Invertendo a exponencial
|
|
|
- Betty Molinari Delgado
- 9 Há anos
- Visualizações:
Transcrição
1 Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira Etaa Comartilhar Ideias Atividade Caça Potências Você e seus colegas devem rocurar no Caça Potências conjuntos de três reresentações numéricas consecutivas que indicam o mesmo valor, como no exemlo. A rocura ode ser feita na horizontal, vertical ou diagonal. O jogo termina, quando o temo acabar. 1
2 Aós a discussão coletiva, registre em seu encarte todos os trios encontrados na sua turma. Aluno Segunda Etaa Um novo olhar... Atividade Ciclo de Valores 2
3 Matemática 3
4 Terceira Etaa Fique or dentro! Atividade Entrando no Mundo dos Gráficos A seguir, estão reresentadas as funções f ( x) = 2 x e g( x) = log2 x. Aluno 1. Verifique que o onto B 1 =(1, 2) ertence ao gráfico da função f. 2. Verifique que o onto C 2 =(4, 2) ertence ao gráfico da função g. 3. Observe as coordenadas dos ontos e. Qual a relação entre elas? 4. Agora, observe as coordenadas dos ontos B 1 e B 2 e deois dos ontos C 1 e C 2. As coordenadas dos ares de ontos aresentam a mesma relação que a dos ontos A 1 e A 2? 5. Imagine um onto D 1 no gráfico da função f(x) cuja abcissa vale 3. Mantendo-se a mesma relação observada nos itens 3 e 4, quais são as coordenadas do onto D 2 sobre o gráfico da função g(x)? Exlique como você ensou. 4
5 6. Observe os gráficos das funções f e g reresentados num mesmo lano cartesiano, juntamente com a reta ontilhada y = x. Matemática Pense numa maneira de obter o gráfico da função g a artir do gráfico da função f, levando-se em consideração a reta y = x. Quarta Etaa Quiz Atividade Avaliação Diagnóstica/ SAERJINHO
6 Aluno 6
7 Quinta Etaa Análise das Resostas ao Quiz Matemática Etaa Flex Para saber + Um cuidado que se deve ter, relativamente às otências de exoente fracionário, é com sua definição. A otência é definida como roduto de fatores iguais quando o exoente é um inteiro maior ou igual a 2, ois só nesses casos faz sentido falar em número de fatores. Os demais casos de exoentes, como 0, 1 e exoentes inteiros negativos são definidos searadamente com a intenção de manter a maioria das roriedades válidas ara as otências definidas como roduto de fatores iguais. Assim é que se define: a 1 como a, a 0 como 1, semre que a 0 (o caso de 0 0 não tem uma definição 7
8 que se alique semre, então não se define). Também ara a 0, é ossível definir a otência com exoente negativo como n a = 1, semre que n seja um número inteiro n a (o uso da divisão é que imõe a exigência de que a seja diferente de 0). Algumas justificativas já foram aresentadas, em outra dinâmica, ara mostrar que essas são definições naturais, elo interesse em manter roriedades que valiam ara otências de exoentes naturais maiores ou iguais a 2. Esta mesma razão levou à definição dada aqui da otência com exoente racional. Senão, vejamos: Se m e n são inteiros, então: ( n ) m nm a = a.. Preste atenção que q. q não odemos concluir q q a = a q que orque não sabemos o que seja a, mas odemos dar uma definição ara de forma que essa roriedade continue valendo. Qual será essa definição? Aluno Ora,. q = ; logo, ara manter a roriedade do cálculo de otência de otência, será necessário que q q. q q q a = a seja igual a a mas, o número que elevado a q dá a é a raiz de ordem q de a, então aí está a definição que estávamos rocurando: q q a = a, q 0 ea> 0 Reare que esta não é uma demonstração dessa igualdade, mas sim, uma definição do seu 1º membro que não tinha sentido antes de ser definido. Uma outra observação que ode ser interessante é que essa definição ermite transformar raízes em otências! O que torna quase todos os cálculos com radicais mais simles. O link abaixo refere-se à Aula de número 57 do Telecurso que aborda as otências com exoentes fracionários, incluindo sua definição, uma recordação das roriedades das otências e algumas alicações: htt:// 8
9 Agora, é com você! 1. Comlete as exressões nas ontas de modo que o valor da exressão em cada uma delas seja igual ao número do miolo : Matemática 2. Relacione os gráficos das funções exonenciais e logarítmicas que se encontram na coluna da esquerda com o gráfico corresondente de suas inversas na coluna da direita. 9
10 Aluno 10
Invertendo a exponencial
Reforço escolar M ate mática Invertendo a exponencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica DINÂMICA
M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano
Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,
Exames Nacionais. Prova Escrita de Matemática A 2009 VERSÃO Ano de Escolaridade Prova 635/1.ª Fase. Grupo I
Exames Nacionais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n. 7/00, de 6 de Março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos
Será que sou irracional?
