Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica LEI DE GAUSS

Tamanho: px
Começar a partir da página:

Download "Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica LEI DE GAUSS"

Transcrição

1 Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica LEI DE GAUSS Lei de Gauss AGENDA Revisão: Produto escalar Quem foi Gauss? Lei de Gauss Analogia Linhas de campo elétrico Fluxo do campo elétrico Simetria Uso da Lei de Gauss para geometrias simétricas Fio infinito 1

2 Revisão: Produto Escalar de dois vetores sen cos Em coordenadas cartesianas: Revisão: Vetor x Escalar Em coordenadas cartesianas: 2

3 Carl Friedrich Gauss Braunschweig, 30 de Abril de 1777 Göttingen, 23 de Fevereiro de 1855) Príncipe dos matemáticos Eletricidade: Lei de Gauss Estatística: Curva de Gauss Cálculo Numérico: Método de Gauss-Seidel Astronomia: Lei de Gauss da gravitação Matemática: Algoritmo de Gauss-Newton Cálculo do : Algoritmo de Gauss Legendre... Lei de Gauss: Analogia Desejamos medir a intensidade da chuva em um dia chuvoso Método 1: obter o volume de água de um pingo de chuva e contar o número de pingos que caírem sobre uma superfície em um determinado intervalo de tempo Procedimento análogo à aplicação da Lei de Coulomb Método 2: Estender um tecido seco com uma certa área e, após algum tempo na chuva, remove-lo e torcê-lo, medindo o volume de água resultante Procedimento análogo à aplicação da Lei de Gauss O método 1 é um procedimento trabalhoso ou microscópico O método 2 é um procedimento mais elegante ou macroscópico Ambos os métodos devem conduzir à MESMA RESPOSTA! 3

4 Linhas de Campo Elétrico 1C 1C 1C Todas estas representações estão corretas, pois os vetores são apenas uma forma de representação gráfica de um fenômeno físico. Nos desenhos seguintes vamos convencionar que uma carga elétrica de 1C dá origem a um vetor de campo elétrico. Linhas de Campo Elétrico 8C 16C 32C Quantas linhas saem da esfera? 8C 8 linhas 16C 16 linhas 32C 32 linhas Conclusão: O fluxo é proporcional à carga no interior da esfera 4

5 Linhas de Campo Elétrico Quantas linhas saem da superfície? 8C 16C 32C 8C 8 linhas 16C 16 linhas 32C 32 linhas Conclusão: A forma da superfície é indiferente, desde que seja FECHADA Linhas de Campo Elétrico Linhas que saem = + Linhas que entram = - 8C 16C 32C 8C 0 linhas 16C 0 linhas 32C 0 linhas Conclusão: Quando a carga envolvida pela superfície fechada é zero, o número efetivo de linhas de campo que cortam a superfície é zero! 5

6 Superfícies gaussianas Não! Superfícies gaussianas Atenção! As superfícies gaussianas são imaginárias! Não é necessário que exista um corpo sólido com o formato da superfície! 6

7 Lei de Gauss: Analogia gráfica O número de linhas do campo elétrico que saem de uma superfície fechada (gaussiana) é proporcional à carga elétrica envolvida por esta superfície S(linhas de campo E) a Carga envolvida pela superfície fechada N Coulombs an linhas de campo elétrico Fluxo do Campo Elétrico Como visto anteriormente, o número de linhas de campo é um conceito arbitrário e dependente da convenção gráfica utilizada. 1C 1C 1C É melhor portanto definir uma forma mais precisa que expresse a quantidade de linhas de campo elétrico que atravessa uma determinada superfície. Esta quantidade é chamada de Fluxo do Campo Elétrico Unidade: N.m 2 /C 7

8 Lei de Gauss e Fluxo do Campo Elétrico () (Fluxo do campo elétrico) proporcional a (Carga envolvida) proporcional a q envolvida o = 8,85 x C/N.m 2 Constante de permissividade do vácuo Questão n o 1 Uma superfície Gaussiana esférica (#1) contém em seu centro geométrico uma carga elétrica +q. Uma segunda superfície Gaussiana esférica (#2) do mesmo tamanho também contém a carga +q no seu interior, porém deslocada do seu centro geométrico. Comparativamente ao fluxo do campo elétrico que atravessa a superfície #1, o fluxo do campo elétrico que atravessa a superfície #2 é: Superfície Gaussiana #1 +q Superfície Gaussiana #2 A. maior. B. o mesmo. C. menor, mas não zero. D. zero. E. Não se tem informações suficientes para responder. 8

