3.1 Cálculo de Limites

Tamanho: px
Começar a partir da página:

Download "3.1 Cálculo de Limites"

Transcrição

1 3. Cálculo de Limites EXERCÍCIOS & COMPLEMENTOS 3. FORMAS INDETERMINADAS OPERAÇÕES COM OS SÍMBOLOS + = = ( ) = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k = = ( ) = 0 FUNÇÕES RACIONAIS Ao calcular o te no in nito (quando! ) de uma função racional (quociente de dois olinômios), recomendamos colocar em evidência no numerador e no denominador o termo de maior grau h i A 0 + A + A A A n n n A0! B 0 + B + B B B k k = + A n + A n A n n 2 + A n h i! k B0 + B k + B k B k k 2 + B k Cada termo que contém uma otência de no denominador tem ite zero e, sendo assim, o valor do ite se reduz a A n n! B k k O valor nal deende dos coe cientes A n e B k e, naturalmente, de n e k que são os graus dos olinôminios. a) Se os olinômios têm mesmo grau, isto é, n = k, então o valor do ite é A n n! B n n = A n B n b) Se o grau do numerador (n) é maior do que o grau do denominador (k), então A n n! B k k = A n n k = (deende do sinal de A n =B! B k ; note que n k > 0) n

2 COMPLEMENTOS LIMITE & CONTINUDADE 2 c) Se o grau do numerador (n) é menor do que o grau do denominador (k), então A n n! B k k = (A n=b k ) = 0 (note que k n > 0)! k n PROPRIEDADES ALGÉBRICAS Suonhamos que f () = L e que g () = M Então. k = k; k constante. 2. [f () g ()] = L M 3. [kf ()] = kl; 4. [f () g ()] = L M k constante. 5. [f () =g ()] = L=M; (M 6= 0 e g () 6= 0; 8 6= a) OUTRAS PROPRIEDADES. Se f () = L, então jf ()j = jlj 2. Se g () = 0 e f () é uma função itada, então [f () g ()] = 0 3. Confronto se f () g () h () ; 8; e se f () = h () = L, então g () = L 3.. Escrevendo ara Arender. Em cada caso abaio calcule o ite de f (), quando! a (a) f () = 2 + 5; a = 7 3 (b) f () = ; a = (c) f () = ; a = (d) f () = ; a = 2 (e) f () = ; a = (f) f () = ; a = + (g) f () = 4 3 ; a = Uma função f () é itada quando eistir uma constante C, tal que jf ()j C; 8

3 22 CÁLCULO DE UMA VARIÁVEL MARIVALDO P. MATOS (h) f () = 3 9 ; a = 9 (i) f () = 2 + ; a = 0 (j) f () = ; a = 2 (k) f () = + ; va = 3 (l) f () = ; a = (m) f () = ; a = 2 2 (n) (n) f () = ; a = (considere u = 3 3 ) (o) f () = () f () = s ; a = ; a = (considere u = 3 + 2) + f () 2. Se f é uma função de nida em R e =, mostre que!0 f (3) f 2 (a) = 3 (b)!0!0 = 0 f () f () 3. Sabendo que! 2 2 =, calcule f () e! 2! 2. f () 5 4. Sabendo-se que = 3, calcule f ()!2 2!2 5. Se ' é uma função tal que ' () +, 8 6= 0, calcule 2 ' ()!0 6. Sabendo que f () = 0 e que g () é uma função itada, a roriedade do Confronto e mostre que [f () g ()] = 0 7. Considere a função g de nida or g () = g () e!0!0 2 g () (, se 0, se > 0. Investigue a eistência dos ites 8. Em cada caso abaio, calcule os ites laterais de f no onto a