Reforço escolar M ate mática Será que sou irracional? Dinâmica 2 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Conjuntos Aluno Primeira etapa Compartilhar
Função par e função ímpar
Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função
O lance é determinar!
Reforço escolar M ate mática O lance é determinar! Dinâmica 3 2ª Série 3º Bimestre Matemática 2 Série do Ensino Médio Algébrico Simbólico Matrizes e Determinantes PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE
Acertou no que não viu
Reforço escolar M ate mática Acertou no que não viu Dinâmica 5 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Algébrico simbólico Funções Aluno Primeira Etapa Compartilhar
Uma equação nada racional!
Reforço escolar M ate mática Uma equação nada racional! Dinâmica 5 9º Ano 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9ª Numérico Aritmético Radicais. DINÂMICA Equações
MATEMÁTICA COMENTÁRIO DA PROVA
COMENTÁRIO DA PROVA Os objetivos desta rova discursiva foram lenamente alcançados. Os conteúdos rinciais foram contemlados, inclusive comlementando os tóicos abordados na ª. fase, mostrando uma conveniente
Limite e Continuidade
Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de
Palitos e triângulos
Reforço escolar M ate mática Palitos e triângulos Dinâmica 8 3ª Série 3º Bimestre Matemática 3 Série do Ensino Médio Algébrico Simbólico Funções Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS ATIVIDADE PRIORIDADES:
Palitos e triângulos
Reforço escolar M ate mática Palitos e triângulos Dinâmica 8 2ª Série 3º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Funções Aluno Primeira Etapa Compartilhando
Valores e vectores próprios
Valores e Vectores Prórios - Matemática II- /5 Valores e vectores rórios De nem-se valores e vectores rórios aenas ara matrizes quadradas, elo que, ao longo deste caítulo e quando mais nada seja eseci
Ruas e esquinas. Dinâmica 6. Aluno Primeira Etapa Compartilhar ideias. 3ª Série 4º Bimestre
Reforço escolar M ate mática Ruas e esquinas Dinâmica 6 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica. Aluno Primeira Etapa Compartilhar
matematicaconcursos.blogspot.com
Professor: Rômulo Garcia Email: [email protected] Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente
Qual é o número? Dinâmica 2. Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS. 3ª Série 1º Bimestre ATIVIDADE IGUAIS OU DIFERENTES?
Reforço escolar M ate mática Qual é o número? Dinâmica 2 3ª Série 1º Bimestre Matemática 3ª do Ensino Médio Numérico Aritmético Análise Combinatória Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS ATIVIDADE
Prefeitura Municipal de Pindamonhangaba do Estado de São Paulo PINDAMONHANGABA-SP
Prefeitura Municial de Pindamonhangaba do Estado de São Paulo PINDAMONHANGABA-SP Agente Comunitário de Saúde; Agente do Controle Vetor; Agente de Organização Escolar; Auxiliar de Classe; Auxiliar em Saúde
Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Aula 7 10 de setembro de 2010 Aula 7 Pré-Cálculo 1 Módulo (ou valor absoluto) de um número real x
Soma dos ângulos: internos ou externos?
Reforço escolar M ate mática Soma dos ângulos: internos ou externos? Dinâmica 5 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas
Módulo (ou valor absoluto) de um número real: a função modular
Matemática Básica Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Módulo (ou valor absoluto) de um número real: a função modular Parte 5 Parte 5 Matemática Básica
Potências e logaritmos, tudo a ver!
Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica
1 cor disponível (não pode ser igual à anterior) Casos possíveis: 3 x 2 x 1 x 1 x 3 = 18 Resposta: B
Prearar o Exame 01 017 Matemática A Página 7 1. Observa o seguinte esquema: cores ossíveis cores ossíveis 1 cor disonível (não ode ser igual à anterior) 1 cor disonível (não ode ser igual à anterior) cores
Estudo dos gases. Antes de estudar o capítulo PARTE I
PARTE I Unidade D 8 Caítulo Estudo dos gases Seções: 81 As transformações gasosas 82 Conceito de mol Número de Avogadro 83 Equação de Claeyron 84 Teoria cinética dos gases Antes de estudar o caítulo eja
DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Qual é a sua chance? Dinâmica 6 3ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 3ª do Ensino Médio Numérico Aritmético Introdução à probabilidade Primeira Etapa
Palitos e triângulos
Reforço escolar M ate mática Palitos e triângulos Dinâmica 8 2ª Série 3º Bimestre Professor Matemática 2 Série do Ensino Médio Palitos e Triângulos Algébrico Simbólico Funções H31 Calcular o resultado
Potências e exponenciais... ou é o inverso?
