Função par e função ímpar

Tamanho: px
Começar a partir da página:

Download "Função par e função ímpar"

Transcrição

1 Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função ar O gráfico de uma função ar é simétrico com relação ao eio! Uma função real f : D C é ar se f ( ) =f (), D. Eemlo de função ar: f () =1 4. De fato: ara todo R, f ( ) =1 ( ) 4 = 1 4 = f (). Note que a definição de função ar ressuõe que o domínio D seja simétrico com relação a origem 0: se ertence a D, então também deve ertencer a D. Parte 3 Pré-Cálculo 3 Parte 3 Pré-Cálculo 4

2 Função ímar Função ímar Definição O gráfico de uma função ímar é simétrico com relação à origem! Uma função real f : D C é ímar se f ( ) = f (), D. Eemlo de função ímar: f () = 5 +. De fato: ara todo R, f ( ) =( ) 5 +( ) = 5 = ( 5 + ) = f (). Note que a definição de função ímar ressuõe que o domínio D seja simétrico com relação a origem 0: se ertence a D, então também deve ertencer a D. Parte 3 Pré-Cálculo 5 Parte 3 Pré-Cálculo 6 Observações Observações Eistem funções que não são ares e nem ímares: f () =2 3. De fato: f ( 1) =3 1 = f (1) e f ( 1) =3 1 = f (1). Eiste um função que seja ar e ímar ao mesmo temo? Sim! A função identicamente nula definida em R! Toda função definida em R se escreve como soma de uma função ar e uma função ímar: f () = f ()+f( ) {{ 2 ar + f () f ( ). {{ 2 ímar Parte 3 Pré-Cálculo 7 Parte 3 Pré-Cálculo 8

3 Eercício A função = f () = definida em R {0 é ar? Ela é ímar? Justifique sua resosta! Solução. A função f é ímar, ois f ( ) = ( )2 3 ( ) 3 = = f (), ara todo R {0. A função não é ar, ois f ( 1) =2 2 = f (1). Modelagem, máimos e mínimos de funções reais Parte 3 Pré-Cálculo 9 Parte 3 Pré-Cálculo 10 Motivação: o roblema da caia Motivação: o roblema da caia Você foi contratado or uma emresa que fabrica caias sem tama. Cada caia é construída a artir de um folha retangular de aelão medindo 30 cm 50 cm. Para se construir a caia, um quadrado de lado medindo cm é retirado de cada canto da folha de aelão. 30 cm 50 cm Deendendo do valor de, diferentes caias (com diferentes volumes) odem ser confeccionadas. O roblema é determinar o valor de a fim de que a caia corresondente tenha o maior volume ossível. Parte 3 Pré-Cálculo 11 Parte 3 Pré-Cálculo 12

4 O roblema da caia O roblema da caia 30 cm 50 cm Aqui, = f () = (30 2 )(50 2 ) = e A =(0, 15). Parte 3 Pré-Cálculo 13 Parte 3 Pré-Cálculo 14 Etremos globais Definição Seja f : D C uma função e seja A um subconjunto do domínio D. (1) Dizemos que A é um onto de máimo global (ou máimo absoluto) def em A se f () f (), A. Neste caso, f () é denominado de valor máimo da função f em A. (2) Dizemos que A éumonto de mínimo global (ou mínimo absoluto) de f em A se f () f (), A. Neste caso, f () é denominado de valor mínimo da função f em A. (3) Dizemos que A éumetremo global (ou etremo absoluto) def em A se é um onto de máimo global ou é um onto de mínimo global de f em A. Etremos locais Definição Seja f : D C uma função e seja A um subconjunto do domínio D. (1) Dizemos que A éumonto de máimo local (ou máimo relativo) de f em A se eiste um intervalo aberto I, com I e f () f (), I A. (2) Dizemos que A éumonto de mínimo local (ou mínimo relativo) de f em A se eiste um intervalo aberto I, com I e f () f (), I A. (3) Dizemos que A éumetremo local (ou etremo relativo)def em A se é um onto de máimo local ou é um onto de mínimo local de f em A. Parte 3 Pré-Cálculo 15 Parte 3 Pré-Cálculo 16