9 Questão n o 1 Uma superfície Gaussiana esférica (#1) contém em seu centro geométrico uma carga elétrica +q. Uma segunda superfície Gaussiana esférica (#2) do mesmo tamanho também contém a carga +q no seu interior, porém deslocada do seu centro geométrico. Comparativamente ao fluxo do campo elétrico que atravessa a superfície #1, o fluxo do campo elétrico que atravessa a superfície #2 é: Superfície Gaussiana #1 +q Superfície Gaussiana #2 A. maior. B. o mesmo. C. menor, mas não zero. D. zero. E. Não se tem informações suficientes para responder. Revisão: Integral de Área Esta área ficará mais molhada! 9

10 Integral de Área Chuva Chuva Esta área ficará mais molhada! Integral de Área Chuva Chuva Como as áreas são iguais, fica evidente que a quantidade de chuva que molha cada área retangular depende do ângulo entre a área e a direção de caída da chuva! 10

11 Integral de Área Chuva [C] Chuva [C] Casos extremos Vetores C e em 180 : máximo molhamento Vetores C e em 90 : a chuva não molha a superfície Fluxo de chuva através de uma área Fluxo chuva = C (produto escalar de dois vetores) C cos(q) C. cos(q) Fluxo chuva = 0 para q=90 cos(q) = 0 Fluxo chuva = -C. para q=180 cos(q) = -1 Generalizando: Fluxo chuva = C. cos(q) Para -1 < cos(q) < +1 q C 11

12 Fluxo do Campo Elétrico () na forma integral O Fluxo do Campo Elétrico pode ser calculado através do produto do campo elétrico pela área, considerando-os como vetores: Caso 1: Os vetores E e A são paralelos = E A Caso 2: Se os vetores A e E não são paralelos, o fluxo é dado pelo produto escalar dos dois vetores: = E A = E.Acosq Superfície Gaussiana ˆn Fluxo do Campo Elétrico () na forma integral ˆn ˆn 1. Dividir a superfície em pequenos elementos de área A 2. Para cada elemento de área A calcular o termo: E. A = E. Acosq 3. Somar todos os termos calculados anteriormente: = E. A 4. Tomar o limite quando cada elemento de área é infinitesimal: A 0 5. A somatória dos elementos infinitesimais torna-se então a integral, que é o fluxo: = E. 12

13 Questão n o 2 Duas cargas elétricas pontuais +q (em vermelho) e q (em azul) estão dispostas no espaço como na figura. Através de qual(is) superfície(s) Gaussianas o fluxo do campo elétrico é igual a zero? A. Superfície Gaussiana A B. Superfície Gaussiana B C. Superfície Gaussiana C D. Superfície Gaussiana D E. Ambas as superfícies C e D F. Ambas as superfícies A e B Questão n o 2 Duas cargas elétricas pontuais +q (em vermelho) e q (em azul) estão dispostas no espaço como na figura. Através de qual(is) superfície(s) Gaussianas o fluxo do campo elétrico é igual a zero? A. Superfície Gaussiana A B. Superfície Gaussiana B C. Superfície Gaussiana C D. Superfície Gaussiana D E. Ambas as superfícies C e D F. Ambas as superfícies A e B 13

14 Fluxo do Campo Elétrico () na forma integral: anote! A superfície gaussiana deve ser decomposta por um conjunto de áreas, cada qual representada por um vetor perpendicular ao elemento de área. Nos cálculos envolvendo Lei de Gauss, o vetor elemento de área sempre aponta para fora da superfície gaussiana. O cálculo do fluxo do campo elétrico é feito através do produto escalar em cada elemento de área: E = E. cos(q) O truque é escolher uma superfície gaussiana conveniente, de modo que a integral de área ( ) possa ser facilmente calculada. Superfície Gaussiana ˆn Fluxo do Campo Elétrico () na forma integral: anote! A escolha da superfície gaussiana geralmente é o maior problema para se aplicar a Lei de Gauss! O procedimento é buscar a SIMETRIA 14

15 Simetria: Diz-se que um objeto possui simetria em relação a uma determinada operação matemática (ex.: rotação, translação, ) se um observador não verifica mudança no objeto após a aplicação da operação. Atenção: Simetria é uma noção intuitiva! Simetria rotacional Observador Esfera sem defeitos superficiais Eixo de Rotação Simetria rotacional Observador Esfera sem defeitos Cilindro sem defeitos superficiais superficiais Eixo de Rotação 15

