AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas"

Transcrição

1 ELETROMAGNETISMO

2 AULA 03 O FLUXO ELÉTRICO

3 Vamos supor que exista certa superfície inserida em uma campo elétrico. Essa superfície possui uma área total A. Definimos o fluxo elétrico dφ através de um elemento de área da dessa superfície como: dφ = E nda = E d A Onde n é o vetor normal à superfície. Em módulo: dφ = EdAcosθ A unidade do fluxo elétrico é Nm²/C.

4 Podemos calcular o fluxo total integrando toda a área. Agora, vamos supor que nossa superfície seja fechada. Para calcular o fluxo total nessa superfície fazemos: φ = S. E d A Note que esse resultado é um escalar e não um vetor (é a integral de um produto escalar). A integral com um círculo nos diz que a superfície S a qual estamos fazendo a integração é fechada.

5 Como exemplo, tomemos uma carga elétrica e ao redor dela vamos desenhar uma superfície esférica. Logo, haverá um campo elétrico atravessando essa superfície (direcionado para fora da carga) então há um fluxo elétrico. Essa superfície esférica possui um raio r, de modo que a carga elétrica esteja bem no centro. Logo, o fluxo elétrico será: φ = EA = E4πr² Nós sabemos que o campo elétrico gerado pela carga na superfície é: q E = 4πε 0 r² Portanto, o fluxo será: φ = q ε 0

6 O fluxo independe do tamanho da superfície. Na verdade, o fluxo depende apenas da carga interna à essa superfície. A equação que encontramos anteriormente nos diz isso. Não importa o formato da superfície em torno da carga: o fluxo depende apenas da carga elétrica em si! Esse é um resultado muito importante. Se tivermos mais de uma carga no interior da superfície então o fluxo será: φ = E d A = ΣQ in ε 0 Onde ΣQ in é o somatório de todas as cargas internas à superfície. À superfície damos o nome de superfície gaussiana e a equação acima é chamada de lei de Gauss. A lei de Gauss é sempre válida, mas nem sempre é util. Podemos utiliza-la sem medo de ser feliz se estivermos analisando um caso com simetria adequada.

7 Uma superfície esférica condutora de raio R está desenhada na imagem ao lado. Há uma carga Q na parte externa da esfera. Queremos determinar qual o valor do campo elétrico em um ponto r1 dentro da esfera e em um ponto r2 fora da esfera. Qual a melhor maneira de resolver isso?

8 Podemos aplicar diretamente a lei de Gauss (pois esse é um problema simétrico). A primeira coisa a se fazer é desenhar duas superfícies gaussianas. A superfície s1 é a que passa pelo ponto interno à esfera e possui raio r1. A superfície s2 é a que passa pelo ponto externo à esfera e possui raio r2.

9 Pela lei de Gauss temos 4πr 2 E = Q/ε 0. Então, para a superfície 1: 4πr 2 1 E = Q ε 0 E = Q 4πr 2 1 ε 0 Mas lembre-se que a lei de Gauss diz que a carga em questão tem de estar interna a superfície gaussiana. Como a carga Q está fora dessa superfície, então a mesma vale zero. Portanto, o campo elétrico no ponto interno à esfera condutora é zero! Para a superfície 2, o caso é diferente. A carga está dentro de nossa gaussiana, então: E = Q 4πr 2 2 ε 0 Esse resultado é conhecido por nós. Ele nada mais é do que o campo elétrico em um ponto P gerado por uma carga Q. Note que esse resultado é equivalente à carga estar no centro da nossa superfície.

10 Se temos um material condutor, a lei de Gauss nos diz que as cargas elétricas nesse material irão se distribuir pela superfície do mesmo (as cargas buscam a estabilidade e a encontram na superfície). Se tivermos uma esfera carregada, o campo elétrico deve ser nulo em seu interior e máximo na superfície.

11 Temos agora uma superfície plana infinitamente grande e carregada. A densidade de cargas sobre essa superfície é dada por σ = Q/A. Queremos calcular o campo elétrico a uma distância do plano. Para isso, podemos traçar uma superfície gaussiana de modo a interceptar esse plano. Há três condições que devem ser satisfeitas: 1 - Os extremos da superfície gaussiana são iguais e paralelos ao campo. 2 - As paredes da superfície são perpendiculares ao plano. 3 - As distâncias d são exatamente iguais.

12 A superfície gaussiana escolhida é cilíndrica de modo a tornar o problema mais simétrico. Nossa superfície intercepta o plano, de modo que o campo elétrico atravessa a superfície superior e a inferior. Logo, pela lei de Gauss: φ = E d A = E2A Como o campo atravessa duas superfícies de área A, então temos 2A.

