Potências e logaritmos, tudo a ver!

Tamanho: px
Começar a partir da página:

Download "Potências e logaritmos, tudo a ver!"

Transcrição

1 Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica Primeira Etapa Compartilhar Ideias Atividade Dados Potentes! Você e seus colegas são convidados a jogar os Dados Potentes! Para jogar, vão precisar de dois dados, os Quadros 1 e 2, e a tabela. Antes de começar, decidam entre vocês uma ordem para começar o jogo e observem as regras: Em sua vez, jogue os dois dados juntos. Os números das faces superiores desses dados são os expoentes de um número escrito na base 2. Por exemplo, se as faces superiores dos dados apresentarem os números 3 e 6, os números escritos na base 2 são 2 3 e 2 6. Ainda, nessa mesma jogada, calcule o resultado da multiplicação desses dois números. Faça o mesmo com a divisão, só que agora com o cuidado 1

2 de sempre dividir o número maior pelo número menor, caso os números não sejam iguais. Por exemplo, suponha que os números sorteados nos dados sejam 3 e 4. Então você deve calcular = 128 = 2 7 e = 2 = 2 1. Para acelerar os cálculos, use a tabela com os valores das potências. Em seguida, com os resultados dos cálculos preencha cada um dos quadros. Atenção, os quadros devem ser preenchidos com as potências! Passe a vez para o próximo jogador. O jogo termina após 5 rodadas. Agora responda: 1. Pensando na multiplicação, qual a propriedade de potenciação você pode utilizar para preencher a tabela mais rapidamente? Usando essas propriedades, preencha o Quadro abaixo. X Aluno Observe o Quadro. Existem valores que se repetem? Por quê? 3. Com relação à divisão, qual a propriedade de potenciação você pode utilizar para preencher a tabela mais rapidamente? Usando essa propriedade, preencha, o Quadro a seguir. Veja, já começamos o trabalho para você. 2

3 Utilizando a propriedade observada no item anterior, preencha as células em azul. Matemática Segunda Etapa Um novo olhar... Atividade: Verdadeiro ou Falso? Verifique se as afirmações a seguir são verdadeiras ou falsas. Justifique as verdadeiras e corrija as falsas. I = 5 5 II. 2 5 x 2 3 = 10 x 6 = 60 III. (3 4 ) 2 =

4 IV. (2 3 ) 2 = 2 6 = 64 V = 7-2 VI = ( ) ( )= 0 VII. Terceira Etapa Fique por dentro! Atividade Procurando a Alma Gêmea Aluno Confira, em seu grupo, o conjunto de 18 cartões que receberam de seu professor, antes de iniciar este novo jogo, que irá ajudá-lo a encontrar a sua alma gêmea. Antes de começar, decidam entre vocês quem é o primeiro jogador e uma ordem para as jogadas. Agora, observem as regras: Embaralhem os cartões sobre a mesa, virados para baixo. Na sua vez, vire dois cartões. Se os cartões virados forem equivalentes, por exemplo log2 8 e 3, retire esse par da mesa. Caso contrário, vire-os para baixo e passe a vez. Os demais colegas do grupo farão o mesmo procedimento. O jogo acaba quando todos os pares estiverem formados e o vencedor do jogo é o aluno que possuir a maior quantidade de pares. 1. Complete a tabela abaixo com os valores dos logaritmos. log 2 32 log 5 5 log

5 log 2 1 log log log Matemática log log Baseado no que você observou anteriormente, complete as igualdades. (a é um número real positivo e a 1) m a. log a a = b. log a a = c. log a 1= d. log a m n a = Quarta Etapa Quiz (U.E. Londrina) Supondo que exista, o logaritmo de a na base b é: a. a potência de base b e expoente a. b. a potência de base a e expoente b. c. o número ao qual se eleva a para obter b. d. a potência de base 10 e expoente a. e. o número ao qual se eleva b para obter a. 5

