Potências e logaritmos, tudo a ver!

Tamanho: px
Começar a partir da página:

Download "Potências e logaritmos, tudo a ver!"

Transcrição

1 Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica Primeira Etapa Compartilhar Ideias Atividade Dados Potentes! Você e seus colegas são convidados a jogar os Dados Potentes! Para jogar, vão precisar de dois dados, os Quadros 1 e 2, e a tabela. Antes de começar, decidam entre vocês uma ordem para começar o jogo e observem as regras: Em sua vez, jogue os dois dados juntos. Os números das faces superiores desses dados são os expoentes de um número escrito na base 2. Por exemplo, se as faces superiores dos dados apresentarem os números 3 e 6, os números escritos na base 2 são 2 3 e 2 6. Ainda, nessa mesma jogada, calcule o resultado da multiplicação desses dois números. Faça o mesmo com a divisão, só que agora com o cuidado 1

2 de sempre dividir o número maior pelo número menor, caso os números não sejam iguais. Por exemplo, suponha que os números sorteados nos dados sejam 3 e 4. Então você deve calcular = 128 = 2 7 e = 2 = 2 1. Para acelerar os cálculos, use a tabela com os valores das potências. Em seguida, com os resultados dos cálculos preencha cada um dos quadros. Atenção, os quadros devem ser preenchidos com as potências! Passe a vez para o próximo jogador. O jogo termina após 5 rodadas. Agora responda: 1. Pensando na multiplicação, qual a propriedade de potenciação você pode utilizar para preencher a tabela mais rapidamente? Usando essas propriedades, preencha o Quadro abaixo. X Aluno Observe o Quadro. Existem valores que se repetem? Por quê? 3. Com relação à divisão, qual a propriedade de potenciação você pode utilizar para preencher a tabela mais rapidamente? Usando essa propriedade, preencha, o Quadro a seguir. Veja, já começamos o trabalho para você. 2

3 Utilizando a propriedade observada no item anterior, preencha as células em azul. Matemática Segunda Etapa Um novo olhar... Atividade: Verdadeiro ou Falso? Verifique se as afirmações a seguir são verdadeiras ou falsas. Justifique as verdadeiras e corrija as falsas. I = 5 5 II. 2 5 x 2 3 = 10 x 6 = 60 III. (3 4 ) 2 =

4 IV. (2 3 ) 2 = 2 6 = 64 V = 7-2 VI = ( ) ( )= 0 VII. Terceira Etapa Fique por dentro! Atividade Procurando a Alma Gêmea Aluno Confira, em seu grupo, o conjunto de 18 cartões que receberam de seu professor, antes de iniciar este novo jogo, que irá ajudá-lo a encontrar a sua alma gêmea. Antes de começar, decidam entre vocês quem é o primeiro jogador e uma ordem para as jogadas. Agora, observem as regras: Embaralhem os cartões sobre a mesa, virados para baixo. Na sua vez, vire dois cartões. Se os cartões virados forem equivalentes, por exemplo log2 8 e 3, retire esse par da mesa. Caso contrário, vire-os para baixo e passe a vez. Os demais colegas do grupo farão o mesmo procedimento. O jogo acaba quando todos os pares estiverem formados e o vencedor do jogo é o aluno que possuir a maior quantidade de pares. 1. Complete a tabela abaixo com os valores dos logaritmos. log 2 32 log 5 5 log

5 log 2 1 log log log Matemática log log Baseado no que você observou anteriormente, complete as igualdades. (a é um número real positivo e a 1) m a. log a a = b. log a a = c. log a 1= d. log a m n a = Quarta Etapa Quiz (U.E. Londrina) Supondo que exista, o logaritmo de a na base b é: a. a potência de base b e expoente a. b. a potência de base a e expoente b. c. o número ao qual se eleva a para obter b. d. a potência de base 10 e expoente a. e. o número ao qual se eleva b para obter a. 5

