Tratamento da Imagem Transformações

Tamanho: px
Começar a partir da página:

Download "Tratamento da Imagem Transformações"

Transcrição

1 Univrsidad Fdral do Rio d Janiro - IM/DCC & NCE Tratamnto da Imagm Transormaçõs Antonio G. Thomé thom@nc.urj.br Sala AEP/33

2 Tratamnto d Imagns - Sumário Dtalhado Objtivos Alguns Concitos Básicos Transormaçõs Linars Convolução Corrlação d Funçõs Transormada d Fourir Transormada Bidimnsional d Fourir Transormadas m Imagns Transormadas Gométricas Transormadas Radiométricas Transormadas Morológicas Outras Transormadas 2

3 Tratamnto da Imagm Aquisição Rprsntação Tratamnto Pré-procssamnto Sgmntação Etração d Caractrísticas Dscrição Rconhcimnto Intrprtação 3

4 Objtivo do Tratamnto da Imagm Mlhorar a qualidad da imagm no qu tang a: Rduzir o nívl d ruído Mlhorar o contrast nitidz) Rorçar o contorno dos objtos da imagm Rtirar rgiõs ou tonalidads não dsjadas Rduzir distorçõs... 4

5 Oprador Linar S G é um oprador qu transorma uma imagm m uma imagm g: G: g G é um oprador linar s: G[a + b g] ag[] + bg[g] 5

6 Convolução d Funçõs Matmaticamnt, a convolução d duas unçõs contínuas é dada por: ) g ) α ) g α ) d α Esta opração rtorna a ára da intrsção das unçõs, rsultant do dslizamnto d uma unção sobr a outra 6

7 a) Convolução - Emplo ) g ) α) g α) dα ga) /2 g-a) a g - a) a /2 /2 - a - a a) g-a) /2 a) g-a) / a - - a

8 Convolução Rsultado Final a) g-a) /2 a) g-a) /2 2 - a - - a )*g) /2 2 8

9 A Função Impulso Dlta) É por dinição uma unção qu só ist num dtrminado ponto do spaço ou do tmpo. + ) d d δ δ ) δ- ) 9

10 Convolução com a Função Impulso Dlta) ) δ ) d ) A a) ga) a a -T T a A )*g) -T -T+a a T T+a

11 Procssamnto d Imagns Procssamnto d Imagns Convolução para Funçõs Discrtas Sja: ) {), ), 2),..., A-)} / g) {g), g),..., gb-)} Corrlação assum ) g) priódicas com príodo M. M A + B - M A A ) ) M B B g g ) ) M m m g m M g ) ) ) )*

12 2 Procssamnto d Imagns Procssamnto d Imagns Convolução para Funçõs Bidimnsionais N ou B M A B A ), ), N ou D M C D C g g ), ), M m N n n m g n m MN g ), ), ), )*,

13 Corrlação d Funçõs Matmaticamnt, a corrlação d duas unçõs contínuas é dada por: ) o g ) α) g + α) dα * Esta opração rtorna a ára da intrsção das unçõs, rsultant do dslizamnto d uma unção sobr a outra sm rbatimnto. * rprsnta o complo conjugado da unção 3

14 a) Corrlação - Emplo ga) /2 a g + a) a /2 - a a) g+a) /2 - a) g+a) /2 4 - a - a

15 Corrlação - Emplo a) g+a) /2 - a) g+a) /2 - a - a ) o g) /2-5

16 6 Procssamnto d Imagns Procssamnto d Imagns Corrlação para Funçõs Discrtas Sja: ) {), ), 2),..., A-)} / g) {g), g),..., gb-)} M A A ) ) M B B g g ) ) + M m m g m M g ) ) ) )* * ) * complo conjugado d

17 7 Procssamnto d Imagns Procssamnto d Imagns Corrlação para Funçõs Bidimnsionais N ou B M A B A ), ), N ou D M C D C g g ), ), + + M m N n n m g n m MN g ), ), ), )*, *