6 Aluno Quinta Etapa Análise das Respostas ao QUIZ 6

7 Etapa Flex Para saber + Quantos de nós, ao estudarmos a definição de logaritmo, já nos fizemos ou fizemos ao professor a seguinte pergunta: Por que a e b têm de ser positivos e, além disso, a tem que ser diferente de 1? Vamos contrariar estas afirmativas (fazendo justamente a negativo e depois a = 1) e aplicar a definição de logaritmo para ver o que acontece! Se, por absurdo, fizéssemos a = 1, ao aplicar a definição, teríamos: log 1 b = x 1 x = b Daí, para qualquer valor real de x, b seria sempre igual a 1, e não faria sentido tal cálculo. Por outro lado, se tivéssemos, por exemplo, b = -4, ao aplicar a definição, teríamos: log 2 (-4) = x 2 x = -4 Ou seja, para nenhum x real obteríamos um resultado negativo! Por fim, se tivéssemos, por exemplo, a = -2 e b = 8, teríamos: log (-2) 2 = x (-2) x = 8 E então, mais uma vez, nenhum número real satisfaria tal condição. Testando vários outros números, pode-se facilmente perceber a importância das condições de existência de um logaritmo. Além disso, a definição de logaritmo também pode verificar algumas propriedades básicas muito úteis, tais como: log a a = 1 pois a 1 = a log a 1 = 0 pois a 0 = 1 log a a n = n pois a n = a n. Matemática Agora, é com você! Que tal agora, exercitarmos o uso da definição de logaritmo? Exercícios 1. Calcule os logaritmos a seguir: a. log = b. log10000 = 7

8 c. log = d. log 104 1= 1317 e. log 2 2 = 13 f. log 7 7 = g. log = h. log = 2. Responda: a. Qual o logaritmo de 0,25 na base 2? b. Qual o logaritmo de 625 na base 5? E na base 25? E na base 125? Aluno c. Qual o número cujo logaritmo na base 3 vale 2? d. Qual a base na qual o logaritmo de 4 1 vale 1? e. Qual a base na qual o logaritmo de 243 vale 5? 8

Potências e logaritmos, tudo a ver!

Potências e logaritmos, tudo a ver! Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 2ª Série º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica

Leia mais

Tudo ou nada! Dinâmica 5. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO

Tudo ou nada! Dinâmica 5. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO Reforço escolar M ate mática Tudo ou nada! Dinâmica 5 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico. Geometria Analítica. Primeira Etapa Compartilhar

Leia mais

O DNA das equações algébricas

O DNA das equações algébricas Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações

Leia mais

Tô na área! Dinâmica 6. Primeira Etapa Compartilhar ideias. Aluno. 9º Ano 4º Bimestre

Tô na área! Dinâmica 6. Primeira Etapa Compartilhar ideias. Aluno. 9º Ano 4º Bimestre Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Aluno

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Invadindo o espaço Dinâmica 5 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 2ª Campo Algébrico Simbólico Introdução à geometria espacial Aluno

Leia mais

A realização de um grande sonho

A realização de um grande sonho Reforço escolar M ate mática A realização de um grande sonho Dinâmica 7 9º Ano 4º Bimestre Professor DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Apontamentos de Matemática.º ano Introdução noção de potência Exemplo Uma bactéria divide-se dando origem a duas novas bactérias. Suponha que havia inicialmente duas bactérias e que ocorreram sucessivamente

Leia mais

Regulares, são só esses?

Regulares, são só esses? Reforço escolar M ate mática Regulares, são só esses? Dinâmica 8 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Ensino Médio 2ª Geométrico Introdução à Geometria Espacial Primeira Etapa Compartilhar

Leia mais

Jogos com Adições 1. JOGOS LIVRES

Jogos com Adições 1. JOGOS LIVRES Jogos com Adições Como explorar este material? 1. JOGOS LIVRES Objectivo: tomar contacto com o material, de maneira livre, sem regras. Durante algum tempo, os alunos brincam com o material, fazendo construções

Leia mais

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Professor

Leia mais

Potências e exponenciais... ou é o inverso?

Potências e exponenciais... ou é o inverso? Reforço escolar M ate mática Potências e exponenciais... ou é o inverso? Dinâmica 1 1ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Algébrico-Simbólico Função Exponencial.

Leia mais

Colégio Adventista de Porto Feliz

Colégio Adventista de Porto Feliz Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor

Leia mais

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa. LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

Equacionando o cotidiano...