16 Simetria de Translação Observador Tapete mágico Plano infinito e sem defeitos Simbologia para cargas uniformemente distribuídas Linear Superficial Volumétrica ELETROMAGNETISMO - WILLIAM H. HAYT JÚNIOR 16

17 Simbologia para cargas uniformemente distribuídas Linear Superficial Volumétrica FÍSICA HALLIDAY, RESNICK & WALKER Exemplo de uso da Lei de Gauss: Campo Elétrico produzido por um fio longo com carga uniforme l [C/m] Escolhe-se uma superfície gaussiana que aproveite a simetria da estrutura; no caso, um cilindro: E E l C/m r L 17

18 Cálculo do Fluxo: = = Nas tampas do cilindro E e são perpendiculares Então: tampa1 lateral tampa2 E tampa1 tampa2. tampa 1 E. lateral E. tampa 2 = E. = E. tampa1 tampa2 cos(90) = 0 Não existe fluxo do campo elétrico através das tampas do cilindro! = 0 E. lateral 0 cos(90) = 0 r E Cálculo do Fluxo: = 0 E. lateral 0 E E & são paralelos E = E = E. l C/m L 18

19 2r 10/10/2011 Cálculo do Fluxo: = 0 E. lateral 0 E A superfície cilíndrica tem uma distância constante do fio. Portanto o Campo Elétrico é constante nesta superfície l C/m L Cálculo do Fluxo: = 0 E. lateral 0 E = constante = 0 E lateral 0 A integral de todos os é a superfície lateral do cilindro: lateral Então: = E2πrL = 2πrL L l C/m 2r L r 19

20 Cálculo do Campo Elétrico: A Lei de Gauss também pode ser escrita como: A carga dentro da superfície gaussiana é: l C/m 2r L r Então: E = ρ l 2. r. o Discussão do resultado obtido E = 2. r. E é proporcional a 1/r A medida que nos afastamos do fio carregado o campo elétrico fica mais fraco. Intuitivamente correto! O vetor E aponta no sentido radial do fio carregado Intuitivamente correto! A intensidade do campo elétrico é proporcional à densidade de carga no fio ( l ) Fio com maior densidade de carga = campo elétrico mais intenso Intuitivamente correto! ρ l o 20

FÍSICA III PROFESSORA MAUREN POMALIS

FÍSICA III PROFESSORA MAUREN POMALIS FÍSICA III PROFESSORA MAUREN POMALIS mauren.pomalis@unir.br ENG. ELÉTRICA - 3 PERÍODO UNIR/Porto Velho 2017/1 SUMÁRIO Revisão Campo elétrico Fluxo Gauss Lei de Gauss REVISÃO Campo elétrico devido a carga

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

superfície que envolve a distribuição de cargas superfície gaussiana

superfície que envolve a distribuição de cargas superfície gaussiana Para a determinação do campo elétrico produzido por um corpo, é possível considerar um elemento de carga dq e assim calcular o campo infinitesimal de gerado. A partir desse princípio, o campo total em

Leia mais

Segunda Lista - Lei de Gauss

Segunda Lista - Lei de Gauss Segunda Lista - Lei de Gauss FGE211 - Física III 1 Sumário O fluxo elétrico que atravessa uma superfície infinitesimal caracterizada por um vetor de área A = Aˆn é onde θ é o ângulo entre E e ˆn. Φ e =

Leia mais

Fluxo do campo elétrico

Fluxo do campo elétrico Fluxo do campo elétrico Definição: - É uma grandeza escalar que caracteriza uma medida do número de linhas de campo que atravessam uma determinada superfície. a) Linhas de um campo uniforme em magnitude

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC

Leia mais

Aula 5: Lei de Gauss. Referências bibliográficas: H. 25-2, 25-3, 25-4, 25-5, 25-6, 25-7 S. 23-2, 23-3, 23-4, 23-6 T. 19-2, 19-4

Aula 5: Lei de Gauss. Referências bibliográficas: H. 25-2, 25-3, 25-4, 25-5, 25-6, 25-7 S. 23-2, 23-3, 23-4, 23-6 T. 19-2, 19-4 Universidade Federal do Paraná etor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 25-2, 25-3, 25-4, 25-5, 25-6, 25-7. 23-2, 23-3, 23-4,