6 Aluno Quinta Etapa Análise das Respostas ao QUIZ 6

7 Etapa Flex Para saber + Quantos de nós, ao estudarmos a definição de logaritmo, já nos fizemos ou fizemos ao professor a seguinte pergunta: Por que a e b têm de ser positivos e, além disso, a tem que ser diferente de 1? Vamos contrariar estas afirmativas (fazendo justamente a negativo e depois a = 1) e aplicar a definição de logaritmo para ver o que acontece! Se, por absurdo, fizéssemos a = 1, ao aplicar a definição, teríamos: log 1 b = x 1 x = b Daí, para qualquer valor real de x, b seria sempre igual a 1, e não faria sentido tal cálculo. Por outro lado, se tivéssemos, por exemplo, b = -4, ao aplicar a definição, teríamos: log 2 (-4) = x 2 x = -4 Ou seja, para nenhum x real obteríamos um resultado negativo! Por fim, se tivéssemos, por exemplo, a = -2 e b = 8, teríamos: log (-2) 2 = x (-2) x = 8 E então, mais uma vez, nenhum número real satisfaria tal condição. Testando vários outros números, pode-se facilmente perceber a importância das condições de existência de um logaritmo. Além disso, a definição de logaritmo também pode verificar algumas propriedades básicas muito úteis, tais como: log a a = 1 pois a 1 = a log a 1 = 0 pois a 0 = 1 log a a n = n pois a n = a n. Matemática Agora, é com você! Que tal agora, exercitarmos o uso da definição de logaritmo? Exercícios 1. Calcule os logaritmos a seguir: a. log = b. log10000 = 7

8 c. log = d. log 104 1= 1317 e. log 2 2 = 13 f. log 7 7 = g. log = h. log = 2. Responda: a. Qual o logaritmo de 0,25 na base 2? b. Qual o logaritmo de 625 na base 5? E na base 25? E na base 125? Aluno c. Qual o número cujo logaritmo na base 3 vale 2? d. Qual a base na qual o logaritmo de 4 1 vale 1? e. Qual a base na qual o logaritmo de 243 vale 5? 8

Embrulhando uma Esfera!

Embrulhando uma Esfera! Reforço escolar M ate mática Embrulhando uma Esfera! Dinâmica 6 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 2 a do Ensino Médio Geométrico. Geometria Espacial: Esferas. Aluno Primeira

Leia mais

União... matrimonial?

União... matrimonial? Reforço escolar M ate mática União... matrimonial? Dinâmica 1 3ª Série 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 3ª Numérico Aritmético Probabilidade Aluno Primeira Etapa Compartilhar

Leia mais

Semelhanças do cotidiano

Semelhanças do cotidiano Reforço escolar M ate mática Semelhanças do cotidiano Dinâmica 6 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Semelhança de Polígonos. Aluno Primeira Etapa

Leia mais

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) 1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Teorema de Pitágoras: Encaixando e aprendendo

Teorema de Pitágoras: Encaixando e aprendendo Reforço escolar M ate mática Teorema de Pitágoras: Encaixando e aprendendo Dinâmica 7 9º ano 2º Bimestre Aluno DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Teorema de Pitágoras

Leia mais

JOGOS MATEMÁTICOS 2º ANO

JOGOS MATEMÁTICOS 2º ANO JOGOS MATEMÁTICOS 2º ANO ENCONTRE 1 Objetivos: - Realizar operações de adição e/ou subtração. - Estimular o cálculo mental. - Compor o número 1 com duas parcelas. Número de jogadores: 2 ou 4. Materiais:

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

Comunidade de Prática Virtual Inclusiva Formação de Professores

Comunidade de Prática Virtual Inclusiva Formação de Professores O Mate erial Dourado Montessor ri O material Dourado ou Montessori é constituído por cubinhos, cubão, que representam: barras, placas e Observe que o cubo é formado por 10 placas, que a placa é formada

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

Nome: nº. ano: data: / /

Nome: nº. ano: data: / / 7ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA (PRODUTOS NOTÁVEIS) Ensino Fundamental 8 Ano Vamos colocar em prática os seus conhecimentos matemáticos e tudo o que estudamos em aula sobre produtos

Leia mais

Oficina Operações. b) Quantos quilômetros a mais ele percorreu na terça feira em relação à quinta feira?