Equacionando o cotidiano... Equacionando Reforço escolar M ate mática o cotidiano... Dinâmica 8 9º Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Algébrico simbólico Equações redutíveis do 2 grau Aluno

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Noção de potência Quando temos uma multiplicação sucessiva em que o mesmo número se repete, podemos transformar essa expressão numa potência. Veja os exemplos., o é o número que se repete e o número de

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números

Leia mais

Analista TRT 10 Região / CESPE 2013 /

Analista TRT 10 Região / CESPE 2013 / Ao comentar sobre as razões da dor na região lombar que seu paciente sentia, o médico fez as seguintes afirmativas. P1: Além de ser suportado pela estrutura óssea da coluna, seu peso é suportado também

Leia mais

DESCRIÇÃO DAS ATIVIDADES:

DESCRIÇÃO DAS ATIVIDADES: DESCRIÇÃO DAS ATIVIDADES: 1) O JOGO DOS PALITOS E A PROBABILIDADE: esta sequência didática apresentada aos anos iniciais (1º/5º ano) do Ensino Fundamental tem como objetivo possibilitar conhecimentos das

Leia mais

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação

Leia mais

Ampliando os horizontes geométricos

Ampliando os horizontes geométricos Reforço escolar M ate mática Ampliando os horizontes geométricos Dinâmica 8 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 9º Ano do Ensino Fundamental Geométrico. Semelhança de Polígonos.

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Uma atividade radical!

Uma atividade radical! Reforço escolar M ate mática Uma atividade radical! Dinâmica 4 9º Ano 1º Bimestre Matemática Ensino Fundamental 9ª Algébrico Simbólico Radicais. PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE QUEBRA CABEÇA

Leia mais

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Professor Matemática 3ª do Ensino Médio Algébrico-Simbólico DINÂMICA Fácil e poderoso. Polinômios

Leia mais

Nº de jogadores 2 Tempo de jogo 15 minutos Idade a partir dos 10 anos

Nº de jogadores 2 Tempo de jogo 15 minutos Idade a partir dos 10 anos Nº de jogadores 2 Tempo de jogo 15 minutos Idade a partir dos 10 anos 1 Introdução: Neste jogo, cada jogador tem uma família de 3 elementos (Pai,Mãe e filho). Cada membro da família tem uma Escala de Poupança

Leia mais

GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais.

GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais. OS NÚMEROS INTEIROS E O JOGO DO VAI-VEM GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais. Sabrina Bobsin Salazar, salazar.ufpel@gmail.com Eduardo da Silva Schneider, schneider.ifm.ufpel@gmail.com

Leia mais

BAC004 Informática Teórica T2 Professora: Fabiana Costa Guedes Lista 05 Vetores e Matrizes Vetores

BAC004 Informática Teórica T2 Professora: Fabiana Costa Guedes Lista 05 Vetores e Matrizes Vetores BAC004 Informática Teórica T2 Professora: Fabiana Costa Guedes Lista 05 Vetores e Matrizes Vetores 1- Faça um programa que preencha um vetor com seis elementos numéricos inteiros, calcule e mostre: a.

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração Unidade 1 Números inteiros adição e subtração 1. Números positivos e números negativos Reconhecer o uso de números negativos e positivos no dia a dia. 2. Conjunto dos números inteiros 3. Módulo ou valor

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse:

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br Fundamentos de Matemática Superior - BINÔMIO DE NEWTON Estes resultados foram escritos com expoentes

Leia mais

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y.

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y. SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS Equação do 1º grau com duas variáveis Ex: A soma de dois números é 10. Quais são esses números? Como se trata de dois números, representamos por duas letras

Leia mais

Abril Educação Divisibilidade Aluno(a): Número: Ano: Professor(a): Data: Nota:

Abril Educação Divisibilidade Aluno(a): Número: Ano: Professor(a): Data: Nota: Abril Educação Divisibilidade Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Numa seqüência de 500 dias, se o primeiro for uma 3ª. Feira, que dia da semana será o último dia? Questão 2 A afirmação

Leia mais

SISTEMA ANGLO DE ENSINO G A B A R I T O

SISTEMA ANGLO DE ENSINO G A B A R I T O Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS

Leia mais

Quebra-Cabeça de Cartões

Quebra-Cabeça de Cartões Quebra-Cabeça Reforço escolar M ate mática de Cartões Dinâmica ª Série º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática DINÂMICA HABILIDADE BÁSICA ª do Ensino Médio Quebra Cabeça de Cartões

Leia mais

Os logaritmos decimais

Os logaritmos decimais A UA UL LA Os logaritmos decimais Introdução Na aula anterior, vimos que os números positivos podem ser escritos como potências de base 10. Assim, introduzimos a palavra logaritmo no nosso vocabulário.