Reforço escolar M ate mática Potências e exponenciais... ou é o inverso? Dinâmica 1 1ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Algébrico-Simbólico Função Exponencial.
Potências e logaritmos, tudo a ver!
Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 2ª Série º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão 4 Nome: N.º Turma: Aresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
Somas de números naturais consecutivos
Julho 006 - nº 5 Somas de números naturais consecutivos António Pereira Rosa Escola Secundária Maria Amália Vaz de Carvalho, Lisboa. Introdução O objectivo deste trabalho é abordar o roblema da reresentação
Tudo ou nada! Dinâmica 5. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO
Reforço escolar M ate mática Tudo ou nada! Dinâmica 5 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico. Geometria Analítica. Primeira Etapa Compartilhar
Capítulo 7 - Wattímetros
Caítulo 7 - Wattímetros 7. Introdução Os wattímetros eletromecânicos ertencem à uma classe de instrumentos denominados instrumentos eletrodinâmicos. Os instrumentos eletrodinâmicos ossuem dois circuitos
DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Direto ao Ponto Dinâmica 3 2º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico-Simbólico Sistemas lineares Aluno Primeira Etapa Compartilhar
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão.4 Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno
FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno
Números Irracionais. Dinâmica 3. 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO. 9º Ano do Ensino Fundamental
Reforço escolar M ate mática Números Irracionais Dinâmica 3 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 9º Ano do Ensino Fundamental Numérico Aritmético. Números reais. Primeira Etapa
1.1 Números Complexos
. O PLANO COMPLEXO VARIÁVEL COMPLEXA - 07.. Números Comlexos. Em cada caso, reduza a exressão à forma a + ib; a; b R: (a) ( i) + (3 + 4i) (b) ( + i) i (3 + 4i) (c) ( + i) ( + i) (d) ( i) (e) ( i) 3 + i
Distribuição de uma proporção amostral
Distribuição de uma roorção amostral Estatística II Antonio Roque Aula 4 Exemlo Ilustrativo: Suonha que se saiba que em uma certa oulação humana uma roorção de essoas igual a = 0, 08 (8%) seja cega ara
Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação.
RIMITIVS Definições No caítulo anterior, centramos a nossa atenção no seguinte roblema: dada uma função, determinar a sua função derivada Neste caítulo, vamos considerar o roblema inverso, ou seja, determinar
Pipocas do 9 o ano. Dinâmica 3. Aluno PRIMEIRA ETAPA COMPARTILHAR IDÉIAS. 9 Ano 3º Bimestre ATIVIDADE JOGO DA LINGUAGEM MATEMÁTICA
Reforço escolar M ate mática Pipocas do 9 o ano Dinâmica 3 9 Ano 3º Bimestre Matemática 9 Ano do Ensino Fundamental Algébrico-Simbólico Funções PRIMEIRA ETAPA COMPARTILHAR IDÉIAS ATIVIDADE JOGO DA LINGUAGEM
Acertando o ponto! Dinâmica 2. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS SEGUNDA ETAPA UM NOVO OLHAR... 9º ano 3º Bimestre
Reforço escolar M ate mática Acertando o ponto! Dinâmica 2 9º ano 3º Bimestre Matemática 9 ano do Ensino Fundamental Algébrico simbólico Funções Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS Atividade: Bingo
Pipocas do 9 o ano. Dinâmica 3. Aluno Primeira Etapa Compartilhar idéias. 9 Ano 3º Bimestre
Reforço escolar M ate mática Pipocas do 9 o ano Dinâmica 3 9 Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico-Simbólico Funções Primeira Etapa Compartilhar idéias
a) a soma de dois números pares é par. b) a soma de dois números ímpares é par. c) a soma de um número par com um número ímpar é ímpar.