Oficina Operações. b) Quantos quilômetros a mais ele percorreu na terça feira em relação à quinta feira? Oficina Operações PROBLEMA 1 Um atleta, preparando-se para a corrida de São Silvestre, realizou os seguintes treinos na semana que antecedeu a prova: Segunda-feira: 18 km Terça feira: 20 km Quarta feira:

Leia mais

O verbo induzir significa gerar. Nesta aula, começaremos a ver o assunto Indução Matemática

O verbo induzir significa gerar. Nesta aula, começaremos a ver o assunto Indução Matemática Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 6 Indução - Parte I O verbo induzir significa gerar. Nesta aula, começaremos a ver o assunto Indução Matemática (ou Indução

Leia mais

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,

Leia mais

Escola Adventista Thiago White

Escola Adventista Thiago White Roteiro de Matemática 6º ano A e B - 1º Bimestre Data Início / / Data Término / / Nota: Tema: Números Primos, MMC e MDC Conceituar um número primo e verificar se um número dado é ou não primo. Obter o

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA... MÓDULO... 6 PROPRIEDADES DO MÓDULO... 6 FUNÇÃO MODULAR... 9 GRÁFICO DA FUNÇÃO MODULAR... 9 EQUAÇÕES MODULARES... 7 INEQUAÇÕES MODULARES... 3 RESPOSTAS... 37

Leia mais

Equipe de Matemática. Matemática. Divisibilidade

Equipe de Matemática. Matemática. Divisibilidade Aluno (a): Série: 3ª Turma: TUTORIAL 1B Ensino Médio Equipe de Matemática Data: Matemática Divisibilidade Divisores de um número natural são todos os números naturais que ao dividirem tal número, resultarão

Leia mais

Passando do português para a linguagem matemática.

Passando do português para a linguagem matemática. 1 Passando do português para a linguagem matemática. Professor Maurício 2 Um grande problema para quem está estudando matemática pela primeira vez é passar o enunciado (na forma de palavras e escrito em

Leia mais

SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ

SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ MÚLTIPLOS E DIVISORES PROFª EDNALVA DOS SANTOS Um Objeto de Aprendizagem é um arquivo digital (imagem, filme, etc.) que pretende ser utilizado para fins pedagógicos

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

Conjunto dos números inteiros

Conjunto dos números inteiros E. M. E. F. MARIA ARLETE BITENCOURT LODETTI DISCIPLINA DE MATEMÁTICA PROFESSORA: ADRIÉLE RÉUS DE SOUZA Conjunto dos números inteiros O conjunto dos números inteiros é formado pelos algarismos inteiros

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia

Leia mais

3º Ano do Ensino Médio. Aula nº08

3º Ano do Ensino Médio. Aula nº08 Nome: Ano: º Ano do E.M. Escola: Data: / / 1. Conceitos básicos 3º Ano do Ensino Médio Aula nº08 Assunto: Funções, Equações e Inequações do 1º grau Introdução: Representação de uma equação com 2 variáveis

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

JOGOS E HABILIDADES. Marie-Claire Ribeiro Póla Mariele Cestari Esteves Supera Londrina

JOGOS E HABILIDADES. Marie-Claire Ribeiro Póla Mariele Cestari Esteves Supera Londrina JOGOS E HABILIDADES Marie-Claire Ribeiro Póla mariepola@yahoo.com.br Mariele Cestari Esteves Supera Londrina mariele.londrina@metodosupera.com.br Resumo: São inúmeras as habilidades que podem ser desenvolvidas

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Calculando o MMC (mínimo múltiplo comum)

Calculando o MMC (mínimo múltiplo comum) Calculando o MMC (mínimo múltiplo comum) Público Alvo: Anos finais do ensino fundamental. Duração da atividade: 2h/a. Objetivo Geral: Compreender de forma significativa o algoritmo da fatoração simultânea