5 Eemlo: = f () = , A =[ 1, 4] O onto de máimo global de f em A é = 1. Eemlo: = f () = , A =[ 1, 4] O onto de mínimo global de f em A é = Parte 3 Pré-Cálculo 17 Parte 3 Pré-Cálculo 18 Eemlo: = f () = , A =[ 1, 4] Os ontos de máimo local de f em A que não são globais são = 1eq = 4. Eemlo: = f () = , A =[ 1, 4] O onto de mínimo local de f em A que não é global é = Parte 3 Pré-Cálculo 19 Parte 3 Pré-Cálculo 20

6 Eemlo: = f () =, A =( 1, +1) A função f não ossui etremos locais nem etremos globais em A. Calcular os etremos de uma função ode ser difícil! Quais são os etremos da função f abaio? 1 f () = = 15 3 ( ) = é onto de mínimo global de f em R. 6 A função f não ossui outros etremos globais em R. 1 A discilina de Cálculo ensinará novas ferramentas ara se resolver questões deste tio! Parte 3 Pré-Cálculo 21 Parte 3 Pré-Cálculo 22 Calcular os etremos de uma função ode ser difícil! f () = Módulo (ou valor absoluto) de um número real: a função modular Parte 3 Pré-Cálculo 23 Parte 3 Pré-Cálculo 24

7 Módulo (ou valor absoluto) de um número real Definição f () = = Eemlos: {, se 0,, se < 0. Módulo (ou valor absoluto) de um número real Mais eemlos: 1 2 = 2 1, π 3.14 = π 3.14, = 2 + 1, = {, se 0,, se < 0, 2 = 2, 2 = 2, 0 = 0, 2 = 2, 1 = { 1, se 1, + 1, se < = = { { 2 1, se 2 1 0, ( 2 1), se 2 1 < 0, 2 1, se 1ou 1, 2 + 1, se 1 < < 1. Parte 3 Pré-Cálculo 25 Parte 3 Pré-Cálculo 26 Módulo (ou valor absoluto) de um número real Proriedades a R, a 0. Além disso, a = 0 a = 0. Observação: a = b a = b ou a = b. a = b b 0e(a = b ou a = b). = = {, se 0,, se < 0, se > 0, 0, se = 0,, se < 0. = {, se > 0,, se 0 a, b R, a b = a b. a R, b R {0, a/b = a / b. < a a < < a. Vale também que a a a. > a < a ou > a. Vale também que a a ou a. a, b R, a + b a + b (desigualdade triangular). a, b R, a b a b. Parte 3 Pré-Cálculo 27 Parte 3 Pré-Cálculo 28

8 Proriedade [PM01]: demonstração a R, a 0. Além disso, a = 0 a = 0. Proriedade [PM02]: demonstração a = b a = b ou a = b. Demonstração. Se a R, então, ou a > 0, ou a = 0oua < 0. Se a > 0, então a = a > 0. Se a = 0, então a = 0. Se a < 0, então a = a > 0 (ois se a < 0, então a > 0). Em todos os três casos, a 0. Vamos agora demonstrar que a = 0 a = 0. ( ) Suonha, or absurdo, que eista a R tal que a = 0 e a 0. Se a = 0, então a > 0oua < 0. Nos dois casos, a > 0, uma contradição. Portanto, vale que a = 0 a = 0. ( ) Se a = 0, então, or definição, a = 0. Demonstração. ( ) Sejam a, b R tais que a = b. Vamos dividir a rova em vários casos, de acordo com os sinais de a edeb. Em todos eles, veremos que a = b a = b ou a = b. a = 0e a = b b = a = 0 b = 0ea = 0 a = b. b = 0e a = b a = b = 0 a = 0eb = 0 a = b. a > 0, b > 0e a = b a = b. a > 0, b < 0e a = b a = b. a < 0, b > 0e a = b a = b a = b. a < 0, b < 0e a = b a = b a = b. ( ) Se a = b, então a = b. Sea = b, então { b, se b 0, a = b = ( b), se b < 0 = { b, se b 0, b, se b > 0 = b. Parte 3 Pré-Cálculo 29 Parte 3 Pré-Cálculo 30 Proriedade [PM03]: demonstração a = b b 0e(a = b ou a = b). Proriedade [PM04]: demonstração a, b R, a b = a b. Demonstração. ( ) Sejam a, b R tais que a = b. Por [PM01], b 0. Portanto, b = b. Sendo assim, a = b a = b. Por [PM02], segue-se então que a = b ou a = b. ( ) Por [PM02], se a = b ou a = b, então a = b. Como b 0, b = b. Logo, a = b. Demonstração. Vamos dividir a rova em vários casos, de acordo com os sinais de a e de b. a = 0 a b = 0e a = 0 a b = 0e a b = 0 a b = a b. b = 0 a b = 0e b = 0 a b = 0e a b = 0 a b = a b. a > 0eb > 0 a b > 0e a = a e b = b a b = a b = a b. a > 0eb < 0 a b < 0e a = a e b = b a b = a b = a ( b) = a b. a < 0eb > 0 a b < 0e a = a e b = b a b = a b =( a) b = a b. Observação. A sentença a = b a = b ou a = b é verdadeira! a < 0eb < 0 a b > 0e a = a e b = b a b = a b =( a) ( b) = a b. Em todos os casos, vemos que semre a b = a b. Mas sua recíroca é falsa! (Eercício!) Parte 3 Pré-Cálculo 31 Parte 3 Pré-Cálculo 32