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

Cap. 2 - Lei de Gauss

Cap. 2 - Lei de Gauss Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 2 - Lei de Gauss Prof. Elvis Soares Nesse capítulo, descreveremos a Lei de Gauss e um procedimento alternativo para cálculo

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges A lei de Gauss Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Fluxo de um campo

Leia mais

Capítulo 23: Lei de Gauss

Capítulo 23: Lei de Gauss Capítulo 23: Lei de Gauss O Fluxo de um Campo Elétrico A Lei de Gauss A Lei de Gauss e a Lei de Coulomb Um Condutor Carregado A Lei de Gauss: Simetria Cilíndrica A Lei de Gauss: Simetria Plana A Lei de

Leia mais

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016 Lei de Gauss Ignez Caracelli ignez@ufscar.br Quem foi Gauss? Um dos maiores matemáticos de todos os tempos Um professor mandou ue somassem todos os números de um a cem. Para sua surpresa, em poucos instantes

Leia mais

Física Básica II Eletricidade e Magnetismo

Física Básica II Eletricidade e Magnetismo Física Básica II-5910196 Eletricidade e Magnetismo Prof. Eder Rezende Moraes Estagiário PAE: Daniel Luis Franzé. Monitora: Bianca da Silva Carvalho Técnico Sergio Oliveira Bueno da Silva LEI DE GAUSS Johann

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Aplicação da Lei de Gauss e Lei de Gauss na Forma Diferencial (Páginas 56 a 70 no livro texto) Aplicação da Lei de Gauss: Linha Infinita de Cargas Condutores Coaxiais Lei de

Leia mais

Lei de Gauss Φ = A (1) E da = q int

Lei de Gauss Φ = A (1) E da = q int Lei de Gauss Lei de Gauss: A lei de Gauss nos diz que o fluxo total do campo elétrico através de uma superfície fechada A é proporcional à carga elétrica contida no interior do volume delimitado por essa

Leia mais

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 03 O FLUXO ELÉTRICO Vamos supor que exista certa superfície inserida em uma campo elétrico. Essa superfície possui uma área total A. Definimos o fluxo elétrico dφ através de um elemento

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS Prof. Bruno Farias Introdução Na Física, uma ferramenta importante para a

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

Lista de Exercícios 1 Forças e Campos Elétricos

Lista de Exercícios 1 Forças e Campos Elétricos Lista de Exercícios 1 Forças e Campos Elétricos Exercícios Sugeridos (21/03/2007) A numeração corresponde ao Livros Textos A e B. A19.1 (a) Calcule o número de elétrons em um pequeno alfinete de prata

Leia mais

Física. Campo elétrico. Parte II. Lei de Gauss

Física. Campo elétrico. Parte II. Lei de Gauss Física Campo elétrico Parte II Lei de Gauss Lei de Gauss analogia água Lei de Gauss A magnitude do campo, como já visto, estará contida na densidade de linhas de campo: será maior próxima à carga e menor

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q. Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro

Leia mais

Física III para a Poli

Física III para a Poli 4323203 Física III para a Poli Segunda lista de exercícios 1. Considere que uma folha de papel, que possui uma área igual a 0, 250 m 2, está orientada de modo que o vetor NORMAL a sua superfície faça um

Leia mais

Lei de Gauss. Evandro Bastos dos Santos. 21 de Maio de 2017

Lei de Gauss. Evandro Bastos dos Santos. 21 de Maio de 2017 Lei de Gauss Evandro Bastos dos antos 21 de Maio de 2017 1 Fluxo de Campo Elétrico Com a lei de Coulomb calculamos o campo elétrico utilizando uma distribuição de cargas. E a soma vetorial do campo elétrico

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas

Leia mais

Fluxos e Conservação Lei de Gauss Isolantes. III - Lei de Gauss. António Amorim, SIM-DF. Electromagnetismo e Óptica. Lei de Gauss /2011

Fluxos e Conservação Lei de Gauss Isolantes. III - Lei de Gauss. António Amorim, SIM-DF. Electromagnetismo e Óptica. Lei de Gauss /2011 III - Electromagnetismo e Óptica - 2010/2011 III - Índice 1 Fluxos e Conservação 2 3 III - Outline 1 Fluxos e Conservação 2 3 III - Distribuição Contínua (rev.) Denindo a densidade de carga por unidade

Leia mais

Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Cap. 23 Lei de Gauss Copyright 23-1 Fluxo Elétrico A lei de Gauss relaciona os campos elétricos nos pontos de uma superfície gaussiana (fechada) à carga total envolvida pela superfície. Superfície Gaussiana

