Segunda Lista - Lei de Gauss

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Segunda Lista - Lei de Gauss"

Transcrição

1 Segunda Lista - Lei de Gauss FGE211 - Física III 1 Sumário O fluxo elétrico que atravessa uma superfície infinitesimal caracterizada por um vetor de área A = Aˆn é onde θ é o ângulo entre E e ˆn. Φ e = E A = EA cos θ, Em geral, o fluxo elétrico através de uma superfície é Φ e = E da. A Lei de Gauss afirma que o fluxo elétrico através de uma superfície fechada, qualquer, é proporcional apenas a carga interna a essa superfície: Φ e = E da = Q int. ɛ 0 S S Apesar de valer para qualquer superfície fechada, a lei de Gauss é útil apenas em problemas que contenham simetria planar, cilíndrica ou esférica. A componente normal do campo elétrico possui uma descontinuidade E = σ /ɛ 0 quando passa por uma superfície com densidade superficial de carga σ. As propriedades básicas dos condutores são: 1. O campo elétrico dentro de um condutor é zero. 2. Qualquer carga em excesso dentro de um condutor deve permanecer na superfície. 3. Na superfície de um condutor o campo elétrico tangencial é nulo. 4. Nas proximidades do condutor, o campo elétrico é normal a sua superfície. 1

2 2 Estratégia para resolução de problemas: utilização da lei de Gauss A lei de Gauss é uma ferramenta poderosa para calcular o campo elétrico em situações que possuem um certo grau de simetria, ou seja, sistemas com simetria planar, cilíndrica ou esférica. Na tabela 1 está descrito que superfície de Gauss deve se usar para resolver cada problema. Simetria Sistema Superfície de Gauss Cilíndrica Fio infinito Cilindro coaxial Planar Plano infinito Paralelepípedo Esférica Esfera, casca esférica Esfera concêntrica Tabela 1: Superficies de Gauss necessárias em diferentes problemas. Os passos seguintes podem ser úteis ao aplicar a lei de Gauss: 1. Identifique a simetria associada a distribuição de carga. 2. Determine a direção do campo elétrico e a superfície de Gauss na qual a magnitude do campo elétrico é constante nas suas diferentes regiões. 3. Divida o espaço em diferentes regiões associadas a diferentes distribuições de carga. Para cada região calcule a carga interna a superfície de Gauss, Q int. 4. Calcule o fluxo elétrico Φ e através da superfície de Gauss de cada região. 5. Iguale Φ e com Q int/ɛ 0 e deduza a expressão para o campo elétrico. 3 Questões conceituais 1. Se o campo elétrico em uma região do espaço é nulo, isso implica que não há carga elétrica nessa região? 2. Considere o campo elétrico devido a um plano infinito não-condutor com densidade uniforme de carga. Porque o campo elétrico não depende da distância ao plano? 3. Se colocarmos uma carga pontual dentro de um cano condutor, como é o campo elétrico fora do cano? 2

3 4 Problemas 4.1 Cálculo de fluxos Nesta seção, os problemas tem como objetivo avaliar a integral E d A em situações onde não há simetria. Ou seja, onde a integral de fato tem que ser calculada. Caso precise, refira a tabela 1 da primeira lista para saber como escrever os elementos de área em diferentes sistemas de coordenada Fluxo sobre uma superfície lisa Considere uma superfície circular de raio R paralela ao plano xz e submetida a uma região do espaço onde há um campo elétrico constante E = E 0 ĵ. (a) Calcule o fluxo elétrico através dessa superfície. (b) Suponha agora que a superfície comece a girar sobre o seu eixo com velocidade angular ω. Calcule o fluxo elétrico em função do tempo. (c) Grafique o seu resultado Fluxo elétrico através de uma superfície quadrada (a) Calcule o fluxo elétrico de uma carga pontual Q através de uma superfície quadrada de lado 2l localizada no plano x-z a uma distância l da origem como mostra a figura 1. Caso necessário, use que dx (x 2 + a 2 ) x 2 + b = 1 2 a (b 2 a 2 )x b 2 a 2 tan 1 a 2 x 2 + b 2 Figura 1: Fluxo através de uma superfície quadrada. (b) Usando o resultado do item anterior, calcule o fluxo elétrico devido a carga Q através de um cubo como o da figura 2. 3