13 A partir da densidade de cargas, encontramos que: Da lei de Gauss: σ = Q A Q = σa φ = Q ε 0 = σa ε 0 Como para esse caso o fluxo também é igual a E2A: σa ε 0 = E2A Portanto, isolando o campo elétrico: E = σ 2ε 0

14 Lembrando do resultado que encontramos na aula anterior para um disco carregado: E z = σ 2ε 0 1 z R 2 + z 2 1/2 Note que se z tender a zero ou R tender a infinito, o disco irá se tornar um plano. Tanto para um caso, quanto para o outro, o resultado final será: E z = σ 2ε 0 Que é o resultado encontrado a partir de Gauss.

15 Uma superfície gaussiana cilíndrica está contida em uma campo elétrico como mostra a figura. Qual é o fluxo elétrico através da superfície? Separamos a superfície em três partes importantes. A parte a possui o vetor normal da área apontando para a esquerda, em sentido oposto ao do campo elétrico. A parte b (a lateral da superfície) possui o vetor normal perpendicular ao campo elétrico. A parte c possui o vetor normal apontando na mesma direção do campo elétrico.

16 O fluxo total é a soma dos fluxos nessas três regiões. Portanto, para a região 1, ou região a: φ 1 = EAcosθ = EA O sinal negativo mostra que os vetores do campo elétrico e da área tem sentidos opostos (cosseno de 180 ). Para a região 2, ou b: φ 2 = EAcosθ = 0 Pois nesse caso temos cosseno de 90. Por fim, para a região 3, ou c: φ 3 = EAcosθ = EA Pois agora temos cosseno de 0. Logo, o fluxo sobre a superfície é: φ = φ 1 + φ 2 + φ 3 = EA EA = 0

17 Isso está de acordo com o que estudamos até aqui. Não há cargas no interior da superfície cilíndrica, logo o fluxo tem de ser zero. Para tentar compreender melhor, imagine que a quantidade de linhas de campo que entram na superfície é igual a quantidade de linhas decampo que saem da superfície.

18 Na figura a seguir, qual das superfícies possui o maior fluxo elétrico?

19 Agora vamos analisar o caso onde temos duas placas paralelas, uma com densidade de cargas positiva e a outra com densidade negativa. As placas estão separadas por uma distância d.

20 Podemos determinar a intensidade do campo elétrico entre as placas e na região externa às placas. Nós já vimos como fazemos para calcular o campo de uma única placa. Agora, podemos simplesmente usar a superposição dos campos para determinar o valor desejado. Sabemos que o campo elétrico da placa carregada positivamente aponta para fora da mesma, enquanto que para a placa carregada negativamente, o campo aponta em direção à esta. Logo, teremos:

21 As setas à esquerda representam o campo da placa carregada negativamente. Note que todas estão indo em direção à essa placa. As setas à direita representam o campo da placa carregada positivamente e por essa razão todas apontam para fora da placa. Pela superposição temos que = 0, = 2E, = 0. Logo, o campo entre as placas é dado por: E = σ ε 0 A configuração do campo elétrico entre as placas se torna:

22 Podemos nos questionar: qual o campo elétrico gerado por uma esfera não condutora e uniformemente carregada? Se a esfera é não condutora, isso quer dizer que as cargas não possuem um movimento livre sobre sua superfície. Em outras palavras, as cargas não vão todas para a superfície da esfera (como era o caso de uma esfera condutora). Vamos supor que temos uma esfera não condutora de raio a. Se tomarmos um ponto fora da esfera a uma distância r da mesma, então podemos desenhar nossa gaussiana de modo a determinar o campo elétrico nesse ponto. Pela lei de Gauss: O que nos fornece: φ = E d A = q in ε 0 E r = Materiais não condutores q 4πε 0 r² r

23 Agora, temos um ponto no interior na esfera. A densidade de cargas com respeito à nossa superfície gaussiana é dada por: ρ = q V Onde V é o volume que a superfície gaussiana abrange. Logo, a densidade será: ρ = q 4 3 πr3 Escrevendo a carga em termos da densidade: Por Gauss: q = 4 3 πr3 ρ E d A = 4πr3 ρ 3ε 0 Sendo da = 4πr 2 a área da superfície gaussiana (e esquecendo os vetores por enquanto): E = 4πr3 ρ 4πr 2 3ε 0

24 Escrevendo a densidade de cargas na esfera como a carga por volume: E = 4πr3 ρ rq 4πr 2 = 3ε 0 4 3ε 0 3 πa3 E = qr 4πε 0 a 3 Note que nesse ultimo passo, consideramos o volume de toda a esfera. Logo, o campo elétrico para uma esfera não condutora é: E r = qr 4πε 0 a 3 r

25 Como temos uma esfera não condutora, a quantidade de cargas elétricas aumenta a medida que nos aproximamos da borda da esfera. Na superfície, a quantidade de cargas terá seu valor máximo. Portanto, o campo elétrico não é mais nulo no interior do material (como é para os materiais condutores). O campo elétrico vai aumentando linearmente com o raio da esfera.