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET72F Profª Elisabete N Moraes

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET72F Profª Elisabete N Moraes UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET7F Profª Elisabete N Moraes LEI DE GAUSS Lei de Gauss - apresentação Método alternativo

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges O Potencial Elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php

Leia mais

Lista 01 Parte II. Capítulo 28

Lista 01 Parte II. Capítulo 28 Lista 01 Parte II Capítulo 28 01) Qual é o fluxo elétrico através de cada uma das superfícies (a), (b), (c) e (d) presentes na figura abaixo? 02) Uma carga positiva Q está localizada no centro de um cilindro

Leia mais

Física III-A /1 Lista 3: Potencial Elétrico

Física III-A /1 Lista 3: Potencial Elétrico Física III-A - 2018/1 Lista 3: Potencial Elétrico Prof. Marcos Menezes 1. Qual é a diferença de potencial necessária para acelerar um elétron do repouso até uma velocidade igual a 40% da velocidade da

Leia mais

Física. Resumo Eletromagnetismo

Física. Resumo Eletromagnetismo Física Resumo Eletromagnetismo Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv Força Elétrica Duas formas de calcular:

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018 Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 2018/2 Data: 17/09/2018 Seção 1: Múltipla Escolha (7 0,8 = 5,6 pontos) 3. O campo elétrico

Leia mais

Eletromagnetismo I - Eletrostática

Eletromagnetismo I - Eletrostática - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico Campos conservativos

Leia mais

Aula 21 - Lei de Biot e Savart

Aula 21 - Lei de Biot e Savart Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 1-, 1-7 S. 9-, 9-, 9-4, 9-6 T. 5- Aula 1 - Lei de Biot

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

Fluxo de um campo vetorial e a Lei de Gauss

Fluxo de um campo vetorial e a Lei de Gauss Fluxo de um campo vetorial e a Lei de Gauss Bibliografia e figuras: Sears & Zemanski, 12a ed. cap 22 Nesta aula vamos aprender a: determinar a quantidade de carga no interior de uma superfície fechada

Leia mais

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova PUC-RIO CB-CTC FIS5 P DE ELETROMAGNETISMO 8.4. segunda-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da

Leia mais

Lei de Gauss Objetivos:

Lei de Gauss Objetivos: Lei de Gauss Objetivos: Calcular o Fluxo de Campo Elétrico através de superfícies fechadas; Resolver problemas de Campo Elétrico, usando a simetria do sistema, com emprego da Lei de Gauss. Sobre a Apresentação

Leia mais

LEI DE GAUSS FLUXO DE UM CAMPO VETORIAL. ɸ = v.a (1) 08/04/2015. Bacharelado em Engenharia Civil. Do que se trata a Lei de Gauss?

LEI DE GAUSS FLUXO DE UM CAMPO VETORIAL. ɸ = v.a (1) 08/04/2015. Bacharelado em Engenharia Civil. Do que se trata a Lei de Gauss? LEI DE GAUSS Bacharelado em Engenharia Civil Do que se trata a Lei de Gauss? Disciplina: Física III Prof a.: Drd. Mariana de F. G. Diniz Por que é necessário a Lei de Gauss se a Lei de Coulomb é suficiente

Leia mais

Lista de Exercícios 1: Eletrostática

Lista de Exercícios 1: Eletrostática Lista de Exercícios 1: Eletrostática 1. Uma carga Q é distribuída uniformemente sobre um fio semicircular de raio a, que está no plano xy. Calcule a força F com que atua sobre uma carga de sinal oposto

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa

Leia mais

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Prof. Dr. Vicente Barros 5- O campo elétrico 6- Comportamento de uma carga pontual e um dipolo. 7- Lei de Gauss elétrica Antes de mais nada Vamos testar

Leia mais

Capítulo 22 Lei de Gauss

Capítulo 22 Lei de Gauss Capítulo Lei de Gauss 1 Propriedades das linhas de campo elétrico A uantidade de linhas de campo associada a uma distribuição de carga elétrica é proporcional à carga da distribuição Quanto maior a carga,

Leia mais

de x = decosθ = k λdθ R cosθ, de y = desenθ = k λdθ R senθ, em que já substituímos dq e simplificamos. Agora podemos integrar, cosθdθ = k λ R,

de x = decosθ = k λdθ R cosθ, de y = desenθ = k λdθ R senθ, em que já substituímos dq e simplificamos. Agora podemos integrar, cosθdθ = k λ R, FÍSICA BÁSICA III - LISTA 2 1 A figura 1 mostra um semicírculo carregado uniformemente na metade superior com carga +Q e na metade inferior com carga Q Calcule o campo elétrico na origem (E = Qĵ/π2 R 2