18 Transormada d Fourir ) unção contínua d ral I{ )} F u) ond j I { F u)} ) j2πu ) F u) j2πu j2πu cos 2πu) d du jsn 2πu) 8

19 Transormada d Fourir Eist smpr qu ) or contínua intgrávl Fu) or intgrávl condiçõs quas smpr satisitas na prática). F u) R u) + ji u) Gralmnt compla 2 2 / 2 [ R u) I )] Espctro d Fourir F u) + u 9 Φ u) tan P u) F u) 2 Espctro d Potência I u) R u) Ângulo d as F u) F u) jφ u)

20 Transormada d Fourir - E.8 Função no domínio Domínio do spaço do Tmpo sn 2π); 2Hz 2

21 F) 3 Transormada d Fourir - E Espctro d Fourir

22 4 Transormada d Fourir - E Função Funcao no no Domínio dominio do do spaco Tmpo Hz Hz 5Kz sn 2π ) + sn2π 2) 2*sn2π 3 )

23 Transormada d Fourir - E 2 Espctro d Fourir 8 Importância rlativa , 5 Hz

24 Transormada d Fourir - E 24 Índic Bovspa

25 Transormada d Fourir - E Componnt DC 25 Espctro d Fourir

26 Transormada d Fourir - E Sm componnt DC 26

27 $ Transormada d Fourir - E Movimnto d Numrário 27 Valors: mínimo -59,2 médio -24,5 máimo 35,6

28 Espctro d Frqüência

29 Transormada d Fourir - E AX A ) F u) 29 F u) X A A j πu X -/X 2/X j2πu d [ j u ] X snπ ux ) 2π F u) AX 2 πux A sn πux ) πu jπux

30 Transormada Bidimnsional d Fourir,) - contínua intgrávl / Fu.v) - intgrávl I{ ond j I, )} F u, v) { F u, v)}, ), ) F u, v) j2π u+ v) j2π u+ v) dd dudv 3 2 F u, v) R u, v) + I u, v)) Espctro d Fourir 2 / 2 I u, v) Φ u, v) tan R u, v) Ângulo d Fas

31 ,) A Transormada Bidimnsional - Emplo F u, v) sn π ux ) sn πvy ) AXY πux πvy Y X 3

32 F u, v) Em nívis d intnsidad 32

33 Emplo d Transormada Bi-dimnsional,) Fu,v) 33

34 Emplo d Transormada Bi-dimnsional,) Fu,v) 34

35 Emplo d Transormada Bi-dimnsional,) Fu,v) 35

36 Transormada Discrta d Fourir ) + ),.. N ) discrtizada m : { ), + ),..., + [ N ] } ) F u) N N ) j2πu N D amostragm 36

37 Algumas Propridads d Fourir a) Sparabilidad F u, v) N N N, ) j2π v+ u) N quival a,) N-,),) N-,) Linha N Coluna,) F,v),) N-,) u Fu,v),N-),N-) v,n-) v F u, v) N N j2πv N N, ) j2πu N 37

38 A 5252 A256,:) sn2π) 2Hz A

39 Espctro d Fourir - Au,v) Au,v) t2a) 39

40 A, v) t A,52,2) coluna A,v)

41 Au,) A u, ) t A,52,) linha A u, v) t A u, ),52,2) A u, v) A u, v) t A u, ),52,2) t A, v),52,) 4

42 linha coluna 42

43 Onda Quadrada 43

44 Qual Linha Coluna? Linha Coluna 44

45 Qual o Espctro Corrto? Por quê? 45

46 b) Translação Algumas Propridads d Fourir, ) j2π uo+ vo ) N F u u o, v v o ) translação no domínio da rqüência o, o ) F u, v) j2π uo+ vo ) N translação no domínio do spaço 46

47 b) Rotação Algumas Propridads d Fourir r cosθ; rsnθ; u w cosφ; v wsnφ coordnadas polars r, Θ + Θo) F w, Φ + Θo ) A rotação d,) d um ângulo Q implicará m uma rotação d Fu,v) do msmo ângulo vic-vrsa. 47