26 A partir de Gauss, e usando uma simetria cilíndrica, como seria o campo elétrico gerado por um fio uniformemente carregado?

Cap. 2 - Lei de Gauss

Cap. 2 - Lei de Gauss Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 2 - Lei de Gauss Prof. Elvis Soares Nesse capítulo, descreveremos a Lei de Gauss e um procedimento alternativo para cálculo

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 06 - CAPACITÂNCIA

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 06 - CAPACITÂNCIA ELETROMAGNETISMO AULA 06 - CAPACITÂNCIA Vamos supor que temos duas placas paralelas. Uma das placas está carregada positivamente enquanto que a outra está carregada negativamente. Essas placas estão isoladas

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Eletrostática Antonio Carlos Siqueira de Lima Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Agosto 2008 1 Campo Elétrico Campo Elétrico Devido a Distribuições

Leia mais

Lei de Gauss Φ = A (1) E da = q int

Lei de Gauss Φ = A (1) E da = q int Lei de Gauss Lei de Gauss: A lei de Gauss nos diz que o fluxo total do campo elétrico através de uma superfície fechada A é proporcional à carga elétrica contida no interior do volume delimitado por essa

Leia mais

Aula 3: A Lei de Gauss

Aula 3: A Lei de Gauss Aula 3: A Lei de Gauss Curso de Física Geral F-38 1º semestre, 13 F38 113 1 Fluxo de um campo vetorial Definição: = v ( r ) nˆ da v ( da ds A nˆ dv ds = ; dv= Ads = A = Av dt dt tˆ nˆ v A v v v // v da=

Leia mais

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova PUC-RIO CB-CTC FIS5 P DE ELETROMAGNETISMO 8.4. segunda-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da

Leia mais

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016 Lei de Gauss Ignez Caracelli ignez@ufscar.br Quem foi Gauss? Um dos maiores matemáticos de todos os tempos Um professor mandou ue somassem todos os números de um a cem. Para sua surpresa, em poucos instantes

Leia mais

Energia. 5.2 Equações de Laplace e Poisson

Energia. 5.2 Equações de Laplace e Poisson Capítulo 5 Equações da Eletrostática e Energia 5.1 Introdução Neste momento, já foram vistas praticamente todas as equações e fórmulas referentes à eletrostática. Dessa forma, nesse capítulo estudaremos

Leia mais

ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores

ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores Data para entrega: 19 de abril 1. Distribuições não uniformes de carga Considere o problema da figura abaixo,

Leia mais

Física III Escola Politécnica GABARITO DA P1 12 de abril de 2012

Física III Escola Politécnica GABARITO DA P1 12 de abril de 2012 Física III - 4320301 Escola Politécnica - 2012 GABARITO DA P1 12 de abril de 2012 Questão 1 Uma distribuição de cargas com densidade linear constante λ > 0 está localizada ao longo do eio no intervalo

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia e Potencial Elétrico (Capítulo 4 - Páginas 75 a 84no livro texto) Energia despendida no movimento de uma carga imersa num campo Elétrico. Diferença de potencial e potencial.

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges A lei de Gauss Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Fluxo de um campo

Leia mais

Energia potencial elétrica

Energia potencial elétrica Energia potencial elétrica Foi descoberto empiricamente que a força elétrica é uma força conservativa, portanto é possível associar a ela uma energia potencial. Quando uma força eletrostática age sobre

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC

Leia mais

Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais

Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais Capítulo 6 Condutores 6.1 Breve Introdução Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais elétrons por

Leia mais

Capítulo 23: Lei de Gauss

Capítulo 23: Lei de Gauss Capítulo 23: Lei de Gauss O Fluxo de um Campo Elétrico A Lei de Gauss A Lei de Gauss e a Lei de Coulomb Um Condutor Carregado A Lei de Gauss: Simetria Cilíndrica A Lei de Gauss: Simetria Plana A Lei de