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

Por exemplo, calcular 30% de Ora, 30% = = 0,3. Portanto, é só fazer a multiplicação ,3. O resultado é 975. Suponha que Osvaldo tem na cade

Por exemplo, calcular 30% de Ora, 30% = = 0,3. Portanto, é só fazer a multiplicação ,3. O resultado é 975. Suponha que Osvaldo tem na cade MATEMÁTICA FINANCEIRA AULA 01: PORCENTAGEM TÓPICO 02: CÁLCULO DE PORCENTAGEM Suponha que uma loja de tecidos pague 5% de comissão sobre o total de vendas. Se o vendedor Joaquim num determinado mês vendeu

Leia mais

6 de dezembro de 2012

6 de dezembro de 2012 Escola Básica de Santa Catarina Ficha de Avaliação de Matemática 6 de dezembro de 2012 A PREENCHER PELO ALUNO 7ºano Nome: nº Turma A PREENCHER PELO PROFESSOR Classificação: Nível: ( ) Rubrica do professor:

Leia mais

Oficina Porcentagem e Juros

Oficina Porcentagem e Juros Oficina Porcentagem e Juros 1ª parte: revisão teórica Vamos relembrar o conceito de porcentagem com uma situação-problema. O que tem mais água, uma uva ou uma banana? Para responder, leve em consideração

Leia mais

Nesse texto vamos abordar como construir dois jogos utilizando os recursos gráficos, funções matemáticas e comandos internos do GeoGebra.

Nesse texto vamos abordar como construir dois jogos utilizando os recursos gráficos, funções matemáticas e comandos internos do GeoGebra. 66 Nesse texto vamos abordar como construir dois jogos utilizando os recursos gráficos, funções matemáticas e comandos internos do GeoGebra. COMANDO SE O comando Se, ou condicional, será muito útil no

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

COLÉGIO SÃO JOÃO GUALBERTO

COLÉGIO SÃO JOÃO GUALBERTO RESOLUÇÃO COMENTADA Prof.: Pedro Bittencourt Série: 3ª Turma: A Disciplina: Física Nota: Atividade: Avaliação mensal 1º bimestre Valor da Atividade: 10 Instruções Esta avaliação é individual e sem consulta.

Leia mais

Cálculo com expressões que envolvem radicais

Cálculo com expressões que envolvem radicais Escola Secundária de Aljustrel Material de apoio para o 11. o Ano Ano Lectivo 00/003 Cálculo com expressões que envolvem radicais José Paulo Coelho Abril de 003 ... Índice... 1 Radicais: definição e propriedades.

Leia mais

Como começar a Jogar? Para iniciar o jogo a forma mais fácil é ir a e começar a jogar.

Como começar a Jogar? Para iniciar o jogo a forma mais fácil é ir a  e começar a jogar. Manual do Utilizador Como começar a Jogar? Para iniciar o jogo a forma mais fácil é ir a http://mega.ist.utl.pt/~jsnl/sudoku/ e começar a jogar. O que preciso para jogar? Precisa de um computador, ligação

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II - 214.1 Professor Márcio Nascimento 1. Sejam a G com o(a) = n 1 e m Z. Se a

Leia mais

Orientar os alunos na obtenção do critério ângulo, ângulo (AA) de semelhança de triângulos usando como meio algumas atividades experimentais.