Leia mais

(d) E = Eŷ e V = 0. (b) (c) (f) E = Eˆx e V = (f)

(d) E = Eŷ e V = 0. (b) (c) (f) E = Eˆx e V = (f) 1 Universidade Federal do Rio de Janeiro Instituto de Física Física III 01/ Primeira Prova: 10/1/01 Versão: A F e = q E, E = V, E = k0 q r ˆr Seção 1 Múltipla escolha 10 0,5 = 5,0 pontos) Formulário onde

Leia mais

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Eletrostática Antonio Carlos Siqueira de Lima Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Agosto 2008 1 Campo Elétrico Campo Elétrico Devido a Distribuições

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges O campo elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Campo elétrico

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges O campo elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php Campo

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /1 Data: 24/04/2019

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /1 Data: 24/04/2019 Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 2019/1 Data: 24/04/2019 Seção 1: Múltipla Escolha (6 0,8 = 4,8 pontos) 1. Um grão de poeira

Leia mais

Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua.

Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua. Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua. Por exemplo, a força gravitacional está relacionada a um campo gravitacional,

Leia mais

Física III para a Poli

Física III para a Poli 4323203 Física III para a Poli Uma seleta de exercícios resolvidos Cálculo de alguns campos elétricos Exemplo 1: Fio finito uniformemente carregado Considere que uma carga Q está uniformemente distribuída

Leia mais

2 Diferença de Potencial e Potencial Eletrostático

2 Diferença de Potencial e Potencial Eletrostático Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 3 - Potencial Eletrostático Prof. Elvis Soares Nesse capítulo, estudaremos o potencial eletrostático criado por cargas

Leia mais

Capítulo 22: Campos Elétricos

Capítulo 22: Campos Elétricos Capítulo 22: Campos Elétricos O Campo Elétrico Linhas de Campo Elétrico Campo Elétrico Produzido por uma Carga Pontual Campo Elétrico Produzido por um Dipolo Elétrico Campo Elétrico Produzido por uma Linha

Leia mais

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA Enunciado: É dado um condutor de formato esférico e com cavidade (interna) esférica, inicialmente neutra (considere que esse condutor tenha espessura não-desprezível).

Leia mais

FÍSICA III 1/2008 Lista de Problemas 02 Campos elétricos

FÍSICA III 1/2008 Lista de Problemas 02 Campos elétricos FÍSICA III 1/2008 Lista de roblemas 02 Campos elétricos A C Tort 18 de Março de 2008 roblema 1 H.M. Nussenzveig: Curso de Física básica, vol. 3, Eletromagnetismo, Cap. 3, problema 4. Dois fios retilíneos

Leia mais

Física 3. Resumo e Exercícios P1

Física 3. Resumo e Exercícios P1 Física 3 Resumo e Exercícios P1 Resuminho Teórico e Fórmulas Parte 1 Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv

Leia mais

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova PUC-RIO CB-CTC FIS05 P DE ELETROMAGNETISMO 5.03.4 terça-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas

Leia mais

1 - Fricção: Formas de Eletrização

1 - Fricção: Formas de Eletrização 1 - Fricção: Formas de Eletrização Formas de Eletrização 2 - Indução: 1 - Fricção: Polarização Resumo Propriedade das Cargas 1. Existem dois tipos de cargas que são positivas (prótons) e negativas (elétrons)

Leia mais

Potencial Elétrico 1

Potencial Elétrico 1 Potencial Elétrico 1 Vamos começar com uma revisão: Quando uma força atua sobre uma partícula que se move de um ponto a até um ponto b, o trabalho W realizado pela força é dado pela integral de linha:

Leia mais

Instituto de Física UFRJ. 1 a Avaliação Presencial de Física 3A - AP1- Soluções. Primeiro Semestre de 2009 AP1 1/ o Q 2 o Q 3 o Q 4 o Q Nota

Instituto de Física UFRJ. 1 a Avaliação Presencial de Física 3A - AP1- Soluções. Primeiro Semestre de 2009 AP1 1/ o Q 2 o Q 3 o Q 4 o Q Nota AP1 1/2009 1 Instituto de Física UFRJ 1 a Avaliação Presencial de Física 3A - AP1- Soluções Pólo : Nome : Assinatura : Primeiro Semestre de 2009 Data: 1 o 2 o 3 o o Nota Problema 1 Considere duas distribuições