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Prof. Dr. Vicente Barros 5- O campo elétrico 6- Comportamento de uma carga pontual e um dipolo. 7- Lei de Gauss elétrica Antes de mais nada Vamos testar

Leia mais

CAMPOS MAGNÉTICOS DEVIDO À CORRENTES

CAMPOS MAGNÉTICOS DEVIDO À CORRENTES Cálculo do campo magnético devido a uma corrente Considere um fio de forma arbitrária transportando uma corrente i. Qual o campo magnético db em um ponto P devido a um elemento de fio ds? Para fazer esse

Leia mais

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Aula 4_1 Capacitores Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Capacitores Definição da Capacitância: capacitor e sua capacitância Carga de um capacitor Exemplos de Cálculo da Capacitância

Leia mais

Lei de Gauss. Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss.

Lei de Gauss. Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss. Lei de Gauss Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss. Sobre a Apresentação Todas as gravuras, senão a maioria, são dos livros:

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges O campo elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Campo elétrico

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges O campo elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php Campo

Leia mais

Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua.

Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua. Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua. Por exemplo, a força gravitacional está relacionada a um campo gravitacional,

Leia mais

1 f =10 15.) q 1. σ 1. q i. ρ = q 1. 4πa 3 = 4πr 3 q i = q 1 ( r a )3 V 1 = V 2. 4πr 2 E = q 1. q = 1 3, q 2. q = 2 3 E = = q 1/4πR 2

1 f =10 15.) q 1. σ 1. q i. ρ = q 1. 4πa 3 = 4πr 3 q i = q 1 ( r a )3 V 1 = V 2. 4πr 2 E = q 1. q = 1 3, q 2. q = 2 3 E = = q 1/4πR 2 1 possui uma carga uniforme q 1 =+5, 00 fc e a casca Instituto de Física - UFF Física Geral e Experimental I/XVIII Prof. Hisataki Shigueoka http://profs.if.uff.br/ hisa possui uma carga q = q 1. Determine

Leia mais

Capacitância Objetivos:

Capacitância Objetivos: Capacitância Objetivos: A natureza dos capacitores e como determinar a quantidade que mede sua habilidade de armazenar carga? Com os capacitores de comportam em circuitos? Como determinar a quantidade

Leia mais

Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica LEI DE GAUSS

Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica LEI DE GAUSS Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica mehl@ufpr.br LEI DE GAUSS Lei de Gauss AGENDA Revisão: Produto escalar Quem foi Gauss? Lei de Gauss Analogia

Leia mais

Exercício 3) A formação de cargas elétrica em objetos quotidianos é mais comum em dias secos ou úmidos? Justifique a sua resposta.

Exercício 3) A formação de cargas elétrica em objetos quotidianos é mais comum em dias secos ou úmidos? Justifique a sua resposta. Exercícios Parte teórica Exercício 1) Uma esfera carregada, chamada A, com uma carga 1q, toca sequencialmente em outras 4 esferas (B, C, D e E) carregadas conforme a figura abaixo. Qual será a carga final

Leia mais

Fluxo de um campo vetorial e a Lei de Gauss

Fluxo de um campo vetorial e a Lei de Gauss Fluxo de um campo vetorial e a Lei de Gauss Bibliografia e figuras: Sears & Zemanski, 12a ed. cap 22 Nesta aula vamos aprender a: determinar a quantidade de carga no interior de uma superfície fechada

Leia mais

LIÇÃO 01 - CARGAS ELÉTRICAS E A LEI DE COULOMB. Eletromagnetismo - Instituto de Pesquisas Científicas

LIÇÃO 01 - CARGAS ELÉTRICAS E A LEI DE COULOMB. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO LIÇÃO 01 - CARGAS ELÉTRICAS E A LEI DE COULOMB Quase tudo o que fazemos depende da eletricidade. Quando ligamos um carro, a TV ou o rádio estamos usando da eletricidade. Hospitais necessitam

Leia mais

Eletromagnetismo I - Eletrostática

Eletromagnetismo I - Eletrostática - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico Campos conservativos

Leia mais

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz!

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO - ELETROSTÁTICA DISCIPLINA: FÍSICA ASSUNTO: CAMPO ELÉTRICO, POTENCIAL ELÉTRICO,

Leia mais

1 a PROVA Gabarito. Solução:

1 a PROVA Gabarito. Solução: INSTITUTO DE FÍSICA DA UFBA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO DISCIPLINA: FÍSICA GERAL E EXPERIMENTAL III FIS 123) TURMA: T02 SEMESTRE: 2 o /2012 1 a PROVA Gabarito 1. Três partículas carregadas

Leia mais

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA Enunciado: É dado um condutor de formato esférico e com cavidade (interna) esférica, inicialmente neutra (considere que esse condutor tenha espessura não-desprezível).

