Limites e continuidade

Tamanho: px
Começar a partir da página:

Download "Limites e continuidade"

Transcrição

1 Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas não igual a 1), mais próimo de 2 serão os valores de f. 0 0,25 0,5 0,75 0,9 0,99 0,999 f() = ,5 1,707 0,866 1,948 1,994 1,999 Nesse caso, dizemos que f tem por limite 2 quando tende para 1 eescrevemos Observe que lim f() =2 1 f() = 1 = ( 1)( + 1) = +1 0, = Se definirmos g() = +1,vemosquef e g coincidem quando D f,mas g ébemdefinidoem =1etemos lim g() =2=g(1). Isso indica que g é 1 contínua em 1. Definição 3.1. Seja f uma função definida num intervalo aberto I contendo a, eceto, possivelmente no próprio a. Olimite de f() quando se aproima de a é l, notadopor lim f() =l se f() l puder se tornar tão pequeno quanto desejarmos, tomando suficientemente próimo de a, masnãoigualaa (i.e. tornando a tão pequeno quanto necessário, contando que a > 0). 19

2 20 CAPÍTULO 3. LIMITES E CONTINUIDADE Limites e operações Proposição 2. Suponha os limites lim f() =l 1 e lim g() =l 2 eistirem e forem finitas, então: a) lim [f + g]() = lim f()+ lim g() =l 1 + l 2 b) lim [f g]() = lim f() lim g() =l 1 l 2 c) lim [f.g]() = lim f(). lim g() =l 1 l 2 f lim f() d) lim g () = lim g() = l 1,sel 2 =0 l 2 Eemplos. Ache lim , lim , lim 5 5. Proposição 3. Sejam a, l 1,l 2 R. Se f e g são duas funções contínuas que verificam lim 1 lim g() =l 2 l 1 então lim g f() =l 2. Conseqüências: a) lim (f()) n = b) lim n f() = n Eemplo. lim Continuidade n lim f() lim f(), desde que lim f() 0 se n for par = 2 Definição 3.2. Dizemos que uma função f é contínua num ponto a quando as seguintes condições estão satisfeitas: a) f está definida em a (ou seja, a D f ) b) f() tem limite com a eesselimiteéigualaf(a): lim f() =f(a) Dizemos que f écontínuanumintervaloi se é contínua em cada ponto de I. Proposição 4. Sejam f e g duas funções contínuas num intervalo I e k R. f + g é contínua em I.

3 3.1. LIMITE NO PONTO 21 k.f é contínua em I. f.g é contínua em I. Se além das hipóteses g não zera em I, então 1 g e f g são contínuas em I. Proposição 5. Se f é contínua num intervalo I e g contínua num intervalo J contendo f(i). Então f g é contínua em I. Pelas proposições acima, podemos dizer que todas funções com que lidaremos nesse curso serão contínuas em seu domínio (e mesmo, em geral deriváveis). Teorema 3.1. Toda função algébrica é continua no seu domínio Eemplo. f() = écontínuaemd f =[ 4, 1[ ]1, + ) As dificuldades se encontram então no bordo do domínio (no eemplo acima em =1enoinfinitoqueabordaremosemseguida),ounospontosdetransições pelas funções definidas por parte. Pode acontecer que a falta de continuidade num ponto fora do domínio seja artificial. Como por eemplo a função f dada na introdução que não é contínua em =1somente porque não está definida neste ponto. Porque não definir f em 1 como sendo igual a 2? Isto é perfeitamente natural e sempre que uma função tiver limite finito quando a, énaturaldefinirf em a como sendo esse limite: f(a) := lim f(). Eemplos. f() = 2 4, = 4; lim f() =8.Definimosf(4) = f() = , = 2, 1 ; lim f() =4.Definimosf(2) = 4 (mas 2 2 f fica indefinida em = 1). Mas em geral, um ponto não pertence ao domínio porque a função não tem um limite finito nesse ponto (como a função acima no ponto = 1) Limite infinito Não sempre uma função tem um limite finito quando nos aproimamos de um ponto dado. Observe o comportamento da função f() = 1 (1+) quando está 2 próimo de 1 (mas não igual a 1). Vemos que quando se aproima cada vez mais de 1, f() cresce sem limitação.

4 22 CAPÍTULO 3. LIMITES E CONTINUIDADE Definição 3.3. Seja f() uma função definida em um intervalo aberto contendo a, eceto,possivelmente,em = a. Dizemos que f() aumenta ilimitadamente a medida que se aproima de a, notadopor lim f() =+ se f() puder ser tornar maior que qualquer número positivo prefiado tomandose suficientemente próimo de a, issoé a suficientemente pequeno mas a =0. Definição 3.4. De modo semelhante podemos definir lim f() = quando f() decresce ilimitadamente a medida que se aproima de a. Isso é f() pode ser tornado menor do que qualquer número negativo prefiado tomando-se a suficientemente pequeno e a > 0. Eemplo. f() = 1 2 ; lim f() = Limites laterais Algumas funções eibem comportamentos diferentes em cada um dos lados de um ponto = a. Por eemplo, a função inversa 1 não tem limite em 0, os valores 1 não cabem em nenhuma das definições acima porque a função cresce quando nos aproimamos de =0pelo lado direito mas decresce se nos aproimamos pelo lado esquerdo... Por isso, aprimorando nossas definições, vamos considerar o limite à direita eolimite à esquerda de uma função num dado ponto. Denotando 0 + para significar que se aproima de 0 por valores superiores e 0 para significar que se aproima de 0 por valores inferiores, poderemos escrever 1 1 lim = e lim =+. Definição 3.5. Seja f uma função e a um número real; λ pode ser um número real, ou +. Dizemosqueλ éolimite à esquerda de f quando tende para a, eescrevemos lim f() =λ se nas definições de limite vale a>0. Definição 3.6. Dizemos que λ éolimite à direita de f quando tende para a, eescrevemos lim f() =λ + se nas definições de limite vale a<0.

5 3.1. LIMITE NO PONTO 23 Eemplos. f() = 2 +1,determine lim f() e lim f() f() =,determine f() = lim se <3 9 2 se se 3 < lim f() e lim f() f() e lim f(). Esboceográficodef. +,determine lim f(), lim f(), Olimitedefinidoasseçõesanterioreséditolimitebilateral. Olimitebilateral eiste se e só se ambos limites laterais eistem e coincidem: lim f() =λ lim f() =λ = lim f(). Definição 3.7. Se o limite de f em a ou a + ou a éoinfinito,dizemosquea curva y = f() tem a reta = a como assíntota vertical. Eemplo. Oeiovertical =0éassíntotaverticaldafunçãoinversa Operações com limites infinitos e indeterminações lim f() lim g() h() = lim h() + + f()+g() f() g() indeterminado + l f()+g() f().g() + + l = 0 f().g() ± ± 0 f().g() indeterminado l ± f()/g() 0 ± ± f()/g() indeterminado + l = 0 f()/g() ± l = 0 0 ± f()/g() ± 0 0 f()/g() indeterminado Os limites indeterminados precisem um estudo caso por caso. As indeterminações do tipo 0/0 são freqüentemente assimiláveis a derivadas.

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

x 1 f(x) f(a) f (a) = lim x a

x 1 f(x) f(a) f (a) = lim x a Capítulo 27 Regras de L Hôpital 27. Formas indeterminadas Suponha que desejamos traçar o gráfico da função F () = 2. Embora F não esteja definida em =, para traçar o seu gráfico precisamos conhecer o comportamento

Leia mais

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x)

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x) . Limites Ao trabalhar com uma função nossa primeira preocupação deve ser o seu domínio (condição de eistência) afinal só faz sentido utilizá-la nos pontos onde esteja definida e sua epressão matemática

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina0.com.br Funções Reais CÁLCULO VOLUME ZERO - Neste capítulo, estudaremos as protagonistas do longa metragem

Leia mais

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0.

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0. 4. Em cada caso use a definição para calcular f 0 (). (a) f () = 3, R (b) f () =/, 6= 0 (c) f () =/, > 0. 4.2 Mostre que a função f () = /3, R, não é diferenciável em =0. 4.3 Considere a função f : R R

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 00/ SUMÁRIO. LIMITES E CONTINUIDADE..... NOÇÃO INTUITIVA DE LIMITE..... FUNÇÃO CONTÍNUA NUM

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 008/ . CONCEITO DE FUNÇÃO As funções são as melhores ferramentas para descrever

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS 1 MATEMÁTICA PROF. ILYDIO PEREIRA DE SÁ ESTUDO DAS DERIVADAS (CONCEITO E APLICAÇÕES) No presente capítulo, estudaremos as

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Esboço de Curvas Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para esboçar uma curva A. Verifique o domínio da função Exemplo: f(x) = 1 x {x x = 0} Roteiro para esboçar

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2011/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2011/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 0/ SUMÁRIO. FUNÇÕES REAIS DE UMA VARIÁVEL..... CONCEITO..... ZEROS DE UMA

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

Estrutura de Repetição Simples

Estrutura de Repetição Simples Instituto de Ciências Eatas e Biológicas ICEB Lista de Eercícios Básicos sobre Laço Estrutura de Repetição Simples Eercício 01 Escreva um programa que imprima todos os números inteiros de 0 a 50. A seguir,

Leia mais

Manual de Matemática para o 12º ano Matemática A. NIUaleph 12 VOLUME 3. Jaime Carvalho e Silva Joaquim Pinto Vladimiro Machado

Manual de Matemática para o 12º ano Matemática A. NIUaleph 12 VOLUME 3. Jaime Carvalho e Silva Joaquim Pinto Vladimiro Machado Manual de Matemática para o 1º ano Matemática A NIUaleph 1 VOLUME 3 Jaime Carvalho e Silva Joaquim Pinto Vladimiro Machado 01 Título NiuAleph 1 - Manual de Matemática para o 1º ano de Matemática A Autores

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional.

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional. Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 3 - GABARITO 06 de julho de 013 1. (1,5 pontos) Determine se as afirmações

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Chapter 2. 2.1 Noções Preliminares

Chapter 2. 2.1 Noções Preliminares Chapter 2 Seqüências de Números Reais Na Análise os conceitos e resultados mais importantes se referem a limites, direto ou indiretamente. Daí, num primeiro momento, estudaremos os limites de seqüências

Leia mais

Aula 8 Distância entre pontos do plano euclidiano

Aula 8 Distância entre pontos do plano euclidiano Distância entre pontos do plano euclidiano MÓDULO - AULA 8 Aula 8 Distância entre pontos do plano euclidiano Objetivos Nesta aula, você: Usará o sistema de coordenadas para calcular a distância entre dois

Leia mais

Introdução ao cálculo diferencial

Introdução ao cálculo diferencial Introdução ao cálculo diferencial Introdução ao cálculo diferencial_011indd 1 0/0/011 10:03: UNIVERSIDADE FEDERAL DE MINAS GERAIS Reitor: Clélio Campolina Diniz Vice-Reitora: Rocksane de Carvalho Norton

Leia mais

(Testes intermédios e exames 2010/2011)

(Testes intermédios e exames 2010/2011) (Testes intermédios e eames 00/0) 57. Na Figura, está parte da representação gráfica da função f, de domínio +, definida por f() = log 9 () Em qual das opções seguintes está definida uma função g, de domínio,

Leia mais

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II z t t C C α y β y Colaboradores para elaboração da apostila: Elisandra Bär de Figueiredo, Enori Carelli, Ivanete Zuchi Siple, Marnei Luis Mandler, Rogério

Leia mais

CÁLCULO PARA ECONOMIA E ADMINISTRAÇÃO: VOLUME I

CÁLCULO PARA ECONOMIA E ADMINISTRAÇÃO: VOLUME I CÁLCULO PARA ECONOMIA E ADMINISTRAÇÃO: VOLUME I MAURICIO A. VILCHES Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total

Leia mais

Aula 17 Continuidade Uniforme

Aula 17 Continuidade Uniforme Continuidade Uniforme Aula 17 Continuidade Uniforme MÓDULO 2 - AULA 17 Metas da aula: Discutir o conceito de função uniformemente contínua, estabelecer o Teorema da Continuidade Uniforme e o Teorema da

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS DE AULA FUNÇÕES DE VÁRIAS VARIÁVEIS - DIFERENCIAÇÃO Cláudio Martins Mendes Segundo Semestre de 2005 Sumário 1 Funções de Várias Variáveis - Diferenciabilidade 2 1.1 Noções Topológicas no R n.............................

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Semana 2 Limites Uma Ideia Fundamental

Semana 2 Limites Uma Ideia Fundamental 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 2 Limites Uma Ideia Fundamental Professor Luciano Nóbrega UNIDADE 1 2 O LIMITE DE UMA FUNÇÃO Inicialmente, vamos analisar o comportamento da função f definida

Leia mais

1 A Integral por Partes

1 A Integral por Partes Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL FERREIRA, Eliézer Pires Universidade Estadual de Goiás - UnU Iporá eliezer_3d@hotmail.com SOUZA, Uender Barbosa de Universidade Estadual

Leia mais

LIMITES E CONTINUIDADE DE FUNÇÕES

LIMITES E CONTINUIDADE DE FUNÇÕES Capítulo 4 LIMITES E CONTINUIDADE DE FUNÇÕES 4. Introdução O desenvolvimento teórico de grande parte do Cálculo foi feito utilizando a noção de ite. Por eemplo, as definições de derivada e de integral

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA APLICADA À ECONOMIA

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA APLICADA À ECONOMIA PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA APLICADA À ECONOMIA Prof. Francisco Leal Moreira / SUMÁRIO. FUNÇÕES DE DUAS VARIÁVEIS.. FUNÇÕES HOMOGÊNEAS.. CURVAS

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime Diurno/Nocturno Disciplina de COMPLEMENTOS DE MATEMÁTICA Ano lectivo de 7/8 - º Semestre Etremos

Leia mais

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas ac C Á L C U L O D I F E R E N C I A L E I N T E G R A L I 02 Prof. ADRIANO CATTAI Apostila 02: Assíntotas NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

6. Aplicações da Derivada

6. Aplicações da Derivada 6 Aplicações da Derivada 6 Retas tangentes e normais - eemplos Encontre a equação da reta tangente e da normal ao gráfico de f () e, em 0 Represente geometricamente Solução: Sabemos que a equação da reta

Leia mais

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é:

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é: Integral Origem: Wikipédia, a enciclopédia livre. No cálculo, a integral de uma função foi criada para originalmente determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos?

Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? &DStWXOR±5HSUHVHQWDomRGH1~PHURVH(UURV,QWURGXomR Como aparecem os erros? Quais os seus efeitos? Como controlar esses efeitos? 7LSRVGH(UURV Erros inerentes à matematização do fenómeno físico: os sistemas

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

LIMITES E CONTINUIDADE

LIMITES E CONTINUIDADE Capítulo 3 LIMITES E CONTINUIDADE 3.1 Introdução A seguir, apresentaremos como listar os valores de uma função, no formato de tabela, em uma vizinhança de um ponto que não necessariamente pertence ao do

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis;

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis; UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Eistem situações nas quais há interesse em estudar o comportamento conjunto

Leia mais

Kely Diana Villacorta Villacorta Felipe Antonio Garcia Moreno. Cálculo Diferencial e Integral

Kely Diana Villacorta Villacorta Felipe Antonio Garcia Moreno. Cálculo Diferencial e Integral Kely Diana Villacorta Villacorta Felipe Antonio Garcia Moreno Cálculo Diferencial e Integral Editora da UFPB João Pessoa 14 UNIVERSIDADE FEDERAL DA PARAÍBA Reitora Vice-Reitor Pró-reitora de graduação

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Eemplo 1: Determinação

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1 Prof. William Mascia Resende Engenharia Elétrica ITAJUBÁ 2013 CENTRO UNIVERSITÁRIO DE ITAJUBÁ Curso: Engenharia

Leia mais

Valores e Vectores Próprios. Carlos Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal

Valores e Vectores Próprios. Carlos Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal Valores e Vectores Próprios Carlos Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal Ano Lectivo 24/25 Conteúdo Definição de Valor e Vector Próprios 2 2 Um Eemplo de Aplicação 8 3

Leia mais

Estudo do Sinal de uma Função

Estudo do Sinal de uma Função Capítulo 4 Estudo do Sinal de uma Função 4.1 Introdução Neste Capítulo discutimos o problema do estudo do sinal de uma função, assunto muitas vezes tratado de forma rápida e supercial nos ensinos básico

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1

APOSTILA 2015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 2015 1 APOSTILA 015 MATEMÁTICA PROFESSOR: DENYS YOSHIDA MATEMÁTICA 1º ANO DO ENSINO MÉDIO TÉCNICO - 015 1 Sumário 1.Conjuntos...5 1.1 Representação de conjuntos...5 1. Operações com conjuntos...6 1. Propriedades

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Green no Plano O teorema de Green permite relacionar o integral de linha ao longo de uma

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

Lista de Exercícios 4: Soluções Sequências e Indução Matemática

Lista de Exercícios 4: Soluções Sequências e Indução Matemática UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,

Leia mais

Problemas de O-mização. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Problemas de O-mização. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Problemas de O-mização Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para resolver problemas de o-mização 1. Compreenda o problema a) O que é desconhecido? b) Quais as

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016 1 Roteiro Atividades Mat146 Semana4: /08/16 a 6/08/016 1. Matéria dessa semana de acordo com o Plano de ensino oicial: Assíntotas Horizontais e Verticais. Continuidade. Material para estudar: Assíntotas

Leia mais

Gráficos de Funções Trigonométricas

Gráficos de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções

Leia mais

Sua interface é semelhante a de um processador de textos do tipo WYSIWYG, ou seja, What you see is what you get (o que você vê é o que você faz).

Sua interface é semelhante a de um processador de textos do tipo WYSIWYG, ou seja, What you see is what you get (o que você vê é o que você faz). Mathcad COMANDOS BÁSICOS O software Mathcad é um ambiente de trabalho baseado em Álgebra Computacional, dirigido a profissionais técnicos, educadores e estudantes. Permite a escrita de epressões matemáticas

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

X.0 Sucessões de números reais 1

X.0 Sucessões de números reais 1 «Tal como a tecnologia requer as tøcnicas da matemætica aplicada, tambøm a matemætica aplicada requer as teorias do nœcleo central da matemætica pura. Da l gica matemætica topologia algøbrica, da teoria

Leia mais

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários:

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1 1.1 Função Real de Variável Real A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1. Um conjunto não vazio para ser o domínio;

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação COMPUTAÇÕES NUMÉRICAS.0 Representação O sistema de numeração decimal é o mais usado pelo homem nos dias de hoje. O número 0 tem papel fundamental, é chamado de base do sistema. Os símbolos 0,,, 3, 4, 5,

Leia mais