48 linha coluna 48

49 49 Procssamnto d Imagns

50 b) Escala Algumas Propridads d Fourir Para dois scalars a b: a, ) af u, v) a, b) ab F u a, v b 5

51 Problma da Amostragm Traduz-s na dinição d uma taa d amostragm sob a qual a imagm original contínua) possa sr compltamnt rcuprada a partir d um conjunto d valors amostrados. ) banda limitada Fu) s) -W +W u Su) / -/ / 2/ u

52 Problma da Amostragm... s)) Su)*Fu) W +W u -/ / 2W Aliasing 52

53 Problma da Amostragm... s)) Multiplicação spacial / Convolução m Fourir Su)*Fu)... Fu) Gu)[Su)*Fu)] -/ -W +W u Gu) / Filtro passa aia -W +W u -W +W 53

54 Amostragm Função Bidimnsional s,) Banda Limitada v Fu,v) 2W v u 2W u 54 2w / 2 u w v

Transformada de Fourier em tempo discreto

Transformada de Fourier em tempo discreto Capítulo 2*: Transformada d Fourir m tmpo discrto Prof. Alan Ptrônio Pinhiro Univrsidad Fdral d Ubrlândia Faculdad d Engnharia Elétrica alanptronio@ufu.br *Basado no capítulo 5 do livro txto: Sinais Sistmas

Leia mais

Espaço de Fourier. Processamento de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP)

Espaço de Fourier. Processamento de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP) Processamento de Imagens Médicas Espaço de Fourier Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP) 1 Representação de Fourier - O teorema da amostragem de Nyquist diz que devemos

Leia mais

Aplicação da Transformada de Fourier no PROCESSAMENTO DIGITAL DE IMAGENS

Aplicação da Transformada de Fourier no PROCESSAMENTO DIGITAL DE IMAGENS Aplicação da Transformada d Fourir no PROCESSAMENTO DIGITAL DE IMAGENS João Fonsca Nto Aracaju- S, novmbro d 999. -mail: jfonsca@srgip.com.br Rsumo - Est trabalho aprsnta a aplicabilidad da Transformada

Leia mais

Transformadas ortogonais e processamento de sinais não estacionários

Transformadas ortogonais e processamento de sinais não estacionários Transformadas ortogonais procssamnto d sinais não stacionários Transformaçõs ortogonais Considr um sinal discrto x(n) com amostras: χ (k)= x (n)ϕ ( k, n) n= 0 Transformada dirta, quação d anális, dcomposição.

Leia mais

Processamento digital de imagens

Processamento digital de imagens Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 22 de março de 2016 Existem tipos de degradações cujo tratamento

Leia mais

Transformada de Fourier

Transformada de Fourier Transformada d orir Séri d orir: Uma fnção priódica pod sr rprsntada pla soma d m conjnto d snos o cosnos d difrnts frqências cada ma mltiplicada por m por m coficint Transformada d orir: Uma fnção não

Leia mais

Espaço de Fourier. Processamento de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP)

Espaço de Fourier. Processamento de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP) Processamento de Imagens Médicas Espaço de Fourier Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática FFCLRP/USP Teorema da Amostragem quist. - O teorema da amostragem de quist diz que devemos amostrar

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T Siais d Poêcia P lim ( ) d < Siais Priódicos ( ) ( + ) com Ζ ( ) Príodo: P Frquêcia udamal: ( ) d Exmplos Sial cosa ( ) Sial siusoidal Fas ula Im si θ c Fórmulas d Eulr xp ± jθ cosθ ± j si ( ) θ jθ θ cosθ

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta A Séris Intgrais d Fourir Uma função priódica, d príodo 2, = + 2 pod sr xpandida m séri d Fourir no intrvalo <