Leia mais

Campo Elétrico [N/C] Campo produzido por uma carga pontual

Campo Elétrico [N/C] Campo produzido por uma carga pontual Campo Elétrico Ao tentar explicar, ou entender, a interação elétrica entre duas cargas elétricas, que se manifesta através da força elétrica de atração ou repulsão, foi criado o conceito de campo elétrico,

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 05 ALTAS VOLTAGENS

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 05 ALTAS VOLTAGENS ELETROMAGNETISMO AULA 05 ALTAS VOLTAGENS Na figura temos um condutor pontiagudo. Iremos mostrar que a densidade de cargas é maior na região pontiaguda do condutor do que em outras regiões. Para isso, vamos

Leia mais

Aula 2 Lei de Coulomb

Aula 2 Lei de Coulomb Aula Lei de Coulomb Introdução Vimos na aula anterior que corpos carregados com carga sofrem interação mutua podendo ser atraídos ou repelidos entre si. Nessa aula e na próxima trataremos esses corpos

Leia mais

Cap. 4 - Capacitância e Dielétricos

Cap. 4 - Capacitância e Dielétricos Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 4 - Capacitância e Dielétricos Prof. Elvis Soares Nesse capítulo, estudaremos o conceito de capacitância, aplicações de

Leia mais

Quarta Lista - Capacitores e Dielétricos

Quarta Lista - Capacitores e Dielétricos Quarta Lista - Capacitores e Dielétricos FGE211 - Física III Sumário Um capacitor é um dispositivo que armazena carga elétrica e, consequentemente, energia potencial eletrostática. A capacitância C de

Leia mais

Sétima Lista - Lei de Faraday

Sétima Lista - Lei de Faraday Sétima Lista - Lei de Faraday FGE211 - Física III Sumário O fluxo magnético através de uma superfície S é definido como Φ B = B da A Lei da Indução de Faraday afirma que a força eletromotriz (fem) induzida

Leia mais

Capacitância e Dielétricos

Capacitância e Dielétricos Capacitância e Dielétricos 1 Um capacitor é um sistema constituído por dois condutores separados por um isolante (ou imersos no vácuo). Placas condutoras Carga elétrica Isolante (ou vácuo) Símbolos Em

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:40. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:40. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

Princípios de Eletricidade Magnetismo

Princípios de Eletricidade Magnetismo Princípios de Eletricidade Magnetismo Corrente Elétrica e Circuitos de Corrente Contínua Professor: Cristiano Faria Corrente e Movimento de Cargas Elétricas Embora uma corrente seja um movimento de partícula

Leia mais

INDUÇÃO MAGNÉTICA. Indução Magnética

INDUÇÃO MAGNÉTICA. Indução Magnética INDUÇÃO MAGNÉTIA Prof. ergio Turano de ouza Lei de Faraday Força eletromotriz Lei de Lenz Origem da força magnética e a conservação de energia.. 1 Uma corrente produz campo magnético Um campo magnético

Leia mais

7. Potencial eletrostático

7. Potencial eletrostático 7. Potencial eletrostático Em 1989 Wolfgang Paul recebeu o prémio Nobel da física pela sua invenção da armadilha de iões que permite isolar um ião. Com essa invenção tornou-se possível estudar um átomo

Leia mais

2 Campos Elétricos. 2-2 Campos elétricos. Me. Leandro B. Holanda,

2 Campos Elétricos. 2-2 Campos elétricos. Me. Leandro B. Holanda, 2 Campos Elétricos No capítulo anterior vimos como determinar a força elétrica exercida sobre uma partícula 1 de carga +q 1 quando a partícula é colocada nas proximidades de uma partícula 2 de carga +q

Leia mais

Na parte interna teremos q =20mC e na parte externa teremos 2q= - 40mC. Alternativa Correta Letra A

Na parte interna teremos q =20mC e na parte externa teremos 2q= - 40mC. Alternativa Correta Letra A FÍSICA III P1-2013.1 1 ELETRIZAÇÃO EM CONDUTORES Nesse caso, vamos ter indução no condutor. As cargas negativas vão para a parte externa e as positivas são atraídas para mais próximo da carga q (que é