Leia mais

Ruas e esquinas. Dinâmica 6. Aluno Primeira Etapa Compartilhar ideias. 3ª Série 4º Bimestre

Ruas e esquinas. Dinâmica 6. Aluno Primeira Etapa Compartilhar ideias. 3ª Série 4º Bimestre Reforço escolar M ate mática Ruas e esquinas Dinâmica 6 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica. Aluno Primeira Etapa Compartilhar

Leia mais

TEOREMA DE PITÁGORAS AULA ESCRITA

TEOREMA DE PITÁGORAS AULA ESCRITA TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou

Leia mais

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau.

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau. Caro aluno, Oficina Álgebra 2 Nesta atividade, você será convidado a trabalhar com problemas que podem ser representados por meio de equações do 2º grau. Nos problemas 1 e 2, é proposto que, primeiramente,

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Lista 1- Cálculo I Lic. - Resolução

Lista 1- Cálculo I Lic. - Resolução Lista 1- Cálculo I Lic. - Resolução Exercício 6: Uma molécula de açúcar comum (sacarose) pesa 5,7 10 - g e uma de água, 3 10-3 g. Qual das duas é mais pesada? Quantas vezes uma é mais pesada que a outra?

Leia mais

ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Eloy/Marcello/Renan

ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Eloy/Marcello/Renan ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO Nome: Nº - Série/Ano Data: / / Professor(a): Eloy/Marcello/Renan Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia de número positivo

Leia mais

Teste de Avaliação Escrita

Teste de Avaliação Escrita Teste de Avaliação Escrita Duração: 9 minutos 8 de outubro de Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo /4 Matemática 9.º B Nome: N.º Classificação: Fraco (% 9%) Insuficiente (% 49%) Suficiente

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

ESCOLA SECUNDÁRIA JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROÍSMO

ESCOLA SECUNDÁRIA JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROÍSMO ESCOLA SECUNDÁRIA JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROÍSMO PLANIFICAÇÃO ANUAL ANO LECTIVO: 008/009 DISCIPLINA: Matemática ANO: 1º Aulas previstas 1º período: 7 (5 ) º período: 7 (5 ) 3º período:

Leia mais

XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos

XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos Reservado para a correção Prova Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5 otal # 0 Nota Instruções e Regulamento: 1. Identifique

Leia mais

AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO. Professores: Zélia e Edcarlos

AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO. Professores: Zélia e Edcarlos AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO Professores: Zélia e Edcarlos . Um ciclista percorreu 4,5 km de manhã. À tarde ele percorreu duas vezes e meia essa distância. Quantos quilômetros ele percorreu

Leia mais

d 5 = 2. Descreva com tuas palavras o padrão relacionado a TODAS as sequências anteriores.

d 5 = 2. Descreva com tuas palavras o padrão relacionado a TODAS as sequências anteriores. .5. Progressão Geométrica. (PG). Observem as sequências abaixo e determine os próximos três termos da sequência pelo padrão existente nos primeiros termos: (a n) = (3, 6,, 4, 48,...) a 6 = a 7 = a 8 =

Leia mais

KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES. GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais

KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES. GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais José Vilani de Farias, IFRN, vilani.farias@ifrn.edu.br Amilde Martins da Fonseca, IFRN,

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

1.º Bimestre / Matemática. Descritores

1.º Bimestre / Matemática. Descritores 1.º Bimestre / 2017 Matemática Descritores 4º ANO Calcular o resultado de uma adição ou de uma subtração de números naturais. Estimar a medida de grandeza, utilizando unidades de medida convencionais ou

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Capítulo 7 Transformadas de Fourier. definimos a sua transformada de Fourier