Leia mais

Análise de Fourier tempo contínuo

Análise de Fourier tempo contínuo nális d Fourir tmpo contínuo 4.5.5.5.5.5.5 -.5 - -.5 - -.5.5.5 -.5 - -.5 - -.5.5.5 SS MIEIC 8/9 nális d Fourir m tmpo contínuo aula d hoj Rsposta d SLITs contínuo a xponnciais Séri d Fourir d sinais priódicos

Leia mais

GRANDEZAS SINUSOIDAIS

GRANDEZAS SINUSOIDAIS www.-l.nt mática Circuitos Eléctricos Capítulo Rgim Sinusoidal GRANDEZAS SINUSOIDAIS INRODUÇÃO Nst capítulo, faz-s uma pquna introdução às grandzas altrnadas ond s aprsntam algumas das razõs porqu os sistmas

Leia mais

Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier

Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier Introdução ao Processamento Digital de Imagens Aula 6 Propriedades da Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira mvieira@sc.usp.br Uma linha de uma imagem formada por uma sequência

Leia mais

Álgebra Linear e Geometria Analítica. Vectores no plano, no espaço e em IR n

Álgebra Linear e Geometria Analítica. Vectores no plano, no espaço e em IR n Álgbra Linar Gomtria Analítica Vctors no plano, no spaço m IR n ( +, + ) (, ) (, ) (k,k ) k (, ) Prodto intrno (, ); (, ). + Prodto intrno norma (, ); (, ). + +. Prodto intrno m IR n (,,, 4..., n );

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta d tst d avaliação Matmática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Cadrno (é prmitido o uso d calculadora) Na rsposta aos itns d scolha múltipla, slcion a opção corrta. Escrva, na

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz.

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz. Drivadas parciais d ordm suprior à primira. Torma d Scwarz. As drivadas das primiras drivadas são as sgundas drivadas assim sucssivamnt. Então, para uma unção d duas variávis podmos considrar, s istirm,

Leia mais

Álgebra Linear e Geometria Analítica. 10ª aula

Álgebra Linear e Geometria Analítica. 10ª aula Álgbra Linar Gomtria Analítica 0ª ala Vctors no plano Vctors no spaço Vctors m R n ( +, + ) (, ) (, ) (k,k ) k (, ) Prodto intrno (, ); (, ). + Prodto intrno norma (, ); (, ). + +. Prodto intrno m

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matmática A Etnsivo V. 6 Rsolva.) a) Aula. ( )

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson ModlosProbabilísticos paravariávis Discrtas Modlo d Poisson Na aula passada 1 Dfinimos o concito d modlo probabilístico. 2 Aprndmos a utilizar o Modlo Binomial. 3 Vimos como o Modlo Binomial pod facilitar

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.

Leia mais

SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira

SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira SEL 0449 - Processamento Digital de Imagens Médicas Aula 4 Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira mvieira@sc.usp.br Jean Baptiste Joseph Fourier 2 Exemplo: Função Degrau 3 Exemplo:

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x Aula Capítulo 6 Aplicaçõs d Intração (pá. 8) UFPA, d junho d 5 Ára ntr duas curvas Dinição d Ára ntr duas curvas - A ára A ntr rião limitada plas curvas a y plas rtas a,, é ond são contínuas A a d y para

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6 Introdução ao Soluçõs dos Exrcícios Propostos Capítulo 6 1. Dadas as squências x[n] abaixo com sus rspctivos comprimntos, ncontr as transformadas discrtas d Fourir: a x[n] = n, para n < 4 X[] = 6 X[1]

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Sistemas de Comunicação Óptica Multiplexadores e filtros

Sistemas de Comunicação Óptica Multiplexadores e filtros Sistmas d Comunicação Óptica Mutipxadors itros João Pirs Sistmas d Comunicação Óptica 5 Fitros ópticos Apicaçõs: - Raização d mutipxadors dsmutipxadors WDM; - Iguaação do ganho itragm do ruído nos ampiicadors