4 Figura 2: Fluxo através de um cubo. 4.2 Princípios gerais da lei de Gauss Esta seção tem como objetivo investigar propriedades gerais da lei de Gauss Informações sobre o sistema (a) Quais informações, além da referente à carga no interior de uma superfície fechada, são necessárias para calcular o campo elétrico usando a lei de Gauss? (b) O campo elétrico da expressão da lei de Gauss é o campo elétrico apenas das cargas que estão dentro da superfície de Gauss ou é o campo elétrico de todas as cargas presentes numa distribuição? Fluxo elétrico Considere uma região do espaço imersa em um campo elétrico que vale E = 300N/Cî para x > 0 e E = 300N/Cî para x < 0. Um cilindro com 20cm de comprimento e 4cm de raio é posto com seu eixo sobre o eixo dos x centrado na origem do sistema de coordenadas. Ou seja, disposto entre x = 10cm e x = 10cm. (a) Qual o fluxo do campo através das bases do cilindro? (b) Qual o fluxo do campo através da superfície lateral do cilindro? (c) Qual o fluxo líquido, para fora, através do cilindro? (d) Qual a carga no interior do cilindro? Lei de Gauss para a gravitação (a) Como a lei de Newton para a gravitação tem a mesma dependência com o inverso do quadrado da distância que a lei de Coulomb, deve haver uma expressão análoga a lei de Gauss para a força gravitacional. Usando apenas argumentos de simetria entre as expressões das 4

5 duas forças, deduza que o fluxo gravitacional através de uma superfície fechada é Φ g = 4πGm int, onde m int é a massa interna a superfície. (b) A partir deste resultado, mostre que o campo gravitacional devido a uma massa puntiforme m pode ser escrito como g = Gm r 2 ˆr (c) Refaça os itens (a) e (b) de trás para frente. Ou seja, assuma que o campo gravitacional devido a uma massa pontual é g = Gm ˆr e r 2 calcule o fluxo gravitacional através de uma casca esférica de raio r Campo elétrico constante Considere uma região do espaço com campo elétrico uniforme E. Mostre que não há carga elétrica nessa região. 4.3 Distribuições esféricas de carga O objetivo das próximas três seções é calcular o campo elétrico de diferentes distribuições de carga utilizando a lei de Gauss. Refira a seção 2 para dicas de como proceder com os cálculos Campo elétrico de uma casca esférica Considere uma casca esférica de raio a carregada uniformemente com uma carga Q. Calcule o campo elétrico em todo o espaço. Grafique o seu resultado Campo elétrico de uma esfera maciça (a) Considere uma esfera condutora de raio a e carregada com uma densidade de carga Q. Calcule o campo elétrico em todo o espaço. Grafique o seu resultado. (b) Considere agora o caso em que a esfera é isolante e a carga Q está distribuída uniformemente. Calcule o campo elétrico em todo o espaço. Grafique o seu resultado. (c) Explique porque o campo elétrico dentro da esfera isolante (item (b)) cresce com a distância ao invés de cair com o inverso do seu quadrado. 5

6 4.3.3 Campo elétrico de uma esfera com densidade não constante. Considere uma esfera maciça e isolante de raio a. Para as densidades volumétricas ρ abaixo, calcule a carga total da esfera e o campo elétrico em todo o espaço. Lembre-se que o campo fora de uma esfera tem a mesma forma da lei de Coulomb para uma carga pontual. (a) ρ = αr (b) ρ = β /r (c) ρ = γ /r Cascas esféricas Considere uma casca esférica de raio interno a e raio externo b. (a) Suponha que a casca está uniformemente carregada com densidade constante ρ. Avalie o campo elétrico para r < a, a < r < b e r > b. (b) Verifique o limite e a 0 e compare com os problemas e 4.3.2(b). (c) Considere agora o caso onde ρ(r) = β /r. Avalie o campo elétrico em todo o espaço. (d) Finalmente, para a mesma distribuição do item (c), considere que no centro da casca esférico é posta uma carga pontual q. Usando o princípio da superposição, calcule o campo em todo o espaço Esfera com cavidade Considere uma esfera isolante de raio 2R carregada com uma densidade volumétrica de carga ρ. Uma cavidade esférica de raio R é feita na esfera como mostra a figura 3. Calcule o campo elétrico em um ponto sobre o eixo Oy, dentro da cavidade. Sugestão: use o princípio da superposição. 4.4 Distribuições planas de carga Plano infinito (a) Considere um plano infinito carregado com densidade superficial de carga σ constante. Calcule o campo elétrico em todo o espaço. (b) Vimos em sala de aula que um disco circular de raio R produz, a uma distância z do seu eixo de simetria, um campo elétrico E = σ 2ɛ 0 ( 1 6 z z 2 + R 2 ) ˆk

7 Figura 3: Esfera carregada com uma cavidade esférica. Estime o valor de z/r para que a razão entre o campo do disco e o campo de um plano infinito seja de 1% Dois planos infinitos paralelos Considere dois planos infinitos, não-condutores, paralelos e localizados no plano x-y separados por uma distância d. Cada plano está carregado com uma densidade de carga σ igual mas de sinais opostos como mostra a figura 4. Calcule o campo elétrico em todo o espaço. Figura 4: Dois planos não-condutores infinitos Dentro de um plano infinito Considere um pedaço de plástico, plano e infinito, que tem uma espessura d e é simetricamente colocado sobre o plano yz com d/2 de espessura em x > 0 e d/2 de espessura em x < 0. O plano é carregado com densidade constante de carga ρ. 7

8 (a) Calcule o campo elétrico a uma distância x do plano quando x < d/2. (b) Calcule o campo elétrico a uma distância x do plano quando x > d/2. Sugestão: coloque uma parte da sua superfície de Gauss onde o campo elétrico é nulo. 4.5 Distribuições cilíndricas de carga Fio infinito Considere um fio infinito carregado com uma densidade linear de carga λ constante. Calcule o campo elétrico em todo o espaço. Compare com os resultados obtidos utilizando a lei de Coulomb (obtidos em sala de aula). Grafique o resultado Casca cilíndrica Considere uma casca cilíndrica infinitamente longa carregada com uma densidade superficial de carga σ. Avalie a o campo elétrico em todo o espaço e grafique o seu resultado Cilindro maciço (a) Considere um cilindro maciço, infinito, isolante, de raio b e carregado com uma densidade volumétrica de carga ρ. Calcule o campo elétrico em todo o espaço. (b) Considere agora que, ao invés de maciço, o cilindro tenha raio interno a e raio externo b mas com a mesma densidade, ρ. Calcule o campo elétrico em todo o espaço. (c) Analise o limite a 0. (d) Considere agora que um fio infinito de densidade linear de carga λ é posto concentricamente a a casca cilíndrica. Estime o campo elétrico em todo o espaço Cilindro com cavidade não simetrica Um cilindro maciço, infinito e de raio 2R é carregado com uma densidade volumétrica de carga ρ constante. Uma cavidade cilíndrica de raio R é feita nele de tal forma que a vista lateral se assemelha a figura 3 1. Calcule o campo elétrico dentro da cavidade cilíndrica sobre o eixo Oy. 1 Cuidado! Esta figura pode ser usada tanto para a esfera com cavidade quanto para o cilindro. 8

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

Lei de Gauss Φ = A (1) E da = q int

Lei de Gauss Φ = A (1) E da = q int Lei de Gauss Lei de Gauss: A lei de Gauss nos diz que o fluxo total do campo elétrico através de uma superfície fechada A é proporcional à carga elétrica contida no interior do volume delimitado por essa

Leia mais

Cap. 2 - Lei de Gauss

Cap. 2 - Lei de Gauss Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 2 - Lei de Gauss Prof. Elvis Soares Nesse capítulo, descreveremos a Lei de Gauss e um procedimento alternativo para cálculo

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa

Leia mais

Primeira Lista - lei de Coulomb

Primeira Lista - lei de Coulomb Primeira Lista - lei de Coulomb FGE211 - Física III 1 Sumário A força elétrica que uma carga q 1 exerce sobre uma carga q 2 é dada pela lei de Coulomb: onde q 1 q 2 F 12 = k e r 2 ˆr = 1 q 1 q 2 4πɛ 0

Leia mais

Quarta Lista - Capacitores e Dielétricos

Quarta Lista - Capacitores e Dielétricos Quarta Lista - Capacitores e Dielétricos FGE211 - Física III Sumário Um capacitor é um dispositivo que armazena carga elétrica e, consequentemente, energia potencial eletrostática. A capacitância C de

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores

ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores Data para entrega: 19 de abril 1. Distribuições não uniformes de carga Considere o problema da figura abaixo,

Leia mais

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova PUC-RIO CB-CTC FIS5 P DE ELETROMAGNETISMO 8.4. segunda-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da

Leia mais

Capítulo 23: Lei de Gauss

Capítulo 23: Lei de Gauss Capítulo 23: Lei de Gauss O Fluxo de um Campo Elétrico A Lei de Gauss A Lei de Gauss e a Lei de Coulomb Um Condutor Carregado A Lei de Gauss: Simetria Cilíndrica A Lei de Gauss: Simetria Plana A Lei de

Leia mais

Sétima Lista - Lei de Faraday

Sétima Lista - Lei de Faraday Sétima Lista - Lei de Faraday FGE211 - Física III Sumário O fluxo magnético através de uma superfície S é definido como Φ B = B da A Lei da Indução de Faraday afirma que a força eletromotriz (fem) induzida

Leia mais

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016 Lei de Gauss Ignez Caracelli ignez@ufscar.br Quem foi Gauss? Um dos maiores matemáticos de todos os tempos Um professor mandou ue somassem todos os números de um a cem. Para sua surpresa, em poucos instantes

Leia mais

1 a PROVA Gabarito. Solução:

1 a PROVA Gabarito. Solução: INSTITUTO DE FÍSICA DA UFBA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO DISCIPLINA: FÍSICA GERAL E EXPERIMENTAL III FIS 123) TURMA: T02 SEMESTRE: 2 o /2012 1 a PROVA Gabarito 1. Três partículas carregadas

Leia mais

Física III Escola Politécnica GABARITO DA P1 12 de abril de 2012

Física III Escola Politécnica GABARITO DA P1 12 de abril de 2012 Física III - 4320301 Escola Politécnica - 2012 GABARITO DA P1 12 de abril de 2012 Questão 1 Uma distribuição de cargas com densidade linear constante λ > 0 está localizada ao longo do eio no intervalo

Leia mais

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA Enunciado: É dado um condutor de formato esférico e com cavidade (interna) esférica, inicialmente neutra (considere que esse condutor tenha espessura não-desprezível).

Leia mais

Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica LEI DE GAUSS

Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica LEI DE GAUSS Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica mehl@ufpr.br LEI DE GAUSS Lei de Gauss AGENDA Revisão: Produto escalar Quem foi Gauss? Lei de Gauss Analogia

Leia mais

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Eletrostática Antonio Carlos Siqueira de Lima Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Agosto 2008 1 Campo Elétrico Campo Elétrico Devido a Distribuições

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges A lei de Gauss Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Fluxo de um campo

Leia mais

LISTA COMPLETA PROVA 01

LISTA COMPLETA PROVA 01 LISTA COMPLETA PROVA 1 CAPÍTULO 3 5E. Duas partículas igualmente carregadas, mantidas a uma distância de 3, x 1 3 m uma da outra, são largadas a partir do repouso. O módulo da aceleração inicial da primeira

Leia mais

Exercício 3) A formação de cargas elétrica em objetos quotidianos é mais comum em dias secos ou úmidos? Justifique a sua resposta.

Exercício 3) A formação de cargas elétrica em objetos quotidianos é mais comum em dias secos ou úmidos? Justifique a sua resposta. Exercícios Parte teórica Exercício 1) Uma esfera carregada, chamada A, com uma carga 1q, toca sequencialmente em outras 4 esferas (B, C, D e E) carregadas conforme a figura abaixo. Qual será a carga final

Leia mais

Energia. 5.2 Equações de Laplace e Poisson

Energia. 5.2 Equações de Laplace e Poisson Capítulo 5 Equações da Eletrostática e Energia 5.1 Introdução Neste momento, já foram vistas praticamente todas as equações e fórmulas referentes à eletrostática. Dessa forma, nesse capítulo estudaremos

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercícios 4 Potencial Elétrico Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. Boa parte do material dos anéis de Saturno está na forma de pequenos grãos de

Leia mais

Lei de Gauss. Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss.

Lei de Gauss. Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss. Lei de Gauss Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss. Sobre a Apresentação Todas as gravuras, senão a maioria, são dos livros:

Leia mais

Fluxo de um campo vetorial e a Lei de Gauss

Fluxo de um campo vetorial e a Lei de Gauss Fluxo de um campo vetorial e a Lei de Gauss Bibliografia e figuras: Sears & Zemanski, 12a ed. cap 22 Nesta aula vamos aprender a: determinar a quantidade de carga no interior de uma superfície fechada

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Campo Elétrico 2 Objetivos:

Campo Elétrico 2 Objetivos: Campo Elétrico 2 Objetivos: Apresentar a discretização do espaço para a resolução de problemas em coordenadas: Cartesianas; Polar; Aplicar a discretização do espaço para resolução de problemas de campo

Leia mais

1 f =10 15.) q 1. σ 1. q i. ρ = q 1. 4πa 3 = 4πr 3 q i = q 1 ( r a )3 V 1 = V 2. 4πr 2 E = q 1. q = 1 3, q 2. q = 2 3 E = = q 1/4πR 2

1 f =10 15.) q 1. σ 1. q i. ρ = q 1. 4πa 3 = 4πr 3 q i = q 1 ( r a )3 V 1 = V 2. 4πr 2 E = q 1. q = 1 3, q 2. q = 2 3 E = = q 1/4πR 2 1 possui uma carga uniforme q 1 =+5, 00 fc e a casca Instituto de Física - UFF Física Geral e Experimental I/XVIII Prof. Hisataki Shigueoka http://profs.if.uff.br/ hisa possui uma carga q = q 1. Determine

Leia mais

Aula de Física II - Cargas Elétricas: Força Elétrica

Aula de Física II - Cargas Elétricas: Força Elétrica Prof.: Leandro Aguiar Fernandes (lafernandes@iprj.uerj.br) Universidade do Estado do Rio de Janeiro Instituto Politécnico - IPRJ/UERJ Departamento de Engenharia Mecânica e Energia Graduação em Engenharia

Leia mais

Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss

Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss Eletricidade e Magnetismo Fluxo Elétrico Lei De Gauss 1. A figura seguinte mostra uma seção de uma barra cilíndrica de plástico infinitamente longo, com uma densidade linear de carga positiva uniforme.

Leia mais

Força elétrica e Campo Elétrico

Força elétrica e Campo Elétrico Força elétrica e Campo Elétrico 1 Antes de Física III, um pouco de Física I... Massas e Campo Gravitacional 2 Força Gravitacional: Força radial agindo entre duas massas, m 1 e m 2. : vetor unitário (versor)

Leia mais

Aula 3: A Lei de Gauss

Aula 3: A Lei de Gauss Aula 3: A Lei de Gauss Curso de Física Geral F-38 1º semestre, 13 F38 113 1 Fluxo de um campo vetorial Definição: = v ( r ) nˆ da v ( da ds A nˆ dv ds = ; dv= Ads = A = Av dt dt tˆ nˆ v A v v v // v da=

Leia mais

Energia potencial elétrica

Energia potencial elétrica Energia potencial elétrica Foi descoberto empiricamente que a força elétrica é uma força conservativa, portanto é possível associar a ela uma energia potencial. Quando uma força eletrostática age sobre

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

Aluno: Assinatura: DRE: Professor: Turma: Seção Nota original Iniciais Nota de revisão

Aluno: Assinatura: DRE: Professor: Turma: Seção Nota original Iniciais Nota de revisão Universidade Federal do Rio de Janeiro Instituto de Física Física III 010/ Primeira Prova (P1) 1/10/010 Versão: A Aluno: Assinatura: DRE: Professor: Turma: Seção Nota original Iniciais Nota de revisão

Leia mais

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III Eercícios teórico-práticos FILIPE SANTOS MOREIRA Física 3 (EQ) Eercícios TP Índice Índice i Derivadas e integrais

Leia mais

Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais

Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais Capítulo 6 Condutores 6.1 Breve Introdução Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais elétrons por

Leia mais

Cap. 4 - Capacitância e Dielétricos

Cap. 4 - Capacitância e Dielétricos Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 4 - Capacitância e Dielétricos Prof. Elvis Soares Nesse capítulo, estudaremos o conceito de capacitância, aplicações de

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA Disciplina: Física Básica III Prof. Dr. Robert R.

Leia mais

Aula 3 Campo Elétrico

Aula 3 Campo Elétrico Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 4-, 4-, 4-8 S. -6, -8, 4-7 T. 18-4, 18-5 Aula Campo

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Segunda aula de Fundamentos de Eletromagnetismo

Segunda aula de Fundamentos de Eletromagnetismo Segunda aula de Fundamentos de Eletromagnetismo Prof. Vicente Barros 1- Revisão de vetores. 2- Revisão sobre carga elétrica. 3- Revisão condutores e isolantes 4- Revisão sobre Lei de Coulomb. Revisão de

Leia mais

LISTA ELETROSTÁTICA. Prof: Werlley toledo

LISTA ELETROSTÁTICA. Prof: Werlley toledo LISTA ELETROSTÁTICA Prof: Werlley toledo 01 - (UEPG PR) Uma pequena esfera com carga q é colocada em uma região do espaço onde há um campo elétrico. Sobre esse evento físico, assinale o que for correto.

Leia mais

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora, esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,

Leia mais

Capacitância e Dielétricos

Capacitância e Dielétricos Capacitância e Dielétricos 1 Um capacitor é um sistema constituído por dois condutores separados por um isolante (ou imersos no vácuo). Placas condutoras Carga elétrica Isolante (ou vácuo) Símbolos Em

Leia mais

Lista de Exercícios 3 Corrente elétrica e campo magnético

Lista de Exercícios 3 Corrente elétrica e campo magnético Lista de Exercícios 3 Corrente elétrica e campo magnético Exercícios Sugeridos (16/04/2007) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2i 4j + k) m/s

Leia mais

FIS1053 Projeto de Apoio Eletromagnetismo-25-Abril-2014 Lista de Problemas 8 Ampère.

FIS1053 Projeto de Apoio Eletromagnetismo-25-Abril-2014 Lista de Problemas 8 Ampère. FIS1053 Projeto de Apoio Eletromagnetismo-5-Abril-014 Lista de Problemas 8 Ampère. 1ª Questão A figura mostra o corte transversal de um cabo coaxial, constituído por um fio retilíneo central de raio a

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia e Potencial Elétrico (Capítulo 4 - Páginas 75 a 84no livro texto) Energia despendida no movimento de uma carga imersa num campo Elétrico. Diferença de potencial e potencial.

Leia mais

Capítulo 21: Cargas Elétricas

Capítulo 21: Cargas Elétricas 1 Carga Elétrica Capítulo 21: Cargas Elétricas Carga Elétrica: propriedade intrínseca das partículas fundamentais que compõem a matéria. As cargas elétricas podem ser positivas ou negativas. Corpos que

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges O campo elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Campo elétrico

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges O campo elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php Campo

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I I 43070 Eletricidade e Magnetismo I Carga elétrica A matéria comum, que estamos acostumados a tratar, é formada por partículas. Átomos, moléculas e estruturas mais sofisticadas são conglomerados estados

Leia mais

Exercícios com Gabarito de Física Superfícies Equipotenciais e Linhas de Força

Exercícios com Gabarito de Física Superfícies Equipotenciais e Linhas de Força Exercícios com Gabarito de Física Superfícies Equipotenciais e Linhas de Força 1) (Faap-1996) A figura mostra, em corte longitudinal, um objeto metálico oco, eletricamente carregado. Em qual das regiões

Leia mais

Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua.

Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua. Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua. Por exemplo, a força gravitacional está relacionada a um campo gravitacional,

Leia mais

Data e horário da realização: 19/05/2016 das 14 às 17 horas

Data e horário da realização: 19/05/2016 das 14 às 17 horas re UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE DEPARTAMENTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA Exame de Seleção para o curso de mestrado em Física - 2016-1/2 Data e horário da realização:

Leia mais

3.1 A lei de Gauss e alguns aspectos conceituais importantes

3.1 A lei de Gauss e alguns aspectos conceituais importantes Capítulo 3 A lei de Gauss Em princípio, com o que aprendemos no capítulo anterior, i.e, como obter o campo eletrostático gerado por uma distribuição contínua de cargas, está terminada a tarefa de obter

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz!

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO - ELETROSTÁTICA DISCIPLINA: FÍSICA ASSUNTO: CAMPO ELÉTRICO, POTENCIAL ELÉTRICO,

Leia mais

Eletromagnetismo I - Eletrostática

Eletromagnetismo I - Eletrostática - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico Campos conservativos

Leia mais

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova.

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Problema Licenciatura em Engenharia e Arquitetura Naval Mestrado Integrado

Leia mais

Lista 10: Dinâmica das Rotações NOME:

Lista 10: Dinâmica das Rotações NOME: Lista 10: Dinâmica das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

Lista de Exercícios 7 Lei de Ampère

Lista de Exercícios 7 Lei de Ampère Lista de Exercícios 7 Lei de Ampère E8.1 Exercícios E8.1 Um fio de material supercondutor de raio igual a 10 µm transporta uma corrente de 100 A. Calcule o campo magnético na superfície do fio. R.,0 T.

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Campo Elétrico [N/C] Campo produzido por uma carga pontual

Campo Elétrico [N/C] Campo produzido por uma carga pontual Campo Elétrico Ao tentar explicar, ou entender, a interação elétrica entre duas cargas elétricas, que se manifesta através da força elétrica de atração ou repulsão, foi criado o conceito de campo elétrico,

Leia mais

Electromagnetismo e Óptica. Terça, 30 de Setembro, 2014 LEAN/MEAer

Electromagnetismo e Óptica. Terça, 30 de Setembro, 2014 LEAN/MEAer Electromagnetismo e Óptica Terça, 30 de Setembro, 2014 LEAN/MEAer 2 Aula-5_print.nb Determinação do campo eletrostático a partir do cálculo do potencial ϕ. Potencial de uma distribuição de cargas. Para

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES 73 11 FORÇA MAGNÉTCA SOBRE CONDUTORES 11.1 - EFETO DE UM ÍMÃ EM UM FO CONDUZNDO CORRENTE Considere o campo magnético uniforme entre os pólos de um imã permanente, como pode ser visto na figura 11.1. N