4 COMPLEMENTOS LIMITE & CONTINUDADE 23 (a) f () = ; a = 2 (b) f () = ( 2) 2 ; a = 2 (c) f () = 2 ( ) 3 ; a = (d) f () = 2 4 j 2j ; a = 2 (e) f () = ( + 3) j + 2j ; a = 0 (f) f () = ; a = ( ) (g) f () = ; a = (h) f () = + 3 j j j 2 9j ; a = 3 (i) f () = ; a = (j) f () = j j j 2 4j ; a = 2 9. Calcule 2 e veri que se eiste o ite 2!2 +!2 0. Calcule os ites laterais indicados. (a) (b)!0 +!0 5 5 (e) (f)!3 + 3!3 3 (i)! (m)! (j)!0 (n) 3 2. Calcule os seguintes ites no in nito (a) (d) (c)!0 + 2 (g)! (k)! ! + 2 (o)!0 + jj! b)! (c)!+ (d)!0 (h)!0 (l) ()! j j 2 + 3! ! (e) 5 4 +!+ 2 5 (f) 5 4 +! (g)! (j) + 3!+ (m)! (h) (k) (n)!!+! (i) (l)!+!+ (0)! jj 3.2 LimiteContinuidade Uma função y = f () é contínua no onto 0 de seu domínio quando tiver ite no onto 0 e, além disso,! 0 f () = f ( 0 ) Quando f () não for contínua no onto 0, diremos que f é descontínua em 0 e isto ocorrerá quando ao menos uma das condições abaio se veri car ou f não estiver de nida no onto 0 ;

5 24 CÁLCULO DE UMA VARIÁVEL MARIVALDO P. MATOS ou o ite de f () no onto 0 não eistir; ou f tiver ite em 0, mas, o valor do ite não coincidir com f ( 0 ) EXERCÍCIOS & COMPLEMENTOS 3.2. Verdadeiro (V) ou Falso (F)? (a) f () = f () =) f é contínua em = a + (b) Se jf ()j eiste, então f () também eiste. (c) Se jf ()j = 0, então f () = 0 8 < 2. Calcule f (), onde a função f R! R é de nida or f () =! Esta função é contínua em =? 2, se 6= 3; se = 3. Seja f uma função real contínua, de nida em torno do onto a =, tal que f () = , ara 6=. Quanto vale f ()? Por quê? 4. Em cada caso, determine o valor de k, de modo que a função f () seja contínua no onto a indicado. 8 < 3 8, se 6= 2 (a) a = 2; f () = 2 k, se = 2 8 < 3, se > 0 e 6= 3 (b) a = 3; f () = 3 k, se = 3 5. Seja f a função de nida or f ( ) = 2 e f () = 2 +, ara 6= + no onto =? Por quê? E no onto = 0?. A função f é contínua 6. Dê eemlo de uma função f, de nida em R, descontínua no onto = 2, mas que satisfaça f () = f ()!2 +!2 7. Seja f uma função tal que jf ()j 2, 8 2 R. Mostre que f é continua em = 0 8. Esboce o grá co e encontre os ontos de descontinuidade da função f, de nida or ><, se 5 f () = 6 5, se < < 3 > 3, se 3

6 COMPLEMENTOS LIMITE & CONTINUDADE Em cada caso, esboce o grá co da função e diga se ela é contínua no onto a indicado. ( 8 2, se > < 2, se 6= 2 (a) a = 0; f () = (b) a = 0; f () = j 2j 2, se, se = 2 ( (c) a = ; f () = , se < 0 (d) a = ; f () = + [], se 0 NOTA No Eercício 9(d), [] reresenta o maior inteiro menor ou igual a e a função corresondente 7! [] é denominada função escada. 0. Seja f a função cujo grá co encontra-se esboçado abaio. (a) Calcule!0 f() (b) Calcule!3 f() (c) Calcule f(0) (d) Calculef(3) (e) f é contínua no onto = 0? (f) f é contínua no onto = 3? Eiste um número real caaz de fazer com que! eista? 2. Uma comanhia ferroviária cobra R$0 or km, ara transortar um vagão até uma distância de 200km, cobrando ainda R$8 or cada km que eceda a 200. Além disso, essa mesma comanhia cobra uma taa de serviço de R$.000 or vagão, indeendentemente da distância a ercorrer. Determine a função que reresenta o custo ara transortar um vagão a uma distância de km e esboce seu grá co. Essa função é contínua em = 200? 3. Uma fábrica é caaz de roduzir unidades de um certo roduto, em um turno de 8 horas de trabalho. Para cada turno de trabalho, sabe-se que eiste um custo o de R$2.000,00, relativo ao consumo de energia elétrica. Suondo-se que, or unidade roduzida, o custo variável, dado o gasto com matéria rima e salários, é de R$2,00, determine a função que reresenta o custo total ara a fabricação de unidades e esboce seu grá co. A função encontrada é contínua ara ? 4. Um estacionamento cobra R$3 ela rimeira hora, ou arte dela, e R$2 or hora sucessiva, ou arte dela, até o máimo de R$0. Esboce o grá co do custo do estacionamento como uma função do temo decorrido e analise as descontinuidades dessa função. 5. Prove que a equação = 0 tem ao menos uma raiz no intervalo [ ; 0]