Leia mais

Exercícios com Gabarito de Física Superfícies Equipotenciais e Linhas de Força

Exercícios com Gabarito de Física Superfícies Equipotenciais e Linhas de Força Exercícios com Gabarito de Física Superfícies Equipotenciais e Linhas de Força 1) (Faap-1996) A figura mostra, em corte longitudinal, um objeto metálico oco, eletricamente carregado. Em qual das regiões

Leia mais

LISTA COMPLETA PROVA 01

LISTA COMPLETA PROVA 01 LISTA COMPLETA PROVA 1 CAPÍTULO 3 5E. Duas partículas igualmente carregadas, mantidas a uma distância de 3, x 1 3 m uma da outra, são largadas a partir do repouso. O módulo da aceleração inicial da primeira

Leia mais

Quantização da carga. todos os objectos directamente observados na natureza possuem cargas que são múltiplos inteiros da carga do eletrão

Quantização da carga. todos os objectos directamente observados na natureza possuem cargas que são múltiplos inteiros da carga do eletrão Eletricidade Quantização da carga todos os objectos directamente observados na natureza possuem cargas que são múltiplos inteiros da carga do eletrão a unidade de carga C, é o coulomb A Lei de Coulomb

Leia mais

Campo Magnética. Prof. Fábio de Oliveira Borges

Campo Magnética. Prof. Fábio de Oliveira Borges Campo Magnética Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Campo magnético

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

31/05/17. Ondas e Linhas

31/05/17. Ondas e Linhas 31/05/17 1 Guias de Onda (pags 102 a 112 do Pozar) Geometria e Condições de Contorno Solução geral para Modos TE Solução geral para Modos TM 31/05/17 2 Cabo Coaxial Vamos considerar os campos de um cabo

Leia mais

Lista de Exercícios 7 Lei de Ampère

Lista de Exercícios 7 Lei de Ampère Lista de Exercícios 7 Lei de Ampère E8.1 Exercícios E8.1 Um fio de material supercondutor de raio igual a 10 µm transporta uma corrente de 100 A. Calcule o campo magnético na superfície do fio. R.,0 T.

Leia mais

F = 1/4πɛ 0 q 1.q 2 /r 2. F = G m 1.m 2 /r 2 ENERGIA POTENCIAL 04/05/2015. Bacharelado em Engenharia Civil. Física III

F = 1/4πɛ 0 q 1.q 2 /r 2. F = G m 1.m 2 /r 2 ENERGIA POTENCIAL 04/05/2015. Bacharelado em Engenharia Civil. Física III ENERGIA POTENCIAL Bacharelado em Engenharia Civil Física III Prof a.: D rd. Mariana de Faria Gardingo Diniz A energia potencial é a energia que está relacionada a um corpo em função da posição que ele

Leia mais

Força elétrica e Campo Elétrico

Força elétrica e Campo Elétrico Força elétrica e Campo Elétrico 1 Antes de Física III, um pouco de Física I... Massas e Campo Gravitacional 2 Força Gravitacional: Força radial agindo entre duas massas, m 1 e m 2. : vetor unitário (versor)

Leia mais

Lei de Ampere. 7.1 Lei de Biot-Savart

Lei de Ampere. 7.1 Lei de Biot-Savart Capítulo 7 Lei de Ampere No capítulo anterior, estudamos como cargas em movimento (correntes elétricas) sofrem forças magnéticas, quando na presença de campos magnéticos. Neste capítulo, consideramos como

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Campo Elétrico. Campo elétrico de uma carga puntiforme: O campo elétrico em cargas com dimensões desprezíveis em relação à distância.

Campo Elétrico. Campo elétrico de uma carga puntiforme: O campo elétrico em cargas com dimensões desprezíveis em relação à distância. Campo Elétrico Campo elétrico: O campo elétrico desempenha o papel de transmissor de interações entre cargas elétrica, ou seja, é o campo estabelecido em todos os pontos do espaço sob a influência de uma

Leia mais

Fundamentos do Eletromagnetismo - Aula IX

Fundamentos do Eletromagnetismo - Aula IX Fundamentos do Eletromagnetismo - Aula IX Prof. Dr. Vicente Barros Conteúdo 11 - Energia eletrostática e capacitância. Conteúdo 12- Capacitores. Antes uma revisão Existe o famoso triângulo das equações

Leia mais

LISTA ELETROSTÁTICA. Prof: Werlley toledo

LISTA ELETROSTÁTICA. Prof: Werlley toledo LISTA ELETROSTÁTICA Prof: Werlley toledo 01 - (UEPG PR) Uma pequena esfera com carga q é colocada em uma região do espaço onde há um campo elétrico. Sobre esse evento físico, assinale o que for correto.