Capítulo 7 Transformadas de Fourier. definimos a sua transformada de Fourier Capítulo 7 Transformadas de Fourier Dada uma função definimos a sua transformada de Fourier A constante multiplicativa em (1),, é um valor arbitrário. Há autores que escolhem. Mas é muito importante lembrar

Leia mais

Computação I: Representações de Algoritmos

Computação I: Representações de Algoritmos Computação I: Representações de Algoritmos reginaldo.re@utfpr.edu.br * Parte da apresentação foi gentilmente cedida pelo prof. Igor Steinmacher Agenda Objetivos Relembrando... Algoritmos para desenvolver

Leia mais

Aluno: ATIVIDADE DE MATEMÁTICA. 1º Parte Comandos Básicos do Octave: OPERAÇÕES BÁSICAS

Aluno: ATIVIDADE DE MATEMÁTICA. 1º Parte Comandos Básicos do Octave: OPERAÇÕES BÁSICAS Aluno: Série: Data: ATIVIDADE DE MATEMÁTICA 1º Parte Comandos Básicos do Octave: OPERAÇÕES BÁSICAS Operação Comando Soma usa-se o símbolo +. Subtração usa-se o hífen -. Multiplicação usa-se o asterisco

Leia mais

1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos?

1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos? Resolução do capítulo 7 - Progressão Aritmética 1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos? Sendo n o número de triângulos

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Progressão Geométrica Ciências da Natureza I Matemática Ensino médio 5min34seg Habilidades:

Leia mais

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a

Leia mais

PROPOSTA DIDÁTICA. 1) João tem R$ 84,30. Pedro tem R$ 31,50 a mais que João, e José tem R$ 54,25 a mais que Pedro. Quanto tem os três juntos?

PROPOSTA DIDÁTICA. 1) João tem R$ 84,30. Pedro tem R$ 31,50 a mais que João, e José tem R$ 54,25 a mais que Pedro. Quanto tem os três juntos? PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º anos 1.3 Tempo da aula: 2,5 horas 1.4 Conteúdo desenvolvido: Operações Fundamentais com

Leia mais

Introdução: Um pouco de História

Introdução: Um pouco de História Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas

Leia mais

GABINETE COORDENADOR DO DESPORTO ESCOLAR REGULAMENTO ESPECÍFICO DE VOLEIBOL

GABINETE COORDENADOR DO DESPORTO ESCOLAR REGULAMENTO ESPECÍFICO DE VOLEIBOL GABINETE COORDENADOR DO DESPORTO ESCOLAR REGULAMENTO ESPECÍFICO DE VOLEIBOL 2001-2002 ÍNDICE INTRODUÇÃO... 3 1. ESCALÕES ETÁRIOS... 4 2. CONSTITUIÇÃO DAS EQUIPAS... 5 2.1. INFANTIS VER REGULAMENTO TÉCNICO-PEDAGÓGICO...

Leia mais

Real ou imaginário? Dinâmica 1. 3º Série 3º Bimestre. DISCIPLINA Ano CAMPO CONCEITO

Real ou imaginário? Dinâmica 1. 3º Série 3º Bimestre. DISCIPLINA Ano CAMPO CONCEITO Reforço escolar M ate mática Real ou imaginário? Dinâmica 1 3º Série 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico Simbólico Números Complexos DINÂMICA Real ou Imaginário?

Leia mais

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367 Divisibilidade Um número é divisível por outro quando sua divisão por esse número for exata. Por exemplo: 20 : 5 = 4 logo 20 é divisível por 5. Múltiplos de um número Um número tem um conjunto infinito

Leia mais

LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T

LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T HISTÓRIA No início do século XVII, os cálculos envolvidos nos assuntos de Astronomia e Navegação eram longos e trabalhosos. Para simplificar

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele

Leia mais

Resoluções. Aula 1 NÍVEL 2. Classe

Resoluções. Aula 1 NÍVEL 2. Classe www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVEL 2 Resoluções Aula 1 Classe 1. Observe que: 14 1 = 14 14 2 = 196 14 par termina em 6 e 14 ímpar termina em 4 14 3 = 2.744 14 4 = 38.416...

Leia mais

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2 Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.

