Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Tamanho: px
Começar a partir da página:

Download "Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015"

Transcrição

1 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5

2 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d Frsnl quação d propagação paraial mplos d volução paraial d ondas aproimação d Fraunhofr difracção através d fndas Fourir

3 Transformada d Fourir spacial D Faculdad d Engnharia Transformada d Fourir tmporal G g t g t G t dt t d Transformada d Fourir spacial g g G G d d dcomposição m sinais com difrnts frquências dcomposição m sinais com difrnts componnts do númro d onda sgundo Fourir

4 Transformada d Fourir spacial onda no plano Faculdad d Engnharia Considrmos uma onda qu s propaga no plano cuo campo léctrico é dfinido plo fasor: E pˆ vrsor qu indica polariação amplitud compla (inclui fas adquirida durant propagação) Para um dado sta amplitud compla pod sr dscrita à custa d uma transformada d Fourir unidimnsional: d d F - F Fourir

5 Transformada d Fourir spacial mplos Faculdad d Engnharia Emplo onda plana com amplitud unitária qu s propaga sgundo +: d d d F d Fourir

6 Transformada d Fourir spacial mplos Faculdad d Engnharia Emplo d d d d onda plana com amplitud unitária qu s propaga sgundo: uˆ uˆ aˆ n no caso gral sin aˆ n Fourir

7 Espctro angular Faculdad d Engnharia d d a transformada d Fourir spacial corrspond à dcomposição m ondas planas d difrnts dircçõs amplituds sin sin é também conhcido como spctro angular Fourir

8 Faculdad d Engnharia Fourir Propagação d onda EM m mio LHI d d Dsprando fitos associados à polariação a propagação d uma onda EM num mio LHI sm fonts é govrnada pla quação d Hlmholt scalar: ond F F F no domínio d Fourir:

9 Função d transfrência associada à propagação Faculdad d Engnharia método da sparação das variávis: F G d d solução não trivial : d G G d G B F B para propagação sgundo +: Fourir

10 Função d transfrência associada à propagação Faculdad d Engnharia d d transformada após distância função d transfrência da propagação transformada m = H propagação ao longo d distância H H Fourir

11 Campo após propagação Faculdad d Engnharia H H d d d H d ' ' d' H d ' ' H dd' H ' ' d d' Fourir

12 Função d transfrência associada à propagação Faculdad d Engnharia H H Notas:. H dpnd do mio da frquência da onda através d da distância. s ral onda m propagação s imaginário onda vanscnt amplitud dcrsc ponncialmnt com ncssário considrar apnas os tais qu para suficintmnt lvados Fourir

13 proimação d Frsnl Faculdad d Engnharia dmitamos qu aproimação d Frsnl d d H H FRESNEL Nota: considram-s apnas as ondas planas com componnts sgundo do vctor d onda muito mnors do qu pqunos ângulos aproimação d Frsnl é também conhcida como aproimação paraial Fourir

14 proimação d Frsnl Faculdad d Engnharia ' ' H H FRESNEL d d' d d ' ' d d' a b d a b p 4a ' d' ' a rsposta impulsional associada à propagação paraial é h Fourir

15 Rlação ntr aproimação d Frsnl quação paraial Faculdad d Engnharia ' d' u( ) ' ond u ' ' d' satisfa a quação: d d u u quação d onda paraial NOT Substituindo ( ) u( ) na quação d Hlmholt scalar rsulta na quação: ( ) u u u quação paraial rsulta d considrar u u u() varia lntamnt ao longo d distâncias da ordm d Fourir

16 Emplos da volução paraial d algumas ondas Faculdad d Engnharia óptica d Fourir prmit studar facilmnt a volução linar d fis ópticos. Emplos ondas gaussianas: w -(/w) fi d lasr tm frquntmnt prfil gaussiano d H FRESNEL d H... ondas d iry: /w i.5 i () ondas qu s propagam sgundo tractória parabólica sm altrar a forma (ondas d nrgia infinita) Fourir