Leia mais

Questão 1. Questão 3. Questão 2

Questão 1. Questão 3. Questão 2 Questão 1 A autoindutância (ou simplesmente indutância) de uma bobina é igual a 0,02 H. A corrente que flui no indutor é dada por:, onde T = 0,04 s e t é dado em segundos. Obtenha a expressão da f.e.m.

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Lei de Biot-avart e campo magnético estacionário de correntes contínuas (Capítulo 7 Páginas 119 a 123) Princípio da uperposição na Magnetostática Densidade de Fluxo Magnético

Leia mais

Campo Elétrico 2 Objetivos:

Campo Elétrico 2 Objetivos: Campo Elétrico 2 Objetivos: Apresentar a discretização do espaço para a resolução de problemas em coordenadas: Cartesianas; Polar; Aplicar a discretização do espaço para resolução de problemas de campo

Leia mais

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

Aluno: Assinatura: DRE: Professor: Turma: Seção Nota original Iniciais Nota de revisão

Aluno: Assinatura: DRE: Professor: Turma: Seção Nota original Iniciais Nota de revisão Universidade Federal do Rio de Janeiro Instituto de Física Física III 010/ Primeira Prova (P1) 1/10/010 Versão: A Aluno: Assinatura: DRE: Professor: Turma: Seção Nota original Iniciais Nota de revisão

Leia mais

Lei de Gauss e Condutores em Equilíbrio Eletrostático

Lei de Gauss e Condutores em Equilíbrio Eletrostático Lei de Gauss e Condutores em Equilíbrio Eletrostático 2008 Fluxo Elétrico: Está relacionado com o número líquido de linhas de força que atravessam uma superfície. φ e = EA 1 ou φ e = EA 2 cosθ = E ˆnA2

Leia mais

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO 99 15 EQUAÇÕES DE MAXWELL, POTENCIAL MANÉTICO E EQUAÇÕES DE CAMPO 15.1 - AS QUATRO EQUAÇÕES DE MAXWELL PARA CAMPOS ELÉTRICOS E MANÉTICOS ESTACIONÁRIOS Como pudemos observar em todo o desenvolvimento deste

Leia mais

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010 FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010 APSA Nº11 11º Ano de Escolaridade 1- Classifique como verdadeiras ou falsas cada uma das seguintes afirmações, corrigindo estas últimas sem recorrer

Leia mais

POTENCIAL ELÉTRICO. onde. é o potencial elétrico, a energia potencial e a carga. A unidade no S.I.

POTENCIAL ELÉTRICO. onde. é o potencial elétrico, a energia potencial e a carga. A unidade no S.I. POTENCIAL ELÉTRICO Potencial elétrico é a capacidade que um corpo energizado tem de realizar trabalho, ou seja, atrair ou repelir outras cargas elétricas. Ao tomarmos uma carga de prova q e a colocarmos

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Lei de Coulomb (Páginas 26 a 33 no Livro texto) Revisão da Lei de Coulomb Força entre cargas pontuais Intensidade de Campo Elétrico Princípio da Superposição 1 - Eletrostática

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Eletromagnetismo I - Eletrostática Forças Magnéticas (Capítulo 8 Páginas 230 a 238) Força sobre uma carga em

Leia mais

( ) Trabalho e Potencial Elétrico ( ) 1,6x10 1,6x10. = 1,0x10 ev. Gabarito Parte I: 4πε. 4 q. 3 m v. Página ,5 0,45 0,9

( ) Trabalho e Potencial Elétrico ( ) 1,6x10 1,6x10. = 1,0x10 ev. Gabarito Parte I: 4πε. 4 q. 3 m v.  Página ,5 0,45 0,9 Trabalho e Potencial Elétrico Gabarito Parte I: a) Como os dois íons formam um sistema mecanicamente isolado (livres de ação de forças externas), ocorre conservação da quantidade de movimento do sistema

Leia mais

Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss

Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss Eletricidade e Magnetismo Fluxo Elétrico Lei De Gauss 1. A figura seguinte mostra uma seção de uma barra cilíndrica de plástico infinitamente longo, com uma densidade linear de carga positiva uniforme.