Leia mais

Aula 1: Conjunto dos Números Inteiros

Aula 1: Conjunto dos Números Inteiros Aula 1: Conjunto dos Números Inteiros 1 Introdução Observe que, no conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,..., a operação de subtração nem sempre é possível. a) 5 3 = 2 (é possível: 2 N) b)

Leia mais

Soluções Comentadas Matemática Curso Mentor Provas de Matemática do Concurso de Admissão à Escola de Sargentos das Armas EsSA

Soluções Comentadas Matemática Curso Mentor Provas de Matemática do Concurso de Admissão à Escola de Sargentos das Armas EsSA Soluções Comentadas Matemática Curso Mentor Provas de Matemática do Concurso de Admissão à Escola de Sargentos das Armas EsSA Barbosa, L.S. leonardosantos.inf@gmail.com 15 de outubro de 2013 2 Sumário

Leia mais

Tabelas e Gráficos: o olhar da matemática no dia a dia

Tabelas e Gráficos: o olhar da matemática no dia a dia Reforço escolar M ate mática Tabelas e Gráficos: o olhar da matemática no dia a dia Dinâmica 1 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Tratamento da Informação.

Leia mais

aparecem os números, na parte de cima da máquina)

aparecem os números, na parte de cima da máquina) Um número de quatro algarismos multiplicado por outro de três algarismos deu como resultado 123 123. Quais são esses números? Vamos aprender a utilizar a máquina de calcular em operações simples. Para

Leia mais

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas. Aula 05 GRUPOS QUOCIENTES METAS Estabelecer o conceito de grupo quociente. OBJETIVOS Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Leia mais

ESCOLA ESTADUAL IRMAN RIBEIRO DE ALMEIDA E SILVA ALUNOS DO 1º ANO DO ENSINO MÉDIO CONSTRUINDO O CONHECIMENTO SOBRE LOGARITMO

ESCOLA ESTADUAL IRMAN RIBEIRO DE ALMEIDA E SILVA ALUNOS DO 1º ANO DO ENSINO MÉDIO CONSTRUINDO O CONHECIMENTO SOBRE LOGARITMO ESCOLA ESTADUAL IRMAN RIBEIRO DE ALMEIDA E SILVA ALUNOS DO 1º ANO DO ENSINO MÉDIO CONSTRUINDO O CONHECIMENTO SOBRE LOGARITMO Nova Andradina-MS Outubro/2009 ESCOLA ESTADUAL IRMAN RIBEIRO DE ALMEIDA E SILVA

Leia mais

LibreOffice Calc: aula 1

LibreOffice Calc: aula 1 Universidade Federal de Uberlândia Faculdade de Computação GMA038 Introdução à Ciência da Computação Prof. Renato Pimentel LibreOffice Calc: aula 1 Objetivos Apresentar o LibreOffice Calc Criar uma planilha

Leia mais

De razão a relação: da sala de TV a sala de aula.

De razão a relação: da sala de TV a sala de aula. Reforço escolar M ate mática De razão a relação: da sala de TV a sala de aula. Dinâmica 6 9º Ano º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Geométrico Teorema de Pitágoras

Leia mais

Algoritmo e Programação Matemática

Algoritmo e Programação Matemática Algoritmo e Programação Matemática Fundamentos de Algoritmos Parte 1 Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Dados A funcionalidade principal de um computador

Leia mais

Análise de algoritmos

Análise de algoritmos Análise de algoritmos Recorrências Conteúdo Introdução O método mestre Referências Introdução O tempo de execução de um algoritmo recursivo pode frequentemente ser descrito por uma equação de recorrência.

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Bianca Bitencourt da Silva 1.2 Público alvo: Alunos de 7º a 9º ano e Magistério 1.3 Duração: 2 aulas de 2 h e 30 min cada 1.4 Conteúdo

Leia mais

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a: Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)

Leia mais

Resolução da Prova de Raciocínio Lógico do INPI de 2014, aplicada em 14/12/2014 (Cargo 22).