7 26 CÁLCULO DE UMA VARIÁVEL MARIVALDO P. MATOS 6. Prove que a equação = 0 admite três raízes reais e distintas. ( 2 + 2, se 2 < 0 7. Considere a função f de nida or f () = Mostre que não eiste um 2 2, se 0 2 número no intervalo [ Intermediário? 2; 2] tal que f () = 0. Isto contradiz o corolário do Teorema do valor 8. Quais das seguintes a rmações sobre a função y = f () ilustrada abaio são verdadeiras e quais são falsas? (a)!0 f() eiste. (b)!0 f() = 0 (c)!0 f() = (d)! f() = (e)! f() = 0 (f) f() eiste no onto a em ( ; ). 9. Elique or que os ites abaio não eistem. (a)!0 jj (b)! + 3 (c)! 2 ( ) ( + 2) (d)! RESPOSTAS & SUGESTÕES 3. EXERCÍCIOS COMPLEMENTARES. (a) 9 (b) 3=2 (c) 7 (d) =2 (e) 4 (f) =3 (g) 4=3 (h) =6 (i) (j) 4 (k) =(3 2) (l) 0 (m) (n) 32 (o) =2 () =3 f (3) f (u) (a) Com u = 3; tem-se = 3!0 u!0 u (b) Faça u = 2 f 2 uf (u) e encontre =!0 u!0 u 2. 4 e Use a relação 0 jf () g ()j M jf ()j e a roriedade do Confronto.

8 COMPLEMENTOS LIMITE & CONTINUDADE A função g () não tem ite em = 0 e!0 2 g () = 0 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) f () =5 2 =6 2 =4 f () =5 2 =6 2 = Quando! 2 + o ite eiste e vale 0. Quando! 2 o ite não eiste, orque a função não está de nida à esquerda de = 2 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) () (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) 5=6 0 5=6 =2 3.2 EXERCÍCIOS COMPLEMENTARES. (a) F (b) F (c) V 2.! f () = 2 e f () = 3 Logo, f é descontínua em a = 3. Como f é contínua em a =, devemos ter f () = 4. (a) k = 2 (b) k = 3=6 5. f é contínua em e descontínua em 0 6. Considere, or eemlo, a função f de nida assim f () =, ara 6= 2 e f (2) = 0 7. = 3 é a única descontinuidade de f 8. Use a Proriedade do Confronto. 9. (a) sim (b) sim (c) não (d) não. 0. (a) 3 (b) não eiste (c) 3 (d) 4 (e) sim (f) não.. Se = 5, o ite será 2. Se 200, o custo C () é determinado em reais or C () = O custo ara uma distância de 200 km é, ortanto, C (200) = R$3000. Se a distância ecede 200 km, isto é, se > 200, então o custo total será dado or C () = ( 200). Resumindo, temos C () = , se 0 < 200; e C () = , ara > 200 Essa função é contínua em = 200

9 28 CÁLCULO DE UMA VARIÁVEL MARIVALDO P. MATOS 3. Se , um único turno de trabalho será su cente e, assim, C () = Se 5000 < 45000, então a fábrica deverá oerar em 3 turnos e, nesse caso, C () = Nesse intervalo a função custo é descontínua. 4. As descontinuidades ocorrem nos instantes t = ; t = 2; t = 3 e t = 4 5. Basta observar que f ( ) < 0 e que f () > 0 A conclusão segue do Teorema do Valor Intermediário. 6. Use o Teorema do Valor Intermediário ara a função f (), nos intervalos [ 3; 0] ; [0; ] e [; 2] 7. Não. Como a função não é contínua em [ 2; 2], o fato não contradiz o resultado citado. 8. V, V, F, F, F, V. 9. Em cada caso, note que os ites laterais, quando eistem, são diferentes.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x)

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x) . Limites Ao trabalhar com uma função nossa primeira preocupação deve ser o seu domínio (condição de eistência) afinal só faz sentido utilizá-la nos pontos onde esteja definida e sua epressão matemática

Leia mais

CAPITULO VI. LIMITES E CONTINUIDADE DE FUNÇÕES EM R n

CAPITULO VI. LIMITES E CONTINUIDADE DE FUNÇÕES EM R n CAPITULO VI LIMITES E CONTINUIDADE DE FUNÇÕES EM R n. Generalidades O conceito geral de função e outros associados foram já estudados quando se tratou da teoria dos conjuntos. Foi igualmente estudado com

Leia mais

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0.