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

Análise de Fourier. Imagens no Domínio da Freqüência

Análise de Fourier. Imagens no Domínio da Freqüência Análise de Fourier Imagens no Domínio da Freqüência Todas as imagens deste trabalho foram obtidas de R. C. Gonzalez and R. E. Woods - Digital Image Processing, Addison Wesley Pub. Co. 1993 - ISBN 0-201-60078-1

Leia mais

Filtragem no Domínio da Freqüência Transformada de Fourier

Filtragem no Domínio da Freqüência Transformada de Fourier Filtragem no Domínio da Freqüência Transformada de Fourier Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR Abr/2013 Material de referência: Conci, A; Azevedo, E.; Leta,

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8-2 -22-24 -26-28 -3-32 Frqucy (khz) Hammig kaisr Chbyshv Siais Sismas Powr Spcral Dsiy Ev B F CS CS2 B F CS Groud Rvolu Body Rvolu Body Powr/frqucy (db/hz) Si Wav Joi Acuaor Joi Ssor Rvolu.5..5.2.25.3.35.4.45.5-34

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOÃO V ESCOLA SECUNDÁRIA c/ 2º e 3º CICLOS D. JOÃO V

AGRUPAMENTO DE ESCOLAS D. JOÃO V ESCOLA SECUNDÁRIA c/ 2º e 3º CICLOS D. JOÃO V AGRUPAMENTO DE ESCOLAS D. JOÃO V 172431 ESCOLA SECUNDÁRIA c/ 2º 3º CICLOS D. JOÃO V Ensino Rgular Ára Disciplinar d Matmática Planificaçõs 2014/15 Ciclo 5.º ano Manual scolar adotado: Matmática 5.º ano,

Leia mais

DISCIPLINA DE MATEMÁTICA

DISCIPLINA DE MATEMÁTICA DISCIPLINA DE MATEMÁTICA O nsino da Matmática dv: Proporcionar uma formação cntrada na aprndizagm a ralizar por cada aluno qu contribua para o su dsnvolvimnto pssoal lh propici a apropriação d instrumntos

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

Introdução FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA

Introdução FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA Introdução Um sinal no domínio do espaço (x,y) pode ser aproximado através de uma soma de senos e cossenos com frequências (f, f2, f3,...fn) de amplitudes (a, a2,...

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

A função de distribuição neste caso é dada por: em que

A função de distribuição neste caso é dada por: em que 1 2 A função d distribuição nst caso é dada por: m qu 3 A função d distribuição d probabilidad nss caso é dada por X 0 1 2 3 P(X) 0,343 0,441 0,189 1,027 4 Ercícios: 2. Considr ninhada d 4 filhots d colhos.

Leia mais

2.2 Transformada de Fourier e Espectro Contínuo

2.2 Transformada de Fourier e Espectro Contínuo 2.2 Transformada d Fourir Espctro Contínuo Analisam-s a sguir, sinais não priódicos, concntrados ao longo d um curto intrvalo d tmpo. Dfinição: sinal stritamnt limitado no tmpo Dado um sinal não priódico

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através da rsposta m frquêcia 5.2 Trasformadas d Fourir propridads Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

indicando (nesse gráfico) os vectores E

indicando (nesse gráfico) os vectores E Propagação Antnas Eam 5 d Janiro d 6 Docnt Rsponsávl: Prof Carlos R Paiva Duração: 3 horas 5 d Janiro d 6 Ano Lctivo: 5 / 6 SEGUNDO EXAME Uma onda lctromagnética plana monocromática é caractrizada plo

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

Cálculo IV EP7 Tutor

Cálculo IV EP7 Tutor Fundação ntro d iências Educação Suprior a Distância do Estado do Rio d Janiro ntro d Educação Suprior a Distância do Estado do Rio d Janiro álculo IV EP7 Tutor Ercício 1: Us a intgral d linha para ncontrar