17 Evolução paraial da onda gaussiana D Faculdad d Engnharia w distância? H. spctro inicial d w d w w 4 d H FRESNEL d H. spctro final H w w 4. nvlop complo final d w w 4 d w w w Fourir

18 Evolução paraial da onda gaussiana D Faculdad d Engnharia w w w d d dfinindo w R w w R R R H H FRESNEL w tan w R R w w w w onda mantém forma gaussiana mas com largura amplitud variávis Fourir

19 Evolução paraial da onda gaussiana D Faculdad d Engnharia w w w onda mantém forma gaussiana com largura amplitud variávis w R w w R Nota w w d w w constant!! consrvação d nrgia Fourir

20 Evolução paraial da onda gaussiana D Faculdad d Engnharia w w R R w 5 w R w w R w w w Nota w R Para w R ângulo divrgência: w w quanto mnor mais lvado R w Fourir

21 Faculdad d Engnharia Fourir Evolução paraial da onda d iry infinita H FRESNEL d d H i? H distância i para ral: cos dt t t i. spctro inicial:. spctro final:. nvlop complo final:

22 Faculdad d Engnharia Fourir Evolução paraial da onda d iry infinita i i prfil da onda mantéms inaltrado durant a propagação onda d iry infinita não difracta onda tm tractória parabólica tractória Estas ondas têm nrgia infinita por isso só istm na toria Important

23 Evolução paraial da onda d iry finita Faculdad d Engnharia a i? H sa distância a ( ) a i d H FRESNEL d H i () i () * Estas ondas têm nrgia finita á foram obtidas primntalmnt Fourir

24 Faculdad d Engnharia Fourir Evolução paraial da onda d iry finita H FRESNEL d d H a i ) ( a i propridad do dslocamnto da transformada d Fourir u ) ( b u b ) ( a a a a ) ( i a a

25 Faculdad d Engnharia Fourir Evolução paraial da onda d iry finita H FRESNEL d H a a a a d ) ( d a a i a argumnto da função d iry é agora complo!

26 Faculdad d Engnharia Fourir Evolução paraial da onda d iry finita a a i a como o argumnto da função d iry é complo o prfil da onda varia durant a propagação a i a onda também é atnuada à mdida qu s propaga () = = = =

27 Evolução paraial da onda d iry finita Faculdad d Engnharia a a onda finita mantém tractória parabólica por alguma distância Fourir

28 proimação d Fraunhofr Faculdad d Engnharia dmitamos qu X ond X ma' ' ' d' X X ' ' ' d' ' ' ' d' amplitud do campo m é vrsão scalada da transformada d Fourir m = d Fourir

29 proimação d Fraunhofr difracção através d uma fnda Faculdad d Engnharia Considrmos a difracção através d uma fnda d largura X localiada m = : X X X X d d X d X d X X X X sin X 4 X sin Fourir

30 Faculdad d Engnharia Fourir proimação d Fraunhofr difracção através d uma fnda sin 4 X MX X 4 MX sin KX X KX intnsidad normaliada

31 proimação d Fraunhofr difracção através d uma fnda Faculdad d Engnharia intnsidad normaliada no alvo fnda alvo X W KX X X X X W W W X Fourir

32 proimação d Fraunhofr difracção através d N fndas Faculdad d Engnharia Considrmos a difracção através d N fndas d largura X sparadas d uma distância a: d X a important: a X d N i ian a ond X X d N i a ian X a ia N X d N i ian a ian X N a sin ia N X a X i a a Na X N i N sin X sin X N sin i a a Na sin a sin Fourir

33 proimação d Fraunhofr difracção através d N fndas Faculdad d Engnharia sin X Na sin a sin d d sin 4 X sin sin Na a MX 4X N Fourir

34 proimação d Fraunhofr difracção através d N fndas Faculdad d Engnharia intnsidad normaliada MX sin X X Na sin a N sin difracção padrão d intrfrência S a 8X N 5 a Fourir

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Escoamento em Regime Turbulento Perfil de velocidade média, U