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0. 4. Em cada caso use a definição para calcular f 0 (). (a) f () = 3, R (b) f () =/, 6= 0 (c) f () =/, > 0. 4.2 Mostre que a função f () = /3, R, não é diferenciável em =0. 4.3 Considere a função f : R R

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que Aula 5 Integrais inde nidas 5. Antiderivadas Sendo f() e F () de nidas em um intervalo I ½, dizemos que F e umaantiderivada ou uma rimitiva de f, emi, sef 0 () =f() ara todo I. Ou seja, F e antiderivada

Leia mais

r 5 200 m b) 1 min 5 60 s s t a 5

r 5 200 m b) 1 min 5 60 s s t a 5 Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 0 Um atleta desloca-se à velocidade constante de 7,8 m/s numa ista circular de raio 00 m. Determine as medidas, em radianos e

Leia mais

x 1 f(x) f(a) f (a) = lim x a

x 1 f(x) f(a) f (a) = lim x a Capítulo 27 Regras de L Hôpital 27. Formas indeterminadas Suponha que desejamos traçar o gráfico da função F () = 2. Embora F não esteja definida em =, para traçar o seu gráfico precisamos conhecer o comportamento

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios 1. Para um certo número real k, é contínua em R a função f definida por 2 + e +k se 0 f() = 2 + ln( + 1)

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9 Ésófatorar... Serámesmo? Neste equeno artigo resolveremos o roblema 2 da USAMO (USA Mathematical Olymiad) 2005: Problema. Prove que o sistema x 6 + x + x y + y = 147 157 x + x y + y 2 + y + z 9 = 157 147

Leia mais

Capítulo V: Derivação 137

Capítulo V: Derivação 137 Capítulo V: Derivação 37 Esboço de gráicos: Para esboçar o gráico de uma unção deve-se sempre que possível seguir as seguintes etapas: Indicar o domínio; Determinar os zeros (caso eistam); Estudar a paridade;

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

P(seleção de um elemento baixo) = p P(seleção de um elemento médio) = p. P(seleção de um elemento alto) = p

P(seleção de um elemento baixo) = p P(seleção de um elemento médio) = p. P(seleção de um elemento alto) = p . A Distribuição Multinomial - Teste Qui-Quadrado. Inferência Estatística Uma imortante generalização da rova de Bernoulli (), é a chamada rova multinomial. Uma rova de Bernoulli () ode roduzir dois resultados

Leia mais

Atmosfera Padrão. Atmosfera Padrão

Atmosfera Padrão. Atmosfera Padrão 7631 2º Ano da Licenciatura em Engenharia Aeronáutica 1. Introdução O desemenho de aviões e de motores atmosféricos deende da combinação de temeratura, ressão e densidade do ar circundandante. O movimento

Leia mais

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional.

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional. Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 3 - GABARITO 06 de julho de 013 1. (1,5 pontos) Determine se as afirmações

Leia mais

Limites e continuidade

Limites e continuidade Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas

Leia mais

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis.

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis. www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) Funções de duas ou mais variáveis; Limites; Continuidade. (I) Funções de duas ou mais variáveis. No Cálculo I

Leia mais

Aula 5. Limites laterais. Para cada x real, de ne-se o valor absoluto ou m odulo de x como sendo ( jxj = x se x<0

Aula 5. Limites laterais. Para cada x real, de ne-se o valor absoluto ou m odulo de x como sendo ( jxj = x se x<0 Aula 5 Limites laterais Para cada x real, de ne-se o valor absoluto ou m odulo de x como sendo ( x se x jxj = x se x< Por exemplo, j p 2j = p 2, j+3j =+3, j 4j =4, jj =, j p 2j = p 2 (pois p 2 < ). Para

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS 1 MATEMÁTICA PROF. ILYDIO PEREIRA DE SÁ ESTUDO DAS DERIVADAS (CONCEITO E APLICAÇÕES) No presente capítulo, estudaremos as