Orientar os alunos na obtenção do critério ângulo, ângulo (AA) de semelhança de triângulos usando como meio algumas atividades experimentais. EIXO TEMÁTICO III: ESPAÇO E FORMA Tema 1: Relações geométricas entre figuras planas Tópico 17: Teorema de tales e semelhança de triângulos Objetivos: Orientar os alunos na obtenção do critério ângulo,

Leia mais

Deixando de odiar Matemática Parte 4

Deixando de odiar Matemática Parte 4 Deixando de odiar Matemática Parte 4 Fatoração 2 Quantidade de divisores de um número natural 3 Mínimo Múltiplo Comum 5 Simplificação de Frações 7 Máximo Divisor Comum 8 Método da Fatoração Simultânea

Leia mais

ROLETRANDO DOS INTEIROS. GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais

ROLETRANDO DOS INTEIROS. GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais ROLETRANDO DOS INTEIROS GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais Cláudio Cristiano Liell Univates, cristianoliell@hotmail.com Gládis Bortoli Univates, gladisbortoli@gmail.com

Leia mais

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores Operações com potências A UUL AL A Quando um número é multiplicado por ele mesmo, dizemos que ele está elevado ao quadrado, e escrevemos assim: Introdução a a = a² Se um número é multiplicado por ele mesmo

Leia mais

Oficina Geoplano. As atividades apresentadas têm o objetivo de desenvolver as seguintes habilidades:

Oficina Geoplano. As atividades apresentadas têm o objetivo de desenvolver as seguintes habilidades: Oficina Geoplano 1. Introdução O objetivo desta oficina é trabalhar com os alunos alguns conceitos ligados a medidas de comprimento e área de figuras planas, bem como investigar o Teorema de Pitágoras.

Leia mais

Números Primos, Fatores Primos, MDC e MMC

Números Primos, Fatores Primos, MDC e MMC Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,

Leia mais

Frações sem mistérios

Frações sem mistérios Reforço escolar M ate mática Frações sem mistérios Dinâmica 2 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática DINÂMICA 9º Ano do Ensino Fundamental Frações Sem Mistérios Numérico

Leia mais

Espera, espera, tive uma idéia e uma idéia não se deixa fugir.

Espera, espera, tive uma idéia e uma idéia não se deixa fugir. Nível 1 5ª e 6ª séries (6º e 7º anos) do Ensino Fundamental 2ª FSE 24 de outubro de 2009 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Investigar Padrões. Na primeira tabela que números têm as duas cores? Compara com a segunda tabela. O que concluis?

Investigar Padrões. Na primeira tabela que números têm as duas cores? Compara com a segunda tabela. O que concluis? Investigar Padrões Múltiplos de 2, 3 e 6 Pinta os múltiplos de 2 e os de 3 com cores diferentes Pinta os múltiplos de 6 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22

Leia mais

MATEMÁTICA ENSINO FUNDAMENTAL

MATEMÁTICA ENSINO FUNDAMENTAL CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP APRESENTAÇÃO Nesta apostila, a intenção é que você adquira a capacidade de visualizar e nomear, pontos, retas, planos, ângulos e reconhecer triângulos. É uma pequena

Leia mais

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia Planejamento Anual Componente Curricular: Matemática Ano: 7º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

Este jogo é indicado para alunos dos 6º ao 9º anos

Este jogo é indicado para alunos dos 6º ao 9º anos Elaboração do Jogo: Twister Matemático Responsável: Rassiê Tainy de Paula O Jogo Baseado no já existente jogo Twister, em que, os jogadores têm que mover pés e mãos conforme a indicação da roleta sem perder

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Objectivo do jogo. 1 carta "gato no saco" 4 cartas de moedas (2, 3, 4, 6 "ratos")

Objectivo do jogo. 1 carta gato no saco 4 cartas de moedas (2, 3, 4, 6 ratos) Objectivo do jogo Com os seus ratos, os jogadores tentarão apanhar vários gatos no saco. No saco, existem tanto gatos bons como maus. Cada jogador também poderá pôr um cão ou um coelho no saco em vez de

Leia mais

PIFE DA MULTIPLICAÇÃO

PIFE DA MULTIPLICAÇÃO PIFE DA MULTIPLICAÇÃO Objetivo: Compreender melhor as operações de multiplicação. Materiais: 46 cartas da seguinte forma: 8 cartas com números do 2 ao 9 sendo estes multiplicadores; 8 cartas com números