9 Proriedade [PM05]: demonstração a R, b R {0, a/b = a / b. Proriedade [PM06]: demonstração < a a < < a. Vale também que a a a. Demonstração. Vamos mostrar rimeiro que b R {0, 1/b = 1/ b. Se b > 0, então 1/b > 0e b = b. Portanto, 1/b = 1/b = 1/ b. Seb < 0, então 1/b < 0e b = b. Portanto, 1/b = 1/b = 1/( b) = 1/ b. Mostramos assim que 1/b = 1/ b ara todo b 0. De osse deste resultado e usando [PM04], temos que a R e b R {0, a b = a 1 a b = 1 b = a 1 b = a b. Demonstração. Vamos demonstrar que < a a < < a. A demonstração de que a a a fica como eercício. Se a 0, então a equivalência é verdadeira or vacuidade: não eiste nenhum número real tal que < a, como não eiste nenhum número real tal que a < < a, quando a 0. Suonha então que a > 0. Temos então que < a ( < 0e = < a) ou ( 0e = < a) ( < 0e > a) ou ( 0e < a) a < < 0 ou 0 < a a < < a. Parte 3 Pré-Cálculo 33 Parte 3 Pré-Cálculo 34 Proriedade [PM07]: demonstração > a < a ou > a. Vale também que a a ou a. Proriedade [PM08]: demonstração a, b R, a + b a + b (desigualdade triangular). Demonstração. Vamos demonstrar que > a < a ou > a. A demonstração de que a a ou a fica como eercício. Se a < 0, então > a R e < a ou > a R. Logo, se a < 0, então > a < a ou > a. Se a = 0, então > a R {0 e < a ou > a R {0. Logo, se a = 0, então > a < a ou > a. Suonha então que a > 0. Temos então que > a ( < 0e = > a) ou ( 0e = > a) ( < 0e < a) ou ( 0e > a) < a ou > a. Demonstração. Observe que, ara todo R, (eercício). Assim: a a a e b b b (eercício da lista) (eercício da lista) a b a + b a + b ( a + b ) a + b a + b [PM06] [PM06] a + b a + b. Parte 3 Pré-Cálculo 35 Parte 3 Pré-Cálculo 36

10 Proriedade [PM09]: demonstração Interretação geométrica a, b R, a b a b. Demonstração. Usando a desigualdade triangular, temos que a = b +(a b) b + a b a b a b e b = a +(b a) a + b a = a + a b a b a b. Desta maneira: a b a b e a b a b. Segue-se então, or [PM06], que a b a b. E D A C B d(a, B) =+2 d(b, C) =+1 d(b, E) =+5 d(d, E) =+2 Parte 3 Pré-Cálculo 37 Parte 3 Pré-Cálculo 38 Interretação geométrica Duas roriedades imortantes a b < a a < < a > a < a ou > a d(a, b) = { b a, se b a, a b, se b < a = b a. Para justificar estas roriedades, lembre-se que = 0 é a distância entre e0. Moral: b a reresenta a distância entre os números a e b na reta numérica. a a 0 Parte 3 Pré-Cálculo 39 Parte 3 Pré-Cálculo 40