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017

Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017 Física 3 - EMB5031 Prof. Diego Duarte Indução e Indutância (lista 10) 12 de junho de 2017 1. Na figura 1, uma semicircunferência de fio de raio a = 2,00 cm gira com uma velocidade angular constante de

Leia mais

7. Potencial eletrostático

7. Potencial eletrostático 7. Potencial eletrostático Em 1989 Wolfgang Paul recebeu o prémio Nobel da física pela sua invenção da armadilha de iões que permite isolar um ião. Com essa invenção tornou-se possível estudar um átomo

Leia mais

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das

Instituto de Física - UFF Profissional - 11 de Dezembro de 2009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das Exame de Ingresso na Pós-graduação Instituto de Física - UFF Profissional - 11 de Dezembro de 009 Resolva 6 (seis) questões, com pelo menos uma questão de cada uma das seções. A duração da prova é de 3

Leia mais

Aprimorando os Conhecimentos de Eletricidade Lista 3 Campo Elétrico Linhas de Força Campo Elétrico de uma Esfera Condutora

Aprimorando os Conhecimentos de Eletricidade Lista 3 Campo Elétrico Linhas de Força Campo Elétrico de uma Esfera Condutora Aprimorando os Conhecimentos de letricidade Lista 3 Campo létrico Linhas de Força Campo létrico de uma sfera Condutora 1. (UFRS-004) Duas cargas elétricas, A e B, sendo A de C e B de 4C, encontram-se em

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

CAMPO ELÉTRICO I) RESUMO DO ESTUDO DE CAMPO ELÉTRICO Cargas elétricas em repouso criam nas suas proximidades campos eletrostáticos. Cada carga cria em particular um campo elétrico em determinado ponto.

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Lista de Exercícios. Campo Magnético e Força Magnética

Lista de Exercícios. Campo Magnético e Força Magnética Lista de Exercícios Campo Magnético e Força Magnética 1. Um fio retilíneo e longo é percorrido por uma corrente contínua i = 2 A, no sentido indicado pela figura. Determine os campos magnéticos B P e B

Leia mais

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Aula 4_1 Capacitores Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Capacitores Definição da Capacitância: capacitor e sua capacitância Carga de um capacitor Exemplos de Cálculo da Capacitância

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo

Leia mais

Lista de exercícios 8 Campos magnéticos produzidos por corrente

Lista de exercícios 8 Campos magnéticos produzidos por corrente Lista de exercícios 8 Campos magnéticos produzidos por corrente 1. Em um certo local das Filipinas o campo magnético da Terra tem um modulo de 39 µt, é horizontal e aponta exatamente para o norte. Suponha

Leia mais

Aula 2 Lei de Coulomb

Aula 2 Lei de Coulomb Aula Lei de Coulomb Introdução Vimos na aula anterior que corpos carregados com carga sofrem interação mutua podendo ser atraídos ou repelidos entre si. Nessa aula e na próxima trataremos esses corpos

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:40. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:40. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Eletromagnetismo I - Eletrostática Forças Magnéticas (Capítulo 8 Páginas 230 a 238) Força sobre uma carga em

Leia mais

Campo Elétrico. Campo elétrico de uma carga puntiforme: O campo elétrico em cargas com dimensões desprezíveis em relação à distância.

Campo Elétrico. Campo elétrico de uma carga puntiforme: O campo elétrico em cargas com dimensões desprezíveis em relação à distância. Campo Elétrico Campo elétrico: O campo elétrico desempenha o papel de transmissor de interações entre cargas elétrica, ou seja, é o campo estabelecido em todos os pontos do espaço sob a influência de uma

Leia mais

25-1 Capacitância. Figura 25-1 Vários tipos de capacitores. Fonte: PLT 709. Me. Leandro B. Holanda,

25-1 Capacitância. Figura 25-1 Vários tipos de capacitores. Fonte: PLT 709. Me. Leandro B. Holanda, 25-1 Capacitância Capacitor é um dispositivo usado para armazenar energia elétrica. As pilhas de uma máquina fotográfica, por exemplo, armazenam a energia necessária para disparar um flash, carregando

Leia mais

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Prof. Dr. Vicente Barros 5- O campo elétrico 6- Comportamento de uma carga pontual e um dipolo. 7- Lei de Gauss elétrica Antes de mais nada Vamos testar

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges Carga elétrica e a lei de Coulomb Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php