!#"%$ & '%( )( *+'%,-"/. 0# 1 45687 9 9
Do Basquete ao futsal
Reforço escolar M ate mática Do Basquete ao futsal Dinâmica 5 3ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 3ª do Ensino Médio Numérico Aritmético Análise Combinatória Aluno Primeira
Uma Prova Vetorial da Fórmula de Heron
Uma Prova Vetorial da Fórmula de Heron Fernando Neres de Oliveira 1 de janeiro de 015 Resumo Neste trabalho aresentaremos uma rova ara a famosa fórmula de Heron, usando algumas das oerações básicas da
Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico
Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações Algébricas. Primeira
1 Lógica e teoria dos conjuntos
Lógica e teoria dos conjuntos.. Introdução à lógica bivalente Pág. 0 Atividade de diagnóstico.. N..,5 Z.. 5.. Q.5. π R π.6. Q + +.7. Z.8. 0 Z 0.......... x = 5 x+ = 5 x = 5 x = S = { } x + = 0 ( x ) 9
1) Função tangente (definição) 2)Gráfico da função tangente. 3) Equações e inequações. 4) Resolução de exercícios
Aula 25-Funções trigonométricas no ciclo trigonométrico 1) Função tangente (definição) 2)Gráfico da função tangente 3) Equações e inequações 4) Resolução de exercícios 1) Função tangente definição: Lembre
Capítulo 4: Equação da energia para um escoamento em regime permanente
Caítulo 4: Equação da energia ara um escoamento em regime ermanente 4.. Introdução Eocando o conceito de escoamento incomressíel e em regime ermanente ara a instalação (ide figura), odemos afirmar que
Dinâmica 3. 9º Ano 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO. Ensino Fundamental 9º. Uma dica... Uso Conveniente da calculadora.
Uma dica... Reforço escolar M ate mática Dinâmica 3 9º Ano 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico simbólico Equação do 2º Grau DINÂMICA HABILIDADE Básica
INTRODUÇÃO À MATEMÁTICA FINANCEIRA
Hewlett-Packard INTRODUÇÃO À MATEMÁTICA FINANCEIRA Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 206 Sumário Matemática Financeira... REFLITA... Porcentagem... Cálculos com orcentagem...
MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira
MATEMÁTICA 3 Professor Renato Madeira MÓDULO 1 Lógica SUMÁRIO 1. Proosição. Negação 3. Conectivos 4. Condicionais 4.1. Relação de imlicação 4.. Relação de equivalência 5. Álgebra das roosições 6. Quantificadores
Uma Prova Vetorial da Fórmula de Heron
Uma Prova Vetorial da Fórmula de Heron Fernando Neres de Oliveira Resumo Neste trabalho aresentaremos uma rova ara a famosa fórmula de Heron, usando algumas das oerações básicas da álgebra vetorial. Palavras
AULA 8: TERMODINÂMICA DE SISTEMAS GASOSOS
LCE-00 Física do Ambiente Agrícola AULA 8: TERMODINÂMICA DE SISTEMAS GASOSOS Neste caítulo será dada uma introdução ao estudo termodinâmico de sistemas gasosos, visando alicação de seus conceitos aos gases
SIMULADO. 05) Atribuindo-se todos os possíveis valores lógicos V ou F às proposições A e B, a proposição [( A) B] A terá três valores lógicos F.
01) Considere as seguintes roosições: P: Está quente e Q: Está chovendo. Então a roosição R: Se está quente e não está chovendo, então está quente ode ser escrita na forma simbólica P..( Q) P, em que P..(
O sítio do Seu Epaminondas
Reforço escolar M ate mática O sítio do Seu Epaminondas Dinâmica 1 9º Ano 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico Simbólico Equação do 2º Grau Aluno Primeira
MICROECONOMIA II ( ) João Correia da Silva
MICROECONOMIA II 1E108 (2011-12) 29-02-2012 João Correia da Silva ([email protected]) 1. A EMPRESA 1.1. Tecnologia de Produção. 1.2. Minimização do Custo. 1.3. Análise dos Custos. 1.4. Maximização do ucro. 2
Secção 5. Equações lineares não homogéneas.
Secção 5 Equações lineares não omogéneas Farlow: Sec 36 a 38 Vimos na secção anterior como obter a solução geral de uma EDO linear omogénea Veremos agora como resoler o roblema das equações não omogéneas
Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r
"!$#%& '!)( * +-,/.10 2/3"456387,:9;2 .1?/@.1, ACB DFEHG IJDLK8MHNLK8OHP Q RTSVUVWYXVZ\[^]_W Este artigo se roõe a ser uma referência sobre os temas citados no título, que aarecem naturalmente em diversos
Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4
Lógica ara Ciência da Comutação I Lógica Matemática Texto 18 Passos lógicos Sumário 1 Limitações do Método das Tabelas 2 1.1 Observações................................ 4 2 Passos lógicos 4 2.1 Observações................................