11 Alicação Alicação Resolva a desigualdade < 2. Resolva a desigualdade > {{ 2 < 2 2 < 3 + {{ 2 < < 2 < < 2 < < < 1 2 S = ] 5 [ 2, {{ + 5 > 3 2 {{ + 5 < 3 ou 2 {{ + 5 > 3 2 < 3 5 ou 2 > < 8 ou 2 > 2 < 4 ou > 1 S =], 4[ ] 1, + [ Parte 3 Pré-Cálculo 41 Parte 3 Pré-Cálculo 42 Alicação Resolva geometricamente a desigualdade + 1 < = ( 1) é a distância de a 1. 2 é a distância de a2. Se ( 1) < 2, então a distância de a 1 deve ser menor do que a distância de a2. 1/ S = ], 1 [. 2 Parte 3 Pré-Cálculo 43

Módulo (ou valor absoluto) de um número real: a função modular

Módulo (ou valor absoluto) de um número real: a função modular Matemática Básica Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Módulo (ou valor absoluto) de um número real: a função modular Parte 5 Parte 5 Matemática Básica

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Aula 7 10 de setembro de 2010 Aula 7 Pré-Cálculo 1 Módulo (ou valor absoluto) de um número real x

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 9 30 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 9 30 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 9 3 de abril de Aula 9 Pré-Cálculo Cuidado! Se os eios coordenados são desenhados com escalas

Leia mais

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?

Leia mais

A seguir veremos o conceito de limites das funções de duas ou mais variáveis.

A seguir veremos o conceito de limites das funções de duas ou mais variáveis. Limites de Função de várias variáveis. Limites: No curso de CDI-I estudamos ite de uma função real de uma variável. A definição rigorosa de ite é dada or: f ( L, ( / se A seguir veremos o conceito de ites

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Funções crescentes Funções

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

Gabarito da Lista 6 de Microeconomia I

Gabarito da Lista 6 de Microeconomia I Professor: Carlos E.E.L. da Costa Monitor: Vitor Farinha Luz Gabarito da Lista 6 de Microeconomia I Eercício Seja Y um conjunto de ossibilidades de rodução. Dizemos que uma tecnologia é aditiva quando

Leia mais

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira MATEMÁTICA 3 Professor Renato Madeira MÓDULO 1 Lógica SUMÁRIO 1. Proosição. Negação 3. Conectivos 4. Condicionais 4.1. Relação de imlicação 4.. Relação de equivalência 5. Álgebra das roosições 6. Quantificadores

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função par e função ímpar Parte 4 Parte 4 Pré-Cálculo 1 Parte 4 Pré-Cálculo 2 Função par Definição

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 11 28 de maio de 2010 Aula 11 Pré-Cálculo 1 A função raiz quadrada f : [0, + ) [0, + ) x y

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites 0. Formas Indeterminadas 0=0 = 0 0 02. Oerações com os símbolos + = = ( ) = = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k=0 = ; k 6= 0 03.

Leia mais

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Limites, Assíntotas Horizontais e Assíntotas Verticais [0] (2006.2) Considere a função f() =

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites 3.A Em cada caso abaio calcule o ite de f (), quando! a (a) f () = 2 + 5; a = 7 (b) f () = 3 3 + + ; a = 0 (c) f () = 2 + 3 0 ; a = 5 (d) f () = 2 4 + 5 3 + 2 2 ; a = 2 (e) f () =

Leia mais

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1 UFF- EGM- GMA- Lista de Pré-Cálculo (7 páginas) 9- LISTA )Resolva, se possível, as equações, indicando em cada passo a propriedade algébrica dos números reais utilizada. i) ( + ) = ii) 5 = iii) + = iv)

Leia mais

Matemática E Extensivo V. 4

Matemática E Extensivo V. 4 Etensivo V. Eercícios n 0) a) Por roriedade, 0. Logo 0. Ou ainda, 0 0 0 0! 0! 0! b) Por roriedade, n 0. Logo. Ou ainda, 0 0!! 0!!! c) Por roriedade, n n. Logo. Ou ainda,!!( )!!!!!! d) Por roriedade, n.