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

Técnicas de Processamento Imagens. Fourier 1D e 2D

Técnicas de Processamento Imagens. Fourier 1D e 2D Técnicas de Processamento Imagens Fourier 1D e 2D Agenda Motivação / Introdução Revisão de conceitos matemáticos Série de Fourier Transformada de Fourier 1D & 2D Contínua & discreta Principais propriedades

Leia mais

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL Univrsidad Fdral d Alagoas Cntro d cnologia Curso d Engnharia Civil Disciplina: Mcânica dos Sólidos Código: ECIV030 Profssor: Eduardo Nobr Lags orção m Barras d Sção ransvrsal Dlgada Fchada Mació/AL Sção

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática Univrsidad Fdral do Rio d Janiro INSTITUTO DE MATEMÁTICA Dpartamnto d Matmática Gabarito da 1 a prova d Gomtria difrncial - 20/09/2018 - Mônica 1. Sja α(s) uma curva rgular plana paramtrizada plo comprimnto

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

FAP Física Experimental IV. Prof. Manfredo Tabacniks

FAP Física Experimental IV. Prof. Manfredo Tabacniks FA014 - Física Exprimntal IV rof. Manfrdo Tabacniks manfrdo@if.usp.br Ed. Basílio Jaft sala 5 www.if.usp.br/mht/aulas/008/mht-fap014n.htm apostilas 007 matrial didático http://www.dfn.if.usp.br/curso/labflx/

Leia mais

Módulo 04. Vectores em R 2 e R 3. [Poole 003 a 028]

Módulo 04. Vectores em R 2 e R 3. [Poole 003 a 028] Módlo 4 [Pool a 8] Vctors m R R Vctors lirs. Sgmnto orintado. Origm xtrmidad. Vctors igais. Vctor simétrico. Soma d ctors. Propridads. Vctor nlo. Prodto d m scalar por m ctor. Propridads. Norma. Vctor

Leia mais

Filtragem de Imagens no Domínio da Freqüência. 35M34 Sala 3D5 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227

Filtragem de Imagens no Domínio da Freqüência. 35M34 Sala 3D5 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Filtragem de Imagens no Domínio da Freqüência 35M34 Sala 3D5 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Introdução Fourier formulou no início do século XVIII a teoria de que qualquer função que se

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

1. Números naturais Números primos; Crivo de Eratóstenes Teorema fundamental da aritmética e aplicações.

1. Números naturais Números primos; Crivo de Eratóstenes Teorema fundamental da aritmética e aplicações. Mtas Curriculars - Objtivos - Conhcr aplicar propridads dos númros primos Númros Opraçõs 1. Númros naturais Númros primos; Crivo d Eratóstns Torma fundamntal da aritmética aplicaçõs. Instrumntos Tst d

Leia mais

CAPÍTULO 1 Teoria do Estado de Tensão

CAPÍTULO 1 Teoria do Estado de Tensão Escola Suprior d Tcnologia stão - Instituto Politécnico d Bragança CAPÍTULO Toria do Estado d Tnsão Tnsor das tnsõs: s, s, s TENSÕES NORMAIS s ij, i j TENSÕES TANENCIAIS Convnção d sinais: Tnsõs m dtrminada

Leia mais

Série de Fourier tempo contínuo

Série de Fourier tempo contínuo Séri d Fourir mpo conínuo.5.5.5.5 -.5 - -.5 - -.5.5.5 SS MIEIC 7/8 Progrm d SS Sinis Sims 5 uls Sims Linrs Invrins uls Séri d Fourir (mpo conínuo uls rnsformd d Fourir (mpo conínuo uls Séri d Fourir (mpo

Leia mais

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto.