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens

Leia mais

Lista de Exercícios Estruturas: Linear, Condicional e Exclusão Múltipla Algoritmos e Linguagens de Programação

Lista de Exercícios Estruturas: Linear, Condicional e Exclusão Múltipla Algoritmos e Linguagens de Programação Lista de Exercícios Estruturas: Linear, Condicional e Exclusão Múltipla Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior IMPORTANTE: Lembre-se! As respostas apresentadas a seguir não

Leia mais

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis ENSINO FUNDAMENTAL II ALUNO (A): Nº PROFESSOR(A):Rosylanne Gomes/ Marcelo Vale e Marcelo Bentes DISCIPLINA: matemática SÉRIE: 7 ano TURMA: TURNO: DATA: / / 2016 Sistemas de equações do 1 grau a duas variáveis

Leia mais

1 o º ciclo. Índice TUTORIAL

1 o º ciclo. Índice TUTORIAL 1 o º ciclo Índice ABRIR O EXCEL 2 O ambiente de trabalho do Excel.3 O botão do Office 4 OPERAÇÕES COM FOLHAS DE CÁLCULO.. 4 Criar um documento novo 4 Colunas, linhas e células. 5 Inserir Fórmulas 6 TUTORIAL

Leia mais

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando INTRODUÇÃO O PROBLEMA D, tem sua história, sua evolução e generalizações citadas na página REFERÊNCIA da MATEMÁTICA. Entre as referências destaca-se o livro "O Homem que Calculava", de Malba Tahan, pseudônimo

Leia mais

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1 Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular).

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

COLÉGIO SALESIANO SÃO GONÇALO CUIABÁ MT Escola de Educação Básica

COLÉGIO SALESIANO SÃO GONÇALO CUIABÁ MT Escola de Educação Básica COLÉGIO SALESIANO SÃO GONÇALO CUIABÁ MT Escola de Educação Básica Aluno(a): 6ºAno Professora: Roberto Figueiredo e Fernanda Ivo Caderno de Recuperação de Matemática 01) Represente cada multiplicação por

Leia mais

INEQUAÇÕES : Conceito:

INEQUAÇÕES : Conceito: INEQUAÇÕES : Conceito: Toda inequação é uma desigualdade aberta, o que significa que ela contém ao menos uma incógnita Trabalharemos a seguir com inequações de º e de º graus com uma só incógnita, e para

Leia mais

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.:

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: II ) Compreensão de fenômenos 1ª UNIDADE Números inteiros (Z) 1. Números positivos e números negativos 2. Representação geométrica 3. Relação

Leia mais

Aula 7 - Mais problemas com inteiros

Aula 7 - Mais problemas com inteiros Aula 7 - Mais problemas com inteiros Já vimos nas aulas anteriores alguns detalhes de operações com inteiros. a) A divisão é inteira e o resultado é truncado b) Existe o operador % (resto da divisão) c)

Leia mais

Roteiro de Recuperação do 3º Bimestre - Matemática

Roteiro de Recuperação do 3º Bimestre - Matemática Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

Questionário de Desafios Envolvendo os Tangrans

Questionário de Desafios Envolvendo os Tangrans Questionário de Desafios Envolvendo os Tangrans Aluno(a): Turma: Professor(a): Parte 01 Considere as peças do jogo Tangram Quadrado com 15 Peças Poligonais. a) Coloque um triângulo pequeno sobre uma folha

Leia mais

Observando e cantando e seguindo o padrão...

Observando e cantando e seguindo o padrão... Reforço escolar M ate mática Observando e cantando e seguindo o padrão... Dinâmica 2 2º Série 2º Bimestre Professor DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 2ª Numérico Aritmético Regularidades

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

ÁLGEBRA DE BOOLE Operações Fundamentais, Autoavaliação, Indução Perfeita e Simulação

ÁLGEBRA DE BOOLE Operações Fundamentais, Autoavaliação, Indução Perfeita e Simulação ÁLGEBRA DE BOOLE Operações Fundamentais, Autoavaliação, Indução Perfeita e Simulação OBJETIVOS: a) Conhecer na prática os principais fundamentos da álgebra de Boole; b) Comprovar na prática os teoremas

Leia mais

A aplicação do método se resume em algumas partes: Apostila escrita e desenvolvida por Renan Cerpe Versão 1.0

A aplicação do método se resume em algumas partes: Apostila escrita e desenvolvida por Renan Cerpe Versão 1.0 Introdução: O método Bindfolded, traduzido como "olhos vendados", é um dos maiores desafios para um Speed Cuber. Solucionar o Cubo Mágico com os olhos vendados parece ser algo impossível e que impressiona

Leia mais

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre A melhor maneira de nos prepararmos para o futuro é concentrar toda a imaginação e entusiasmo na execução perfeita do trabalho de hoje. Dale Carnegie 1. Conjuntos Numéricos 1) Pense e Responda: a) Qual

Leia mais

Lista de Exercícios 8: Soluções Relações

Lista de Exercícios 8: Soluções Relações UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 8: Soluções Relações Ciências Exatas & Engenharias 2 o Semestre de 2016 Definição 1 [Composição de relações]. Seja R uma relação do conjunto

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 0-0 PROVA DE MATEMÁTICA Questão Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel é igual

Leia mais

Gabarito - Matemática - Grupos I e J

Gabarito - Matemática - Grupos I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor x O gráfico da função exponencial f, definida por f( x) = k a, foi construído utilizando-se o programa de geometria dinâmica gratuito GeoGebra (http://www.geogebra.org),

Leia mais

Lista 7 de exercícios Jogos Conceitos Microeconomia II Professora: Joisa Dutra Monitor: Pedro Bretan

Lista 7 de exercícios Jogos Conceitos Microeconomia II Professora: Joisa Dutra Monitor: Pedro Bretan Lista 7 de exercícios Jogos Conceitos Microeconomia II Professora: Joisa Dutra Monitor: Pedro Bretan 1) Defina precisamente as noções que estão listadas abaixo: a) Jogo; b) Jogo estático de informação

Leia mais

Manual da Nova Garra Mecânica

Manual da Nova Garra Mecânica Manual da Nova Garra Mecânica 1 Para começar o manual da Garra, vamos iniciar pela própria garra ou seja, a parte que agarra objetos. Parafuse a cantoneira de 12 furos em uma engrenagem de 36 dentes e

Leia mais

The Cool Club. Um grupo de críticos pseudo-intelectuais hipsters sentados em um café ou pub discutem os livros que acabaram de ler.

The Cool Club. Um grupo de críticos pseudo-intelectuais hipsters sentados em um café ou pub discutem os livros que acabaram de ler. The Cool Club Um grupo de críticos pseudo-intelectuais hipsters sentados em um café ou pub discutem os livros que acabaram de ler. Preparação Para jogar The Cool Club, primeiro você vai precisar de um

Leia mais

CONJUNTOS EXERCÍCIOS DE CONCURSOS

CONJUNTOS EXERCÍCIOS DE CONCURSOS CONJUNTOS EXERCÍCIOS DE CONCURSOS E0626 (IBEG Merendeira Prefeitura de Uruaçu GO). Sendo os conjuntos A = {2, 4, 6, 8, 10, 12}; B = {1, 3, 5, 7, 9, 11}; C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. I A

Leia mais

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor que a base e o expoente sejam não nulos, pois já

Leia mais

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO APÊNDICE 106 107 APÊNDICE A (ATIVIDADES REFORMULADAS) - CADERNO DE ATIVIDADES INVESTIGATIVAS ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO Mestrando:

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2012/2013 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

16. (Técnico Judiciário TRF 3ª Região 2016/FCC) Se todo engenheiro é bom em matemática e algum engenheiro é físico, conclui-se corretamente que