Leia mais

FÍSICA - 2 o ANO MÓDULO 13 ELETROSTÁTICA: CAMPO ELÉTRICO UNIFORME

FÍSICA - 2 o ANO MÓDULO 13 ELETROSTÁTICA: CAMPO ELÉTRICO UNIFORME FÍSICA - 2 o ANO MÓDULO 13 ELETROSTÁTICA: CAMPO ELÉTRICO UNIFORME ++ + ++++++++ + + + + + +++ - - - - - - - - - - - - - - - - - - - + + + + + A F B E - - - - - V A V B d P 2 { 1,0 cm + 10 cm P 1 { 1,0

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professores: Edson Vaz e Renato Medeiros ELETRICIDADE E MAGNETISMO NOTA DE AULA I Goiânia - 14 ELETROMAGNETISMO CARGA ELÉTRICA

Leia mais

FIS-26 Resolução Lista-11 Lucas Galembeck

FIS-26 Resolução Lista-11 Lucas Galembeck FIS-6 Resolução Lista-11 Lucas Galembeck 1. Dentro de uma esfera de raio R e de densidade ρ existe uma cavidade esférica de raio a a < R. A distncia entre os centros O e O da esfera e da cavidade é d,

Leia mais

Aula 21 - Lei de Biot e Savart

Aula 21 - Lei de Biot e Savart Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 1-, 1-7 S. 9-, 9-, 9-4, 9-6 T. 5- Aula 1 - Lei de Biot

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais

Campos Magnéticos Produzidos por Correntes

Campos Magnéticos Produzidos por Correntes Cap. 29 Campos Magnéticos Produzidos por Correntes Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Campos Magnéticos Produzidos por Correntes 1 Campos Magnéticos Produzidos por Correntes Campos

Leia mais

Prova P1 Física para Engenharia II, turma set. 2014

Prova P1 Física para Engenharia II, turma set. 2014 Exercício 1 Um ventilador, cujo momento de inércia é 0,4 kg m 2, opera em 600 rpm (rotações por minuto). Ao ser desligado, sua velocidade angular diminui uniformemente até 300 rpm em 2 s, e continua assim

Leia mais

Interferência de ondas: está relacionada com a diferença de fase entre as ondas. A diferença de fase entre duas ondas pode mudar!!!!

Interferência de ondas: está relacionada com a diferença de fase entre as ondas. A diferença de fase entre duas ondas pode mudar!!!! Interferência de ondas: está relacionada com a diferença de fase entre as ondas. Construtiva: em fase Destrutiva: fora de fase A diferença de fase entre duas ondas pode mudar!!!! Coerência: para que duas

Leia mais

Quantização da carga. todos os objectos directamente observados na natureza possuem cargas que são múltiplos inteiros da carga do eletrão

Quantização da carga. todos os objectos directamente observados na natureza possuem cargas que são múltiplos inteiros da carga do eletrão Eletricidade Quantização da carga todos os objectos directamente observados na natureza possuem cargas que são múltiplos inteiros da carga do eletrão a unidade de carga C, é o coulomb A Lei de Coulomb

Leia mais

Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância.

Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância. apacitância Dois condutores (chamados de armaduras) carregados formam um capacitor ue, uando carregado, faz com ue os condutores tenham cargas iguais em módulo e sinais contrários. Q e V são proporcionais

Leia mais

Lista de Exercícios de Potencial Elétrico

Lista de Exercícios de Potencial Elétrico Disciplina: Física 3 Professor: Joniel Alves Lista de Exercícios de Potencial Elétrico 1) Um elétron se move de um ponto i para um ponto f, na direção de um campo elétrico uniforme. Durante este deslocamento

Leia mais

Física III Escola Politécnica GABARITO DA PS 2 de julho de 2014

Física III Escola Politécnica GABARITO DA PS 2 de julho de 2014 Física III - 43231 Escola Politécnica - 214 GABAITO DA PS 2 de julho de 214 Questão 1 Um anel circular de raio a possui carga elétrica positiva uniformemente distribuída com densidade linear λ >. z P a

Leia mais

25 Problemas de Óptica

25 Problemas de Óptica 25 Problemas de Óptica Escola Olímpica - Gabriel Lefundes 25 de julho de 2015 Problema 1. O ângulo de deflexão mínimo um certo prisma de vidro é igual ao seu ângulo de refração. Encontre-os. Dado: n vidro

Leia mais

Primeira Prova 2. semestre de /10/2013 TURMA PROF.

Primeira Prova 2. semestre de /10/2013 TURMA PROF. D Física Teórica II Primeira Prova 2. semestre de 2013 19/10/2013 ALUNO TURMA PROF. ATENÇÃO LEIA ANTES DE FAZER A PROVA 1 Assine todas as folhas das questões antes de começar a prova. 2 - Os professores

Leia mais