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 4 Expansão linear e geradores Se u ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u ; u ; :::;

Leia mais

Explorações de alunos

Explorações de alunos A partir dos exemplos sugeridos e explorados pelos alunos pretende-se que possam conjecturar que, dadas duas funções reais de variável real f e g, o domínio da função quociente pode ser dado por: f f g

Leia mais

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1 APOSTILA 015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 015 1 Sumário 1.Conjuntos...5 1.1 Representação de conjuntos...5 1. Operações com conjuntos...6 1. Propriedades

Leia mais

Estrutura de Repetição Simples

Estrutura de Repetição Simples Instituto de Ciências Eatas e Biológicas ICEB Lista de Eercícios Básicos sobre Laço Estrutura de Repetição Simples Eercício 01 Escreva um programa que imprima todos os números inteiros de 0 a 50. A seguir,

Leia mais

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013)

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013) Universidade da Beira Interior - Departamento de Matemática MATEMÁTICA I ECONOMIA (5598) Ficha de eercícios (0/03). Determine o conjunto dos pontos interiores, eteriores e fronteiros dos seguintes conjuntos:

Leia mais

Estudo do Sinal de uma Função

Estudo do Sinal de uma Função Capítulo 4 Estudo do Sinal de uma Função 4.1 Introdução Neste Capítulo discutimos o problema do estudo do sinal de uma função, assunto muitas vezes tratado de forma rápida e supercial nos ensinos básico

Leia mais

Seqüências, Limite e Continuidade

Seqüências, Limite e Continuidade Módulo Seqüências, Limite e Continuidade A partir deste momento, passaremos a estudar seqüência, ites e continuidade de uma função real. Leia com atenção, caso tenha dúvidas busque indicadas e também junto

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 008/ . CONCEITO DE FUNÇÃO As funções são as melhores ferramentas para descrever

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE FÍSICA E MATEMÁTICA

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE FÍSICA E MATEMÁTICA UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE FÍSICA E MATEMÁTICA CURSO: LICENCIATURA EM COMPUTAÇÃO DISCIPLINA: PROGRAMAÇÃO PARALELA E DISTRIBUÍDA PROFESSOR: JONES OLIVEIRA ALUNO: JONAS FRANCISCO

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Guião Revisões: Funções ESA-IPVC. Funções

Guião Revisões: Funções ESA-IPVC. Funções GUIÃO REVISÕES Funções Conceito de função Quatro amigos decidiram apostar no totoloto, tendo cada um deles preenchido o seu boletim da seguinte forma: Boletim do Hugo Boletim do João Jogos Apostas Jogos

Leia mais

Probabilidade parte 2. Robério Satyro

Probabilidade parte 2. Robério Satyro Probabilidade arte Robério Satyro Definição de robabilidade Vamos analisar o fenômeno aleatório lançamento de uma moeda erfeita. Nesse caso, temos: = {C, C} () = Os subconjuntos de são, {C}, { C} e {C,

Leia mais

LISTA BÁSICA MATEMÁTICA

LISTA BÁSICA MATEMÁTICA LISTA BÁSICA Professor: ARGENTINO FÉRIAS: O ANO DATA: 0 / 06 / 0 MATEMÁTICA 6 0 6 +, + 4 é:. O valor de ( ) ( ) ( ) a) b) c) 7 d) 9 e). Considere a epressão numérica a) 9 b) 0 c) 8,00 d) 69 e) 9,00000

Leia mais

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 00/ SUMÁRIO. LIMITES E CONTINUIDADE..... NOÇÃO INTUITIVA DE LIMITE..... FUNÇÃO CONTÍNUA NUM

Leia mais

1ª LISTA DE EXERCÍCIOS - FUNÇÕES 2010/2

1ª LISTA DE EXERCÍCIOS - FUNÇÕES 2010/2 Número de pontos Dívida ($ bilhão) 1ª LISTA DE EXERCÍCIOS - FUNÇÕES 010/ 1. A dívida pública dos EUA (em bilhões de dólares) para alguns anos encontra-se no gráfico abaio. 400 300 00 100 000 1900 1800

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA Apontamentos: Curso de Conhecimentos Básicos de Matemática Cursos do Departamento de Gestão Maria Cristina