Escoamento em Regime Turbulento Perfil de velocidade média, U Prfil d vlocidad média,. Evolução linar na sub-camada linar, y < 5 y 2. Evolução smi-logarítmica na li da pard, y > 30 50, y < 0, 0,2δ ln κ ( y ) C k 0,4 C 5, 2 3. Transição contínua d para 2 ao longo

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo Anális m Frquência d Sistmas Linars Invariants no Tmpo Luís Caldas d Olivira Rsumo. Rsposta m Frquência 2. Sistmas com Função d Transfrência Racional 3. Sistmas d Fas Mínima 4. Sistmas d Fas Linar Gnralizada

Leia mais

Ondas Electromagnéticas

Ondas Electromagnéticas Faculdad d ngnhaia Ondas lctomagnéticas Op - MIB 7/8 Pogama d Óptica lctomagntismo Faculdad d ngnhaia Anális Vctoial (visão) aulas lctostática Magntostática 8 aulas Ondas lctomagnéticas 6 aulas Óptica

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

Capítulo 15. Oscilações

Capítulo 15. Oscilações Capítulo 5 Oscilaçõs O Movinto Harônico Sipls MHS O Sista Massa-Mola Enrgia no Movinto Harônico Sipls O Pêndulo Sipls O Pndulo Físico O Monto d nércia O tora dos Eios Parallos O Movinto Circular Unifor

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

2.2 Transformada de Fourier e Espectro Contínuo

2.2 Transformada de Fourier e Espectro Contínuo 2.2 Transformada d Fourir Espctro Contínuo Analisam-s a sguir, sinais não priódicos, concntrados ao longo d um curto intrvalo d tmpo. Dfinição: sinal stritamnt limitado no tmpo Dado um sinal não priódico

Leia mais

Guias de ondas de seção transversal constante

Guias de ondas de seção transversal constante Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

Dualidade e Complementaridade

Dualidade e Complementaridade Dualidad Complmntaridad O concito d partícula o concito d onda provêm da intuição qu os srs umanos dsnvolvram ao longo do tmpo, pla xpriência cotidiana com o mundo dos fnômnos físicos m scala macroscópica.

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Permeabilidade e Fluxo Unidimensional em solos

Permeabilidade e Fluxo Unidimensional em solos Prmabilidad Fluxo Unidimnsional m solos GEOTECNIA II AULA 0 Prof. MSc. Douglas M. A. Bittncourt prof.douglas.pucgo@gmail.com Prmabilidad Propridad do solo qu indica a facilidad com qu um fluido podrá passar

Leia mais

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema Força cntral 3 O problma das forças cntrais TÓPICOS FUNDAMENTAIS DE FÍSICA Uma força cntralé uma força (atrativa ou rpulsiva) cuja magnitud dpnd somnt da distância rdo objto à origm é dirigida ao longo

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Controlabilidade, Observabilidade e Estabilidade

Controlabilidade, Observabilidade e Estabilidade Capítulo 2 Controlabilidad, Obsrvabilidad Estabilidad O principal objtivo dst capítulo é dfinir Controlabilidad, Obsrvabilidad Estabilidad, suas dcorrências dirtas Ests três concitos fundamntam o projto

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos. DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física RADIAÇÃO TÉRMICA DE CORPO NEGRO

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física RADIAÇÃO TÉRMICA DE CORPO NEGRO Univrsidad d São Paulo Instituto d Física d São Carlos Laboratório Avançado d Física RADIAÇÃO TÉRMICA DE CORPO NEGRO I- Objtivos Estudar a dpndência da taxa d radiação térmica, mitida por um sólido com

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,

Leia mais

Física do Estado Sólido Capítulo 8 SEMICONDUTORES

Física do Estado Sólido Capítulo 8 SEMICONDUTORES CAPÍTULO 8 SEMICONDUTORES 8.1 INTRODUÇÃO Os smicondutors constitum um dos grupos d sólidos mais important plas propridads qu aprsntam pla vrsatilidad nas aplicaçõs práticas. Comçaram a sr studados por

Leia mais

9.1 Relação entre o Ciclo de Absorção e o de Compressão de Vapor

9.1 Relação entre o Ciclo de Absorção e o de Compressão de Vapor 9.0 Rfriração por Absorção 9.1 Rlação ntr o Ciclo d Absorção o d Comprssão d Vapor O ciclo d absorção possui o vaporador, o condnsador o dispositivo d xpansão xatamnt como o ciclo d comprssão d vapor.