Leia mais

Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica POTENCIAL ELÉTRICO

Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica POTENCIAL ELÉTRICO Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica mehl@ufpr.br POTENCIAL ELÉTRICO 1 Questão n o 1 Qual é a representação correta das linhas de campo elétrico

Leia mais

POTENCIAL ELÉTRICO. Prof. Bruno Farias

POTENCIAL ELÉTRICO. Prof. Bruno Farias CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia Eletrostática (Capítulo 4 Páginas 00 a 04) Energia potencial de um grupo de cargas pontuais. Energia de uma distribuição contínua de carga. Densidade de energia no campo

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico

Leia mais

1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa

1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa 1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa região próxima ao centro do fio, a uma distância r

Leia mais

Energia. 5.2 Equações de Laplace e Poisson

Energia. 5.2 Equações de Laplace e Poisson Capítulo 5 Equações da Eletrostática e Energia 5.1 Introdução Neste momento, já foram vistas praticamente todas as equações e fórmulas referentes à eletrostática. Dessa forma, nesse capítulo estudaremos

Leia mais

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO Se um carga elétrica se move de um ponto à outro, qual é o trabalho realizado sobre essa carga? A noção de mudança de posição nos remete

Leia mais

Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss

Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss Eletricidade e Magnetismo Fluxo Elétrico Lei De Gauss 1. A figura seguinte mostra uma seção de uma barra cilíndrica de plástico infinitamente longo, com uma densidade linear de carga positiva uniforme.

Leia mais

Lei de Gauss. Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss.

Lei de Gauss. Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss. Lei de Gauss Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss. Sobre a Apresentação Todas as gravuras, senão a maioria, são dos livros:

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Campo Elétrico 2 Objetivos:

Campo Elétrico 2 Objetivos: Campo Elétrico 2 Objetivos: Apresentar a discretização do espaço para a resolução de problemas em coordenadas: Cartesianas; Polar; Aplicar a discretização do espaço para resolução de problemas de campo

Leia mais

Cap. 22. Campo Elétrico. Prof. Oscar Rodrigues dos Santos Potencial elétrico 1

Cap. 22. Campo Elétrico. Prof. Oscar Rodrigues dos Santos Potencial elétrico 1 Cap. 22 Campo létrico Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Potencial elétrico 1 Quando ocorre a interação no vácuo entre duas partículas que possuem cargas elétricas, como é possível

Leia mais

Física III IQ 2014 ( )

Física III IQ 2014 ( ) Atividade de treinamento - Introdução: Esta atividade tem dois objetivos: 1) Apresentar os conceitos de distribuições contínuas de carga e momento de dipolo ) Revisar técnicas de cálculo e sistemas de

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l Eletromagnetismo I Prof. Ricardo Galvão - Semestre 015 Preparo: Diego Oliveira Aula 7 Trabalho realizado em um campo eletrostático Suponhamos que numa região do espaço exista um campo elétrico E. Qual

Leia mais

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5

Leia mais

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. 1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:

Leia mais

Fontes do Campo magnético

Fontes do Campo magnético Fontes do Campo magnético Lei de Biot-Savart Jean-Baptiste Biot (1774 1862) e Félix Savart (1791 1841) Realizaram estudos sobre as influências de um corrente elétrica sobre o campo magnético. Desenvolveram

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

Física III Escola Politécnica GABARITO DA P1 12 de abril de 2012

Física III Escola Politécnica GABARITO DA P1 12 de abril de 2012 Física III - 4320301 Escola Politécnica - 2012 GABARITO DA P1 12 de abril de 2012 Questão 1 Uma distribuição de cargas com densidade linear constante λ > 0 está localizada ao longo do eio no intervalo

Leia mais

ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores

ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores Data para entrega: 19 de abril 1. Distribuições não uniformes de carga Considere o problema da figura abaixo,

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho Revisão Analise Vetorial e Sist. de Coord. Revisão básica álgebra vetorial e Sist. de Coordenadas (Páginas 1 a 22 no Livro texto) Objetivo: Introduzir notação que será usada neste e nos próximos

Leia mais

Resultantes de um sistema de forças

Resultantes de um sistema de forças Resultantes de um sistema de forças Objetivos da aula Discutir o conceito do momento de uma força e mostrar como calculá-lo em duas e três dimensões. Fornecer um método para determinação do momento de

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

Aula 3: A Lei de Gauss

Aula 3: A Lei de Gauss Aula 3: A Lei de Gauss Curso de Física Geral F-38 1º semestre, 13 F38 113 1 Fluxo de um campo vetorial Definição: = v ( r ) nˆ da v ( da ds A nˆ dv ds = ; dv= Ads = A = Av dt dt tˆ nˆ v A v v v // v da=

Leia mais

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Problema 1: Capacitor preenchido com dielétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Considere um capacitor de placas paralelas,

Leia mais

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62 Sumário 1 Introdução 18 1-1 Linha do Tempo Histórico 19 1-1.1 Eletromagnetismo na Era Clássica 19 1-1.2 Eletromagnetismo na Era Moderna 20 1-2 Dimensões, Unidades e Notação 21 1-3 A Natureza do Eletromagnetismo

Leia mais

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO 99 15 EQUAÇÕES DE MAXWELL, POTENCIAL MANÉTICO E EQUAÇÕES DE CAMPO 15.1 - AS QUATRO EQUAÇÕES DE MAXWELL PARA CAMPOS ELÉTRICOS E MANÉTICOS ESTACIONÁRIOS Como pudemos observar em todo o desenvolvimento deste

Leia mais

F = 1/4πɛ 0 q 1.q 2 /r 2. F = G m 1.m 2 /r 2 ENERGIA POTENCIAL 04/05/2015. Bacharelado em Engenharia Civil. Física III

F = 1/4πɛ 0 q 1.q 2 /r 2. F = G m 1.m 2 /r 2 ENERGIA POTENCIAL 04/05/2015. Bacharelado em Engenharia Civil. Física III ENERGIA POTENCIAL Bacharelado em Engenharia Civil Física III Prof a.: D rd. Mariana de Faria Gardingo Diniz A energia potencial é a energia que está relacionada a um corpo em função da posição que ele

Leia mais

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart Física III-A - 2019/1 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,

Leia mais

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho.

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Eletricidade e Magnetismo - IME Potencial Elétrico Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Energia Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Equipamentos

Leia mais

Física Teórica II. Formulário. Prova 1 1º. semestre de /04/2018

Física Teórica II. Formulário. Prova 1 1º. semestre de /04/2018 Física Teórica II Prova 1 1º. semestre de 2018 14/04/2018 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas 2- Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar

Leia mais

Capacitores. - 3) A experiência mostra que a carga acumulada é diretamente proporcional a diferença de potencial aplicada nas placas, ou seja

Capacitores. - 3) A experiência mostra que a carga acumulada é diretamente proporcional a diferença de potencial aplicada nas placas, ou seja Capacitores - 1) Capacitores são dispositivos utilizados para armazenar cargas elétricas. Como a energia potencial é proporcional ao número de cargas elétricas, estes dispositivos também são reservatórios

Leia mais

a) (1.0) Calcule o vetor força resultante sobre a carga +Q e desenhe-o no gráfico (deixe o resultado em função da constante k).

a) (1.0) Calcule o vetor força resultante sobre a carga +Q e desenhe-o no gráfico (deixe o resultado em função da constante k). P4 03//0 a Questão (.5) Três cargas puntiformes +q, -q e +Q, são mantidas fixas como representado na figura. As cargas +q e q estão localizadas sobre o eixo Y enquanto a carga de prova +Q encontra-se sobre

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia e Potencial Elétrico (Capítulo 4 - Páginas 75 a 84no livro texto) Energia despendida no movimento de uma carga imersa num campo Elétrico. Diferença de potencial e potencial.

Leia mais

TÓPICO. Fundamentos da Matemática II FUNÇÕES VETORIAIS DE VÁRIAS VARIÁVEIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II FUNÇÕES VETORIAIS DE VÁRIAS VARIÁVEIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES VETORIAIS DE VÁRIAS VARIÁVEIS 5 Gil da Costa Marques TÓPICO Fundamentos da Matemática II 5. Introdução 5. Funções vetoriais de duas variáveis 5.3 Representação gráfica de funções vetoriais 5.4

Leia mais

Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Capítulo 10 Rotação Copyright 10-1 Variáveis Rotacionais Agora estudaremos o movimento de rotação Aplicam-se as mesmas leis Mas precisamos de novas variáveis para expressá-las o o Torque Inércia rotacional

Leia mais