Leia mais

Matemática A Extensivo V. 3

Matemática A Extensivo V. 3 Etensivo V. Eercícios 0) a) S = {, } b) S = c) S = ; 4 d) S = {,,, } e) S = ; a) + = Pela propriedade IX temos: + = ou + = = = = = Para = Para = + = + = = = = (ok) = (ok) S = {, } b) = + Pela propriedade

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO

EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO. Ano de Escolaridade (Decreto-Lei n. 86/8, de de Agosto Programas novos e Decreto-Lei n. 74/004, de 6 de Março) Duração da rova: 50 minutos.ª FASE 007 VERSÃO PROVA ESCRITA

Leia mais

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 07 Aula 9 Matemática Básica 1 Aula 9 Matemática Básica 2 O que é uma

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 19/02/2016

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 19/02/2016 COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 9//6 Série/Turma: a série EM Discilina: Matemática Professor(: Wsner Ma Oerações envolvendo matrizes Período: o Bimestre Valor: Nota: Aluno(: Efetue as oerações

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo 1 Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?

Leia mais

Física III. João Francisco Fuzile Rodrigues Garcia Maiara Fernanda Moreno

Física III. João Francisco Fuzile Rodrigues Garcia Maiara Fernanda Moreno Física III João Francisco Fuzile Rodrigues Garcia 8549323 Maiara Fernanda Moreno 8549344 Eercício 23.85 Ao longo do eio central de um disco carregado uniformemente, em um onto a 0,60m do centro do disco,

Leia mais

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

MATEMÁTICA Professores: Adriano, Andrey, Aurélio e Rodrigo Comentário Geral Prova bem abrangente como todos os anos, mas com dois detalhes que

MATEMÁTICA Professores: Adriano, Andrey, Aurélio e Rodrigo Comentário Geral Prova bem abrangente como todos os anos, mas com dois detalhes que MTEMÁTIC rofessores: driano, ndrey, urélio e Rodrigo Comentário Geral rova bem abrangente como todos os anos, mas com dois detalhes que chamaram a atenção. rimeiro a ausência de uma questão de trigonometria

Leia mais

matematicaconcursos.blogspot.com

matematicaconcursos.blogspot.com Professor: Rômulo Garcia Email: machadogarcia@gmail.com Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA

MATEMÁTICA COMENTÁRIO DA PROVA COMENTÁRIO DA PROVA Os objetivos desta rova discursiva foram lenamente alcançados. Os conteúdos rinciais foram contemlados, inclusive comlementando os tóicos abordados na ª. fase, mostrando uma conveniente

Leia mais

12 E 13 DE DEZEMBRO DE 2015

12 E 13 DE DEZEMBRO DE 2015 PROBLEMAS DO 1 o TORNEIO CARIOCA DE MATEMÁTICA 12 E 13 DE DEZEMBRO DE 2015 Conteúdo Notações 1 1 O suer-mdc 1 2 Os Reis do etróleo 2 3 Quadraturas de Triângulos 3 4 Um roblema bimodular 4 5 Sistemas de

Leia mais

SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM. Nome legível: Assinatura:

SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM. Nome legível: Assinatura: SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [01] (2.0) Resolva a desigualdade 1 x 2 2 x 3 0 usando a

Leia mais

Conjunto de Valores. A Função de Probabilidade (fp)

Conjunto de Valores. A Função de Probabilidade (fp) Prof. Lorí Viali, Dr. viali@mat.ufrgs.br htt://www.mat.ufrgs.br/~viali/ Bernoulli Binomial Binomial Negativa ou Pascal Geométrica Hiergeométrica Uniforme Poisson Eerimento Qualquer um que corresonda a

Leia mais

Distribuição de uma proporção amostral

Distribuição de uma proporção amostral Distribuição de uma roorção amostral Estatística II Antonio Roque Aula 4 Exemlo Ilustrativo: Suonha que se saiba que em uma certa oulação humana uma roorção de essoas igual a = 0, 08 (8%) seja cega ara

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,

Leia mais

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos: 1 Noções Básicas de Lógica 1.1 Proosições Uma roosição é uma frase ue ode ser aenas verdadeira ou falsa. 1. Os saos são anfíbios. 2. A caital do Brasil é Porto Alegre. 3. O tomate é um tubérculo. 4. Por

Leia mais

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f

Leia mais

Geometria Computacional Primitivas Geométricas. Claudio Esperança Paulo Roma Cavalcanti