Leia mais

Aula 21 - Lei de Biot e Savart

Aula 21 - Lei de Biot e Savart Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 1-, 1-7 S. 9-, 9-, 9-4, 9-6 T. 5- Aula 1 - Lei de Biot

Leia mais

Aprimorando os Conhecimentos de Eletricidade Lista 3 Campo Elétrico Linhas de Força Campo Elétrico de uma Esfera Condutora

Aprimorando os Conhecimentos de Eletricidade Lista 3 Campo Elétrico Linhas de Força Campo Elétrico de uma Esfera Condutora Aprimorando os Conhecimentos de letricidade Lista 3 Campo létrico Linhas de Força Campo létrico de uma sfera Condutora 1. (UFRS-004) Duas cargas elétricas, A e B, sendo A de C e B de 4C, encontram-se em

Leia mais

Eletrostática: Capacitância e Dielétricos

Eletrostática: Capacitância e Dielétricos Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-2 Eletrostática:

Leia mais

Corrente elétrica e Resistência

Corrente elétrica e Resistência Capítulo 9 Corrente elétrica e Resistência 9.1 Transporte de Carga e Densidade de Corrente As correntes elétricas são causadas pelo movimento de portadores de carga. A corrente elétrica num fio é a medida

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercícios 4 Potencial Elétrico Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. Boa parte do material dos anéis de Saturno está na forma de pequenos grãos de

Leia mais

4ª LISTA DE EXERCÍCIOS POTENCIAL ELÉTRICO

4ª LISTA DE EXERCÍCIOS POTENCIAL ELÉTRICO 4ª LISTA DE EXERCÍCIOS POTENCIAL ELÉTRICO 1. As condições típicas relativas a um relâmpago são aproximadamente as seguintes: (a) Diferença de potencial entre os pontos de descarga igual a 10 9 V; (b) Carga

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

Eletromagnetismo. Histórico

Eletromagnetismo. Histórico Eletromagnetismo Histórico Desde a antiguidade quando os fenômenos elétricos e magnéticos foram descobertos, se acreditava que o magnetismo e a eletricidade eram fenômenos distintos sem nenhuma relação

Leia mais

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora, esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

3.1 A lei de Gauss e alguns aspectos conceituais importantes

3.1 A lei de Gauss e alguns aspectos conceituais importantes Capítulo 3 A lei de Gauss Em princípio, com o que aprendemos no capítulo anterior, i.e, como obter o campo eletrostático gerado por uma distribuição contínua de cargas, está terminada a tarefa de obter

Leia mais

Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48)

Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48) Ismael Rodrigues Silva Física-Matemática - UFSC cel: (48)9668 3767 Maxwell formulou um conjunto de 4 equações (equações de Maxwell) que desempenham no eletromagnetismo o mesmo papel que as leis de Newton

Leia mais

Aula de Física II - Capacitância e Energia

Aula de Física II - Capacitância e Energia Prof.: Leandro Aguiar Fernandes (lafernandes@iprj.uerj.br) Universidade do Estado do Rio de Janeiro Instituto Politécnico - IPRJ/UERJ Departamento de Engenharia Mecânica e Energia Graduação em Engenharia

Leia mais

FIS1053 Projeto de Apoio Eletromagnetismo-25-Abril-2014 Lista de Problemas 8 Ampère.

FIS1053 Projeto de Apoio Eletromagnetismo-25-Abril-2014 Lista de Problemas 8 Ampère. FIS1053 Projeto de Apoio Eletromagnetismo-5-Abril-014 Lista de Problemas 8 Ampère. 1ª Questão A figura mostra o corte transversal de um cabo coaxial, constituído por um fio retilíneo central de raio a

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

CAMPO MAGNÉTICO EM CONDUTORES

CAMPO MAGNÉTICO EM CONDUTORES CAMPO MAGNÉTICO EM CONDUTORES Introdução A existência do magnetismo foi observada há cerca de 2500 anos quando certo tipo de pedra (magnetita) atraía fragmentos de ferro, que são conhecidos como ímãs permanentes.

Leia mais

e em paralelo Dipolo eléctrico, momento dipolar eléctrico nua

e em paralelo Dipolo eléctrico, momento dipolar eléctrico nua Bioelectricidade - Electricidade BásicaB Condensadores associação em série s e em paralelo Dipolo eléctrico, momento dipolar eléctrico Densidade da corrente eléctrica Lei de Ohm da corrente contínua nua

Leia mais

POTENCIAL ELÉTRICO e DIFERENÇA DE POTENCIAL

POTENCIAL ELÉTRICO e DIFERENÇA DE POTENCIAL UNIVERSIDDE TECNOLÓGIC FEDERL DO PRNÁ DEPRTMENTO CDÊMICO DE ELETROTÉCNIC ELETRICIDDE E MGNESTISMO - ET72F Profª Elisabete N Moraes POTENCIL ELÉTRICO e DIFERENÇ DE POTENCIL reve revisão - I Início dos estudos:

Leia mais