16. (Técnico Judiciário TRF 3ª Região 2016/FCC) Se todo engenheiro é bom em matemática e algum engenheiro é físico, conclui-se corretamente que 16. (Técnico Judiciário TRF 3ª Região 2016/FCC) Se todo engenheiro é bom em matemática e algum engenheiro é físico, conclui-se corretamente que (A) todo físico é bom em matemática. (B) certos bons em matemática

Leia mais

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

I-OBJETIVO DO JOGO ENQUANTO ATIVIDADE DE ENSINO

I-OBJETIVO DO JOGO ENQUANTO ATIVIDADE DE ENSINO 6 I-OBJETIVO DO JOGO ENQUANTO ATIVIDADE DE ENSINO Resolver problemas envolvendo as operações: adição subtração e multiplicação; Desenvolver a habilidade de cálculo mental. II-MATERIAL 1. Fichas com a figura

Leia mais

LibreOffice Calc. Jamille Madureira

LibreOffice Calc. Jamille Madureira LibreOffice Calc Jamille Madureira O Calc oferece um conjunto de funções que podem ser usadas. Uma função é um comando que recebe uma informação, realiza um cálculo e devolve uma resposta ao usuário.

Leia mais

COMO SABER SE UM NÚMERO FORMADO APENAS POR ALGARISMOS IGUAIS A 1 É DIVISÍVEL POR 7? RELATO DE UMA EXPERIÊNCIA

COMO SABER SE UM NÚMERO FORMADO APENAS POR ALGARISMOS IGUAIS A 1 É DIVISÍVEL POR 7? RELATO DE UMA EXPERIÊNCIA ARTIGO COMO SABER SE UM NÚMERO FORMADO APENAS POR ALGARISMOS IGUAIS A 1 É DIVISÍVEL POR 7? RELATO DE UMA EXPERIÊNCIA José Roberto Julianelli (*) abaixo: O relato a seguir teve início quando eu precisei

Leia mais

Você já sabe como usar os pedidos existentes no Partners FX? Aula 1. Aprendendo como usar o Pedido Simples, Valor de Mercado, IF Done, OCO e IF OCO

Você já sabe como usar os pedidos existentes no Partners FX? Aula 1. Aprendendo como usar o Pedido Simples, Valor de Mercado, IF Done, OCO e IF OCO Você já sabe como usar os pedidos existentes no Partners FX? Aula 1 Aprendendo como usar o Pedido Simples, Valor de Mercado, IF Done, OCO e IF OCO Partners - Pedidos Valor de Mercado (Uma única ordem)

Leia mais

aplicação prática da Matemática aprendida na Escola.

aplicação prática da Matemática aprendida na Escola. Uma aplicação prática da Matemática aprendida na Escola. "A trigonometria é o ramo da Matemática que trata das relações entre os lados e ângulos do triângulo." Atividade desenvolvida no LEMAT com o 9º

Leia mais

OBMEP NA ESCOLA Soluções

OBMEP NA ESCOLA Soluções OBMEP NA ESCOLA 016 - Soluções Q1 Solução item a) A área total do polígono da Figura 1 é 9. A região inferior à reta PB é um trapézio de área 3. Isso pode ser constatado utilizando a fórmula da área de

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

QUINA: Dezenas por Coluna

QUINA: Dezenas por Coluna QUINA: Dezenas por Coluna (a) O Jogo Um Resultado da Quina é uma sequência de 5 Dezenas sorteadas de um universo de 80 Dezenas. O universo é formado pelas Dezenas: 01, 02, 03,..., 79 e 80. A seguir estão

Leia mais

O CASO INVERSO DA QUEDA LIVRE

O CASO INVERSO DA QUEDA LIVRE O CASO INVERSO DA QUEDA LIVRE Vamos analisar o caso em que se lança um corpo para o alto, na vertical. Tomemos o seguinte exemplo: uma pedra é lançada para o alto, na vertical, com uma velocidade inicial

Leia mais

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado?

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa caminha diariamente 4 000 m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa trabalhou durante 10 dias para fazer um serviço pelo qual recebeu R$ 325,00. Quanto recebeu por

Leia mais