Geometria Computacional Primitivas Geométricas. Claudio Esperança Paulo Roma Cavalcanti Geometria Comutacional Primitivas Geométricas Claudio Eserança Paulo Roma Cavalcanti Oerações com Vetores Sejam x e y vetores do R n e λ um escalar. somavetorial ( x, y ) = x + y multescalar ( λ, x ) =

Leia mais

Humberto José Bortolossi x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4)

Humberto José Bortolossi   x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4) SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (2.0) Resolva a inequação x 2 < x + 2 no conjunto dos

Leia mais

Conjunto de Valores. A Função de Probabilidade (fp)

Conjunto de Valores. A Função de Probabilidade (fp) Prof. Lorí Viali, Dr. viali@ucrs.br viali@mat.ufrgs.br htt://www.ucrs.br/famat/viali/ htt://www.mat.ufrgs.br/~viali/ Bernoulli Binomial Binomial Negativa ou Pascal Geométrica Hiergeométrica Uniforme Poisson

Leia mais

MAT Lista de exercícios para a 3 a prova

MAT Lista de exercícios para a 3 a prova Universidade de São Paulo Instituto de Matemática e Estatística MAT - Lista de eercícios para a a prova Valentin Ferenczi de maio de 9. Estude a função dada com relação a máimos e mínimos locais e globais.

Leia mais

Limites: Noção intuitiva e geométrica

Limites: Noção intuitiva e geométrica Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com

Leia mais

-- INSTRUÇÕES -- Elementos de Probabilidade e Estatística U.C de Junho de Duração da prova: 2 horas mais 30 minutos de tolerância.

-- INSTRUÇÕES -- Elementos de Probabilidade e Estatística U.C de Junho de Duração da prova: 2 horas mais 30 minutos de tolerância. Ministério da Ciência, Tecnologia e Ensino Suerior U.C. 037 Elementos de Probabilidade e Estatística de Junho de 0 -- INSTRUÇÕES -- O estudante deverá resonder à rova na folha de onto, reencher o cabeçalho

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 6 29 de março de 2010 Aula 6 Pré-Cálculo 1 Implicações e teoria dos conjuntos f (x) =g(x) u(x)

Leia mais

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Emresariais icroeconomia Licenciatura em Administração e Gestão de Emresas 3 de Novembro de Fernando Branco Eame de Finalistas Gabinete

Leia mais

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório de Dinâmica SEM 504 DINÂMICA ESTRUTURAL Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

1 + tg x. 3 sen 16x sen 2x + cos 4x. cos x cotg x (x) 1 + x2 + 1 (z) sec x cos x. (j) f(x) = 1 t. (n) f(x) = x 2 arctan(2x) + tan 3 (4x) sec 4 (x 2 )

1 + tg x. 3 sen 16x sen 2x + cos 4x. cos x cotg x (x) 1 + x2 + 1 (z) sec x cos x. (j) f(x) = 1 t. (n) f(x) = x 2 arctan(2x) + tan 3 (4x) sec 4 (x 2 ) Lista de Eercicios de Cálculo I () Calcule, utilizando a denic~ao, a derivada das seguintes func~oes: (a) f() = 5 (b) f() = + (c) f() = k (d) f() = (e) f() = (f) f() = (g) f() = (h) f() = n ara n (i) f()

Leia mais

VIGAS. Figura 1. Graus de liberdade de uma viga no plano

VIGAS. Figura 1. Graus de liberdade de uma viga no plano VIGS 1 INTRODUÇÃO viga é um dos elementos estruturais mais utiliados em ontes, assarelas, edifícios rincialmente ela facilidade de construção. Qual a diferença entre a viga e a barra de treliça? Uma viga

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 3 Parte 3 Matemática Básica 1 Parte 3 Matemática Básica 2 Qual é a negação do predicado

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

2. Sendo f(x) = x 4 e g(x) = 4 x calcule:

2. Sendo f(x) = x 4 e g(x) = 4 x calcule: Geometria linear Dados dois pontos distintos e, o primeiro postulado de Euclides nos permite construir, com a régua, o segmento. Notação: Depois de construído o segmento, tomamos o seu comprimento como

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4 Lógica ara Ciência da Comutação I Lógica Matemática Texto 18 Passos lógicos Sumário 1 Limitações do Método das Tabelas 2 1.1 Observações................................ 4 2 Passos lógicos 4 2.1 Observações................................