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto. Not bm: a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira hama-s a atção para a importâcia do trabalho pssoal a ralizar plo aluo rsolvdo os problmas aprstados

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

Ánálise de Fourier tempo discreto

Ánálise de Fourier tempo discreto Faculdad d Egharia Áális d Fourir tmpo discrto 4 3.5 3.5.5.5.5.5 -.5 -.5 - - -8-6 -4-4 6 8 - - -5 5 5 5 3 SS MIEIC 8/9 Aális d Fourir m tmpo discrto aula d hoj Faculdad d Egharia Rsposta d SLITs discrtos

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Análise e Processamento de BioSinais. Mestrado Integrado Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Análise e Processamento de BioSinais. Mestrado Integrado Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Aális Procssamto d BioSiais Mstrado Itgrado Egharia Biomédica Faculdad d Ciêcias cologia Slid Aális Procssamto d BioSiais MIEB Adaptado dos slids S&S d Jorg Dias ópicos: o Aális d Fourir para Siais Sistmas

Leia mais

2 Mecânica da Fratura Linear Elástica

2 Mecânica da Fratura Linear Elástica 5 Mcânica da Fratura Linar lástica A Mcânica da Fratura aprsnta difrnts ramos, tndo o tamanho da zona plástica m frnt à ponta da trinca como fator dtrminant para a scolha do ramo mais adquado. Dsta forma,

Leia mais

Área Bloco Domínio Conteúdos

Área Bloco Domínio Conteúdos Agrupamnto d Escolas Padr João Colho Cabanita INFORMAÇÃO PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Exprssõs Artísticas 2016 Prova 23 1.º Ciclo do Ensino Básico Ao abrigo do Dspacho Normativo n.º 1-G/2016, d 6

Leia mais

PSI LABORATÓRIO DE INSTRUMENTAÇÃO ELÉTRICA

PSI LABORATÓRIO DE INSTRUMENTAÇÃO ELÉTRICA ESCOLA POLIÉCNICA DA UNIVERSIDADE DE SÃO PAULO Dpartamnto d Engnharia d Sistmas Eltrônicos - PSI - EPUSP Objtivos: PSI34 - LABORAÓRIO DE INSRUMENAÇÃO ELÉRICA ANÁLISE DE FOURIER DE SINAIS PERIÓDICOS Edição

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Ângulos de Euler. x y z. onde

Ângulos de Euler. x y z. onde Ângulos d Eulr Considr um corpo rígido sus três ios principais, ê, ê 2 ê 3, qu são ortonormais. Vamos dfinir o sistma d coordnadas fio ao corpo rígido, S, com os ios, 2 3 ao longo dos vrsors ê, ê 2 ê 3,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

FUNDAMENTOS DE ENERGIA ELÉCTRICA MÁQUINA SÍNCRONA

FUNDAMENTOS DE ENERGIA ELÉCTRICA MÁQUINA SÍNCRONA FUNDAMNTOS D NRGA LÉCTRCA Prof. José Sucena Paiva 1 GRUPO GRADOR D CCLO COMBNADO 330 MW Prof. José Sucena Paiva 2 GRADOR ÓLCO 2 MW Prof. José Sucena Paiva 3 GRADOR ÓLCO 2 MW (Detalhe) Prof. José Sucena

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

Principais Modelos Contínuos

Principais Modelos Contínuos rincipais Modlos Contínuos . Modlo uniform Uma v.a. contínua tm distribuição uniform com parâmtros < s sua função dnsidad d probabilidad é dada por c c f. 0. Var E F 0 0 A função d distribuição acumulada

Leia mais

ADSORÇÃO DE COBALTO UTILIZANDO CASCA DE ARROZ E INFLUÊNCIA DO TRATAMENTO SUPERCRÍTICO

ADSORÇÃO DE COBALTO UTILIZANDO CASCA DE ARROZ E INFLUÊNCIA DO TRATAMENTO SUPERCRÍTICO ADSORÇÃO DE COBALTO UTILIZANDO CASCA DE ARROZ E INFLUÊNCIA DO TRATAMENTO SUPERCRÍTICO G. F. DÖRTZBACHER 1, J. M. da CUNHA 1,D. A. BERTUOL, E. H. TANABE G. L. DOTTO 1 Univrsidad Fdral d Santa Maria, Curso

Leia mais