Leia mais

1. ENTALPIA. (a) A definição de entalpia. A entalpia, H, é definida como:

1. ENTALPIA. (a) A definição de entalpia. A entalpia, H, é definida como: 1 Data: 31/05/2007 Curso de Processos Químicos Reerência: AKINS, Peter. Físico- Química. Sétima edição. Editora, LC, 2003. Resumo: Proas. Bárbara Winiarski Diesel Novaes 1. ENALPIA A variação da energia

Leia mais

Estudo do Sinal de uma Função

Estudo do Sinal de uma Função Capítulo 1 Estudo do Sinal de uma Função 11 Introdução Neste Capítulo discutimos o problema do estudo do sinal de uma função, assunto muitas vezes tratado de forma rápida e supercial nos ensinos básico

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 12º ano Cálculo Diferencial II - Exercícios saídos em Exames (séc XX)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 12º ano Cálculo Diferencial II - Exercícios saídos em Exames (séc XX) Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 1º ano Cálculo Diferencial II - Eercícios saídos em Eames (séc XX) 1. Seja f a função real de variável real tal que f()= - /. Quanto ao limite

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais PARTE 3 FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS REAIS 3. Funções Reais de Várias Variáveis Reais Vamos agora tratar do segundo caso particular de funções vetoriais de várias variáveis reais, F : Dom(F) R n R

Leia mais

Função Afim Função do 1º Grau

Função Afim Função do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial MTDI I - 7/8 - Comlementos de Cálculo Diferencial 34 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste caítulo retende-se relembrar algumas de nições e

Leia mais

EXERCÍCIOS DE REVISÃO PFV

EXERCÍCIOS DE REVISÃO PFV COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV www.professorwaltertadeu.mat.br 1) Seja f uma função de N em N definida por f(n) = 10 n. Escreva

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

www.cursoavancos.com.br

www.cursoavancos.com.br LISTA DE EXERCÍCIOS DE FIXAÇÃO - PROF.: ARI 0) (ANGLO) Sendo FUNÇÕES INVERSAS f a função inversa de f() = +, então f (4) é igual a : 2 a) 4 b) /4 c) 4 d) 3 e) 6 02) (ANGLO) Sejam f : R R uma função bijetora

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA TAUTOLOGIA C1 C2 C3 v A coluna C3 é formada or valores lógicos verdadeiros (), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA C1 C2 C3 C1 C2 C3 A coluna C3 é formada or valores lógicos falsos (), Logo,

Leia mais

Aula 8 Distância entre pontos do plano euclidiano

Aula 8 Distância entre pontos do plano euclidiano Distância entre pontos do plano euclidiano MÓDULO - AULA 8 Aula 8 Distância entre pontos do plano euclidiano Objetivos Nesta aula, você: Usará o sistema de coordenadas para calcular a distância entre dois

Leia mais

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.

3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1. REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA

Leia mais

UFJF MÓDULO III DO PISM TRIÊNIO 2009-2011 GABARITO DA PROVA DE FÍSICA

UFJF MÓDULO III DO PISM TRIÊNIO 2009-2011 GABARITO DA PROVA DE FÍSICA UFJF MÓDULO III DO PISM TRIÊNIO 9- GABARITO DA PROVA DE FÍSICA Na solução da rova, use uando necessário: 8 Velocidade da luz no vácuo c = 3, m/s 7 Permeabilidade magnética do vácuo =4π T m / A 9 Constante

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Professora Graciela Moro Exercícios sobre Matrizes, Determinantes e Sistemas

Leia mais

Manual de Matemática para o 12º ano Matemática A. NIUaleph 12 VOLUME 3. Jaime Carvalho e Silva Joaquim Pinto Vladimiro Machado

Manual de Matemática para o 12º ano Matemática A. NIUaleph 12 VOLUME 3. Jaime Carvalho e Silva Joaquim Pinto Vladimiro Machado Manual de Matemática para o 1º ano Matemática A NIUaleph 1 VOLUME 3 Jaime Carvalho e Silva Joaquim Pinto Vladimiro Machado 01 Título NiuAleph 1 - Manual de Matemática para o 1º ano de Matemática A Autores

Leia mais

Segunda aula de mecânica dos fluidos básica. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti

Segunda aula de mecânica dos fluidos básica. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti Segunda aula de mecânica dos fluidos básica Estática dos Fluidos caítulo 2 do livro do rofessor Franco Brunetti NO DESENVOLVIMENTO DESTA SEGUNDA AULA NÃO IREI ME REPORTAR DIRETAMENTE AO LIVRO MENCIONADO

Leia mais

MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 03: CONTINUIDADES Este tópico trata dos conceitos de continuidade de funções num valor e num intervalo, a compreensão

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:28. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:28. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, rofessor titular de física teórica, Doutor em Física ela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal da

Leia mais

-10 0 10 20 30 40 50 60 70 80

-10 0 10 20 30 40 50 60 70 80 . Uma artícula desloca-se sobre uma reta na direção x. No instante t =, s, a artícula encontra-se na osição e no instante t = 6, s encontra-se na osição, como indicadas na figura abaixo. Determine a velocidade

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações:

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1 FUNÇÕES DE 1º GRAU 0) Determine f() cujo gráfico está ilustrado abaio. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1) O fator a determina o crescimento da função: se y 1, então

Leia mais

EXERCÍCIOS DE REVISÃO PFV - GABARITO

EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 13 13 de junho de 2011. Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 13 13 de junho de 2011. Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 13 13 de junho de 2011 Aula 13 Pré-Cálculo 1 Função poligonal Definição Dizemos quem uma função

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos Funções Funções Um dos conceitos mais importantes da matemática é o conceito de função. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda. A procura de carne

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

6 SINGULARIDADES E RESÍDUOS

6 SINGULARIDADES E RESÍDUOS 6 SINGULARIDADES E RESÍDUOS Quando uma função f (z) não é diferenciável num complexo z 0 ; diremos que z 0 é uma singularidade de f (z) ; z 0 dir-se-á uma singularidade isolada de f (z) se, contudo, f

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Matemática. Resolução das atividades complementares. M4 Funções

Matemática. Resolução das atividades complementares. M4 Funções Resolução das atividades complementares Matemática M Funções p. Responda às questões e, tomando por base o teto abaio: (Unama-PA) O ATAQUE DOS ALIENS Caramujos africanos, medindo centímetros de comprimento

Leia mais

PROVA DE FÍSICA 2º ANO - ACUMULATIVA - 2º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - ACUMULATIVA - 2º TRIMESTRE TIPO A PROA DE FÍSICA º ANO - ACUMULATIA - º TRIMESTRE TIPO A 0) Considere as seguintes roosições referentes a um gás erfeito. I. Na transformação isotérmica, o roduto. é roorcional à temeratura do gás. II. Na

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

Unidade VII - Teoria Cinética dos Gases

Unidade VII - Teoria Cinética dos Gases Unidade VII - eoria Cinética dos Gases fig. VII.. Nesse rocesso, a ressão em um gás aumenta e o olume diminui. Isto é, a colisão de suas moléculas dee aumentar, sua energia cinética aumenta e diminui a

Leia mais

Introdução ao cálculo diferencial

Introdução ao cálculo diferencial Introdução ao cálculo diferencial Introdução ao cálculo diferencial_011indd 1 0/0/011 10:03: UNIVERSIDADE FEDERAL DE MINAS GERAIS Reitor: Clélio Campolina Diniz Vice-Reitora: Rocksane de Carvalho Norton

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

TRABALHO ELABORADO PELA PROFESSORA MÁRCIA OLIVEIRA DA SILVA GONÇALVES

TRABALHO ELABORADO PELA PROFESSORA MÁRCIA OLIVEIRA DA SILVA GONÇALVES TRABALHO ELABORADO PELA PROFESSORA MÁRCIA OLIVEIRA DA SILVA GONÇALVES RESGATE DE CONTEÚDOS DO 6º AO 9º ANOS DO ENSINO FUNDAMENTAL E CONTEÚDOS DO º ANO DO ENSINO MÉDIO ÍNDICE CONJUNTOS -----------------------------------------------------------------------------------------------------

Leia mais

LIMITES E CONTINUIDADE DE FUNÇÕES

LIMITES E CONTINUIDADE DE FUNÇÕES Capítulo 4 LIMITES E CONTINUIDADE DE FUNÇÕES 4. Introdução O desenvolvimento teórico de grande parte do Cálculo foi feito utilizando a noção de ite. Por eemplo, as definições de derivada e de integral

Leia mais