Resolução da Prova de Raciocínio Lógico do INPI de 2014, aplicada em 14/12/2014 (Cargo 22). Resolução da Prova de Raciocínio Lógico do INPI de 2014, aplicada em 14/12/2014 (Cargo 22). Tendo como referência a proposição P: Em outros países, seres vivos como microrganismos e animais geneticamente

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Progressão Geométrica Matemática Ensino médio 5min34seg Habilidades: H15. Relacionar padrões e regularidades

Leia mais

Os jogadores com dificuldades em matemática devem ser ajudados e incentivados pelos colegas e pelos adversários.

Os jogadores com dificuldades em matemática devem ser ajudados e incentivados pelos colegas e pelos adversários. DOCUMENTO ORIENTADOR DE 2 APRESENTAÇÃO O Catchball permite a realização de uma infinidade de jogos com uma igual diversidade de níveis, que podem ser dirigidos a crianças do pré-escolar, a crianças de

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o º Teste de Avaliação Lições nº e Data: /11/011 Apresentação dos Conteúdos e Objectivos

Leia mais

Quantos Dígitos...? 1

Quantos Dígitos...? 1 1 Introdução Quantos Dígitos? 1 Roberto Ribeiro Paterlini Departamento de Matemática da UFSCar É muito comum encontrarmos, em textos de Matemática para o 1 e 2 graus, questões sobre contagem de dígitos

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

. a d iza r to u a ia p ó C II

. a d iza r to u a ia p ó C II II Sugestões de avaliação Matemática 8 o ano Unidade 3 5 Unidade 3 Nome: Data: 1. Complete as sentenças a seguir sobre expressões algébricas. Depois, cite um exemplo. a) Expressões algébricas são aquelas

Leia mais

+ Do que xxx e escadas

+ Do que xxx e escadas Reforço escolar M ate mática + Do que xxx e escadas Dinâmica 6 1º Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Geométrico Razões trigonométricas no triângulo retângulo

Leia mais

Oficina de Álgebra. Oficina CNI EF / Álgebra 1 Material do aluno. Setor de Educação de Jovens e Adultos. Caro aluno,

Oficina de Álgebra. Oficina CNI EF / Álgebra 1 Material do aluno. Setor de Educação de Jovens e Adultos. Caro aluno, _ Caro aluno, Oficina de Álgebra Objetiva-se, com essa atividade, que o uso da linguagem algébrica seja interpretado como um recurso que permite modelar uma situação-problema apresentada. As situações

Leia mais

Planificação Anual. Matemática Dinâmica 7º ano Luísa Faria; Luís Guerreiro Porto Editora. 1 Números inteiros. 10 Sequências e Regularidades

Planificação Anual. Matemática Dinâmica 7º ano Luísa Faria; Luís Guerreiro Porto Editora. 1 Números inteiros. 10 Sequências e Regularidades 3º Período 2º Período 1º Período AGRUPAMENTO DE ESCOLAS DE CASTRO DAIRE Escola EBI de Mões Grupo de Recrutamento 500 MATEMÁTICA Ano lectivo 2012/2013 Planificação Anual Disciplina: Matemática Ano: 7º Carga

Leia mais

Funções. Capítulo (2) Considere a seguinte interacção em Python: >>> def f1(x):... return x * x... >>> f1(5) 25 >>> f2 = f1 >>>

Funções. Capítulo (2) Considere a seguinte interacção em Python: >>> def f1(x):... return x * x... >>> f1(5) 25 >>> f2 = f1 >>> Capítulo 3 Funções 1. (2) Considere a seguinte interacção em Python: def f1(x): return x * x f1(5) 25 f2 = f1 (a) Qual o valor retornado pela chamada f2(5)? Justifique a sua resposta. (b) Suponha que agora

Leia mais

5ª Lista de Exercícios de Programação I

5ª Lista de Exercícios de Programação I 5ª Lista de Exercícios de Programação I Instrução As questões devem ser implementadas em C. Questões que envolvam leitura de matrizes, a construção dessas matrizes pode ser realizada através da geração

Leia mais

Roteiro de recuperação 4º Bimestre Matemática 7 Ano

Roteiro de recuperação 4º Bimestre Matemática 7 Ano Roteiro de recuperação 4º Bimestre Matemática 7 Ano Nome: Nº Série/Ano Data: / / Professor(: Décio/Fernanda/Vinicius Este roteiro tem o objetivo de promover maior qualidade de seu estudo para a Prova Bimestral.

Leia mais