAS EM PLANEJAMENO DA OPERAÇÃO E EXPANSÃO ELÉRCA X SEPOPE 7 0 de Mrço 009 Mrch 7 th to 0 th 009 BELÉM (PA) - BRASL X SMPOSUM OF SPECALSS N ELECRC OPERAONAL AND EXPANSON PLANNNG U Forulção

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Roteiro- Relatório da Experiência Nº 03 Potência Monofásica e Correção do Fator de Potência

Roteiro- Relatório da Experiência Nº 03 Potência Monofásica e Correção do Fator de Potência UNIVERSIDADE DO ESTADO DE SANTA ATARINA ENTRO DE IÊNIAS TENOLÓGIAS T DEPARTAMENTO DE ENGENHARIA ELÉTRIA DEE LABORATÓRIO DE ELETROTÉNIA. OMPONENTES DA EQUIPE: ALUNOS NOTA 3 Dt / / Roteiro- Reltório d Experiênci

Leia mais

Métodos Varacionais aplicados ao modelamento de Descontinuidades em Guia em dois planos

Métodos Varacionais aplicados ao modelamento de Descontinuidades em Guia em dois planos . Métodos Vrcionis plicdos o modelmento de Descontinuiddes em Gui em dois plnos. Introdução Conforme esperdo, os resultdos presentdos no Cpítulo 9 mostrrm s fortes limitções do modelo simplificdo de impedânci.

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

20t + 60 = 7,5t ,5t = 10 t = 0,8 s

20t + 60 = 7,5t ,5t = 10 t = 0,8 s Pr s questões seguir use o enuncido: Pesquiss ostr que, e odliddes que eige bo condicionento eróbico, o corção do tlet dilt, pois precis trblhr co grnde volue de sngue. E u esforço rápido e súbito, coo

Leia mais

MÉTODO DOS DESLOCAMENTOS EXAME DE ÉPOCA NORMAL /2014

MÉTODO DOS DESLOCAMENTOS EXAME DE ÉPOCA NORMAL /2014 DEPARTAMENTO DE ENGENHARA CV CENCATURA EM ENGENHARA CV TEORA DE ESTRUTURAS MÉTODO DOS DESOCAMENTOS EXAME DE ÉPOCA NORMA - / mm V c H Q d b e P knm kn SABE AVM TEES TEORA DE ESTRUTURAS DEPARTAMENTO DE ENGENHARA

Leia mais

Formas Lineares, Bilineares e Quadráticas

Formas Lineares, Bilineares e Quadráticas Forms Lineres Bilineres e Qudrátics Considere V um R-espço vetoril n-dimensionl Forms Lineres Qulquer trnsformção liner d form f : V R é denomind um funcionl liner ou form liner Eemplos: f : R R tl que

Leia mais

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras: Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

II Matrizes de rede e formulação do problema de fluxo de carga

II Matrizes de rede e formulação do problema de fluxo de carga Análise de Sisteas de Energia Elétrica Matrizes de rede e forulação do problea de fluxo de carga O problea do fluxo de carga (load flow e inglês ou fluxo de potência (power flow e inglês consiste na obtenção

Leia mais

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3.

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3. Universidde Federl de Uberlândi Fculdde de Mtemátic Disciplin : Geometri Diferencil Assunto: Cálculo no Espço Euclidino e Curvs Diferenciáveis Prof. Sto 1 List de exercícios 1. Prove chmd identidde de

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

, onde i é a linha e j é a coluna que o elemento ocupa na matriz.

, onde i é a linha e j é a coluna que o elemento ocupa na matriz. SÉRE: 2 AULA - MATRZES NOTA: FEVERERO Jneiro/Fevereiro 6 1 O PERÍODO PROF A ALESSANDRA MATTOS Muits vezes pr designr com clrez certs situções, é necessário um grupo ordendo de número de linhs(i) e coluns

Leia mais

< 9 0 < f(2) 1 < 18 1 < f(2) < 19

< 9 0 < f(2) 1 < 18 1 < f(2) < 19 Resolução do Eme Mtemátic A código 6 ª fse 08.. (B) 0 P = C 6 ( )6 ( ).. (B) Como f é contínu em [0; ] e diferenciável em ]0; [, pelo teorem de Lgrnge, eiste c ]0; [tl que f() f(0) = f (c). 0 Como 0

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 Eletricidde I 2 List de exercícios 1. N figur bixo, s crgs estão loclizds nos vértices de um triângulo equilátero. Pr que vlor de Q (sinl e módulo) o cmpo elétrico resultnte se nul no ponto C,

Leia mais

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao Cpítulo 6 Integrl Nosso objetivo qui é clculr integrl definid I = f(x)dx. (6.1) O vlor de I será ssocido um áre, e usremos est idéi pr desenvolver um lgoritmo numérico. Ao contrário d diferencição numéric,

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO CCUTO ÉTCO 9 UNF,F, ev. BDB CCUTO ÉTCO NGNHAA DA COMPUTAÇÃO CAPÍTUO CCUTO D CONT CONTÍNUA FONT D TNÃO FONT D CONT Fontes de Tensão Fontes de Corrente DA DA v (t) MBOOGA () i(t) (UUA) A CONNÇÃO PAA FONT

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Dertento de Engenr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Gruo de nálse de Estruturs IST, IST - DECvl Gruo de nálse de Estruturs Foruláro de es Eq. de grnge: w w w q D Equção de

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtnto de Engenhri Elétric Aul 2.3 Máquins Rottivs Prof. João Américo Vilel Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução à Eletrônic De Potênci. 7ª Edição,

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

Modelos de Correntes de Tráfego e Filas de Espera

Modelos de Correntes de Tráfego e Filas de Espera Modelos de Correntes de Tráego e Fils de Esper q Cpcidde q TRÁFEGO RODOIÁRIO Relção Fundentl q 1 A B B A. Densidde Critic Densidde e Congestionento elocidde Critic S NOTA:OLUME 1 OCORRE EM DUAS SITUAÇÕES

Leia mais