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução Fnômnos d adsorção m Construção modlagm d isotrmas d adsorção no quilíbrio químico Fnômnos d adsorção m Para procssos qu ocorrm no quilíbrio químico, podm-s obtr curvas d adsorção, ou isotrmas d adsorção,

Leia mais

Controle Modal e Observador de Estado - Estabilizador 1

Controle Modal e Observador de Estado - Estabilizador 1 Capítulo 3 Control Modal Obsrvador d Estado - Estabilizador 1 O principal objtivo dst capítulo é dfinir o concito d obsrvador d stado d control modal, como pré-rquisitos d projto d stabilizadors 31 Princípio

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS No capítulo qu irmos iniciar, studarmos as quaçõs difrnciais, sus aspctos, caractrísticas suas rspctivas soluçõs. Obviamnt sugrm a rsolução d algum tipo d quação nvolvndo drivadas.

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o smstr ltivo d 8 o smstr ltivo d 9 CURSO d ENGENHARIA MECÂNICA VOLTA REDONDA - Gabarito INSTRUÇÕES AO CANDIDATO Vriiqu s st cadrno contém: PROVA DE CONHECIMENTOS

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

Refletividade em Espelhos de Bragg de AlGaAsSb/AlAsSb sobre InP. Reflectivity in Bragg Mirrors of AlGaAsSb/AlAsSb on InP

Refletividade em Espelhos de Bragg de AlGaAsSb/AlAsSb sobre InP. Reflectivity in Bragg Mirrors of AlGaAsSb/AlAsSb on InP Rfltividad m splhos d Bragg d AlGaAsSb/AlAsSb sobr InP Rflctivity in Bragg Mirrors of AlGaAsSb/AlAsSb on InP Dari d Olivira Toginho Filho ; Ivan Frdrico upiano Dias ; José onil Duart ; Sidny Alvs ournço

Leia mais

Sensores do Movimento

Sensores do Movimento Snsors do Movimnto posição linar proximidad posição angular vlocidad linar angular aclração 1 Posição angular snsors analógicos potnciómtros rsolvrs/synchros transformadors linars snsors digitais codificadors

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Aula 01 Introdução e Revisão Matemática

Aula 01 Introdução e Revisão Matemática Aula 01 Introdução Rvisão Matmática Anális d Sinais Introdução Quando s fala m sinais gralmnt é associado à mdição ou ao rgisto d algum fnómno físico ou, m outras palavras, d um sistma. Portanto, sinais

Leia mais

Problemas sobre Ondas Electromagnéticas

Problemas sobre Ondas Electromagnéticas Problemas sobre Ondas Electromagnéticas Parte I ÓPTICA E ELECTROMAGNETISMO MIB Maria Inês Barbosa de Carvalho Setembro de 2007 CONCEITOS FUNDAMENTAIS PROBLEMAS PROPOSTOS 1. Determine os fasores das seguintes

Leia mais

PARTE 6 DERIVADAS PARCIAIS

PARTE 6 DERIVADAS PARCIAIS PARTE 6 DERIVADAS PARCIAIS 6.1 Introdução Vamos falar agora das drivadas parciais d uma função ral d várias variávis rais, f : Dom(f) R n R. Para simplificar, vamos comçar com uma função m R, para só dpois