Leia mais

Funções potência da forma f (x) =x n, com n N

Funções potência da forma f (x) =x n, com n N Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1

Leia mais

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r "!$#%& '!)( * +-,/.10 2/3"456387,:9;2 .1?/@.1, ACB DFEHG IJDLK8MHNLK8OHP Q RTSVUVWYXVZ\[^]_W Este artigo se roõe a ser uma referência sobre os temas citados no título, que aarecem naturalmente em diversos

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA

FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA Última atualização: 9/05/007 Índice Sistema de coordenadas olares Conjunto abrangente 6 Coordenadas Cartesisnas x Coordenadas Polares 8 Simetrias

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy Conceitos básicos de redes neurais recorrentes Redes eurais e Sistemas Fuzzy Redes eurais Recorrentes A Rede de Hofield A suressão do ruído numa memória auto-associativa linear ode ser obtida colocando-se

Leia mais

Somas de números naturais consecutivos

Somas de números naturais consecutivos Julho 006 - nº 5 Somas de números naturais consecutivos António Pereira Rosa Escola Secundária Maria Amália Vaz de Carvalho, Lisboa. Introdução O objectivo deste trabalho é abordar o roblema da reresentação

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

LISTA DE EXERCÍCIOS. Demonstrações diretas e por absurdo

LISTA DE EXERCÍCIOS. Demonstrações diretas e por absurdo LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstrações diretas e por absurdo Diga se cada uma das sentenças abaixo é verdadeira ou falsa.

Leia mais

Matemática A Semi-Extensivo V. 2

Matemática A Semi-Extensivo V. 2 Matemática A Semi-Etensivo V. Eercícios 0) a) É função. b) Não é função, pois f() = e f() = 6. c) É função. d) Não é função. Eiste uma reta paralela ao eio y que corta o gráfico em pontos. e) Não é função.

Leia mais

Módulo e Função Modular

Módulo e Função Modular INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA-UERJ DISCIPLINA: MATEMÁTICA (FUNÇÕES) PROF S : QUARANTA / ILYDIO / 1 a SÉRIE ENSINO MÉDIO Módulo e Função Modular Função definida por mais de uma sentença

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites EXERCÍCIOS & COMPLEMENTOS 3. FORMAS INDETERMINADAS 0 0 0 0 OPERAÇÕES COM OS SÍMBOLOS + = = ( ) = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k =

Leia mais

02 Um paralelogramo está inscrito em uma circunferência e um de seus ângulos internos mede em graus 7 x 20º. O valor de x é : "1 "1 7 (C)

02 Um paralelogramo está inscrito em uma circunferência e um de seus ângulos internos mede em graus 7 x 20º. O valor de x é : 1 1 7 (C) 01 Um quadrilátero é circunscritível a um círculo e tem os lados roorcionais aos números 6, 18, e 6 e a soma das medidas de dois lados oostos dá 1. Podemos dizer que o roduto dos dois lados maiores dá

Leia mais

ALGA- 2005/ (i) det. 7 (ii) det. det (A) = a 11 a 22 a 33 a 44 a 55 a Calcule: (a) det

ALGA- 2005/ (i) det. 7 (ii) det. det (A) = a 11 a 22 a 33 a 44 a 55 a Calcule: (a) det ALGA- 00/0. (a) Calcule o sinal das seguintes ermutações: (i) (; ; ; ; ) (ii) (; ; ; ; ; ) (b) Use os resultados da alínea (a) ara calcular, usando a de nição, os determinantes: 0 0 0 0 0 0 0 0 0 0 0 0

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo/maximal) de cada uma das funções indicadas abaixo.

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo/maximal) de cada uma das funções indicadas abaixo. LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Função raiz quadrada, funções da forma y = f(x) = a 2 x 2, funções potência [01] Determine o domínio

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

3. ANÁLISE DE DADOS EXPERIMENTAIS

3. ANÁLISE DE DADOS EXPERIMENTAIS 3. AÁLISE DE DADOS EXPEIMETAIS 3. Introdução. Todo dado eerimental deve ser analisado através de algum tio de rocedimento. Um bom eerimentalista deve fazer todo o esforço ossível ara eliminar todos os

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos

RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos 03/11/017 RESISTÊNIA DOS MATERIAIS Marcel Merlin dos Santos TENSÃO EM EIXOS QUE SE DEVE À ARGA AXIAL E À TORÇÃO Ocasionalmente os eios circulares são submetidos a efeitos combinados de carga aial e torção.

Leia mais

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x,

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x, Elementos de Cálculo Dierencial Na aula anterior vimos a noção de derivada de uma unção. Supona que uma variável y seja dada como uma unção de uma outra variável, y ( ). Por eemplo, a variável y pode ser

Leia mais

Aula 26 A regra de L Hôpital.

Aula 26 A regra de L Hôpital. MÓDULO - AULA 6 Aula 6 A regra de L Hôpital Objetivo Usar a derivada para determinar certos ites onde as propriedades básicas de ites, vistas nas aulas 3, 4, e 5, não se aplicam Referência: Aulas 3, 4,

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

Exame de Recurso de Microeconomia I 24 de Julho de 2013

Exame de Recurso de Microeconomia I 24 de Julho de 2013 Exame de Recurso de Microeconomia I 4 de Julho de 0 uração: 0 minutos (ou 60 minutos ara quem está a fazer recurso da ª arte) Curso: N.º de aluno (NA): Nome Comleto Se desejar que esta rova seja só de

Leia mais

Mecânica dos Fluidos para Engenharia Química. Segunda aula 17/02/2009

Mecânica dos Fluidos para Engenharia Química. Segunda aula 17/02/2009 Mecânica dos Fluidos ara Engenharia uímica Segunda aula 7/0/009 O sonho ao lanejar cada semestre é viabilizar a FORMAÇÃO SUSTENTÁVEL Pratica-se a edagogia da curiosidade Educar é ensinar a ensar sozinho

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Etensivo v. 8 Eercícios 0) 9 6 = ; e = 3 centro Note que C = (0, 0). Também, c = e a = 3. Então, da equação c = b + a temos = b + 3 b = 4. Assim, a equação dessa hipérbole fica: = = 3 4 9 6 A ecentricidade

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

GABARITO COMENTÁRIO PROVA DE MATEMÁTICA (IV SIMULADO ITA/2007) QUESTÕES OBJETIVAS 3 ( 2) ( 2) = 3. 5 m. 64 x

GABARITO COMENTÁRIO PROVA DE MATEMÁTICA (IV SIMULADO ITA/2007) QUESTÕES OBJETIVAS 3 ( 2) ( 2) = 3. 5 m. 64 x D: 00 08 º EM MATEMÁTICA ITA IME SIMUL COMENT Rosângela o Ensino Médio PROVA DE MATEMÁTICA (IV SIMULADO ITA/00) GABARITO COMENTÁRIO QUESTÕES OBJETIVAS QUESTÃO 0 LETRA D Como a equação é do quinto grau

Leia mais

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo.

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo. LISTA DE EXERCÍCIOS Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 04 Transformações de gráficos de funções, função raiz quadrada, funções potência [01] Determine o domínio

Leia mais

Acréscimos e decréscimos - Resolução

Acréscimos e decréscimos - Resolução 0 (Unicam 5 ª fase) (Acréscimo e decréscimo ercentual) Uma comra no valor de.000 reais será aga com uma entrada de 600 reais e uma mensalidade de 4 reais. A taxa de juros alicada na mensalidade é igual

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA... MÓDULO... 6 PROPRIEDADES DO MÓDULO... 6 FUNÇÃO MODULAR... 9 GRÁFICO DA FUNÇÃO MODULAR... 9 EQUAÇÕES MODULARES... 7 INEQUAÇÕES MODULARES... 3 RESPOSTAS... 37

Leia mais

1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy

1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy 1ª Avaliação 1) Se = 3,666 e y = 0,777, calcule y ) Determine o conjunto solução do sistema de inequações: 7 0 1 3 0 3) Calcule m para que o gráfico de f( ) ( m 7m) no ponto de ordenada 10 = + corte o

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2 Lista Cálculo II -B- 007- Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 007- Domínio, curva de nível e gráfico de função real de duas variáveis

Leia mais

MÓDULO DE UM NÚMERO REAL

MÓDULO DE UM NÚMERO REAL Hewlett-ackard MÓDUL DE UM NÚMER REAL Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho, aulo Luiz Ano: 2016 Sumário Módulo de um número real... 0 Módulo de um número real (definição formal)... 0... 0 ropriedades

Leia mais