Leia mais

LISTA MHS E ONDAS. FÍSICA Professor: Rodolfo DATA: / /

LISTA MHS E ONDAS. FÍSICA Professor: Rodolfo DATA: / / FÍSICA Profssor: Rodolfo DATA: / / Nívl I LISTA MHS E ONDAS 1. A tabla traz os comprimntos d onda no spctro d radiação ltromagnética, na faixa da luz visívl, associados ao spctro d cors mais frquntmnt

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

e panse c.a.s.a pós-catástrofe

e panse c.a.s.a pós-catástrofe pós-catástrof Combinaçõs d Expansão Modular Organização Dsnvolvimnto Através dos lmntos struturais qu compõm a unidad mnor dimnsão, consgu-s uma multiplicação contínua variávl nos quatro sntidos, apoiado

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

EQUILÍBRIO QUÍMICO MÓDULO III. 1. Equilíbrio Químico. 2. Equilíbrio Ácido-Base. 3. Equilíbrio de Solubilidade

EQUILÍBRIO QUÍMICO MÓDULO III. 1. Equilíbrio Químico. 2. Equilíbrio Ácido-Base. 3. Equilíbrio de Solubilidade MÓDULO III EQUILÍBRIO QUÍMICO 1. Equilíbrio Químico. Equilíbrio Ácido-Bas 3. Equilíbrio d Solubilidad Carla Padrl d Olivira, Univrsidad Abrta, 005 1 1. EQUILÍBRIO QUÍMICO OBJECTIVOS: Idntificar a trminologia

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Lista de Exercícios 4 Cálculo I

Lista de Exercícios 4 Cálculo I Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Uma Discussão Sobre o Método de Newton

Uma Discussão Sobre o Método de Newton Uma Discussão Sobr o Método d Nwton Frnando Ricardo Morira Rodrigo Couto Santos Raimundo Rodrigus Goms Filho Hldr Barbosa Paulino 4 Rsumo O Método d Nwton é usado m quas todas as áras da matmática aplicada

Leia mais

LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Internacional

LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Internacional Profa. Sílvia Miranda Data: Novmbro/2015 LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Intrnacional 1)O qu é uma Ára Montária Òtima 2) Expliqu o fito locomotiva. 3) (ANPEC, 2015) - Para avaliar as assrtivas

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Forças de van der Waals. Henrique Fleming 15 junho 2007

Forças de van der Waals. Henrique Fleming 15 junho 2007 Forças d van dr Waals Hnriqu Flming 15 junho 007 1 1 Introdução O físico holandês Johanns Didrik van dr Waals, vncdor do prêmio Nobl d Física d 1910 por su trabalho sobr a quação d stado d gass líqüidos

Leia mais

TERMODINÂMICA BÁSICA APOSTILA 02

TERMODINÂMICA BÁSICA APOSTILA 02 Engnharia Aronáutica Engnharia d Produção Mcânica Engnharia Mcatrônica 4º / 5 Smstr TERMODINÂMICA BÁSICA APOSTILA 0 Prof Danil Hass Calor Trabalho Primira Li da Trmodinâmica SÃO JOSÉ DOS CAMPOS, SP Capítulo

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri FENOMENOS DE TRANSPORTE o Smsr d 03 Prof. Maurício Fabbri 3ª SÉRIE DE EXERCÍCIOS Transpor d calor por convcção O ransin ponncial simpls Consrvação da nrgia 0-3. O coficin d ransfrência d calor Lia o marial

Leia mais

A ferramenta de planeamento multi

A ferramenta de planeamento multi A frramnta d planamnto multi mdia PLANVIEW TELEVISÃO Brv Aprsntação Softwar d planamnto qu s basia nas audiências d um príodo passado para prvr asaudiências d um príodo futuro Avrsatilidad afacilidad d

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física RADIAÇÃO TÉRMICA DE CORPO NEGRO

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física RADIAÇÃO TÉRMICA DE CORPO NEGRO Univrsidad d São Paulo Instituto d Física d São Carlos Laboratório Avançado d Física RADIAÇÃO TÉRMICA DE CORPO NEGRO I- Introdução A inabilidad da mcânica clássica m xplicar o rsultado xprimntal da distribuição

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais