Potências e logaritmos, tudo a ver!

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Potências e logaritmos, tudo a ver!"

Transcrição

1 Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica Primeira Etapa Compartilhar Ideias Atividade Dados Potentes! Você e seus colegas são convidados a jogar os Dados Potentes! Para jogar, vão precisar de dois dados, os Quadros 1 e 2, e a tabela. Antes de começar, decidam entre vocês uma ordem para começar o jogo e observem as regras: Em sua vez, jogue os dois dados juntos. Os números das faces superiores desses dados são os expoentes de um número escrito na base 2. Por exemplo, se as faces superiores dos dados apresentarem os números 3 e 6, os números escritos na base 2 são 2 3 e 2 6. Ainda, nessa mesma jogada, calcule o resultado da multiplicação desses dois números. Faça o mesmo com a divisão, só que agora com o cuidado 1

2 de sempre dividir o número maior pelo número menor, caso os números não sejam iguais. Por exemplo, suponha que os números sorteados nos dados sejam 3 e 4. Então você deve calcular = 128 = 2 7 e = 2 = 2 1. Para acelerar os cálculos, use a tabela com os valores das potências. Em seguida, com os resultados dos cálculos preencha cada um dos quadros. Atenção, os quadros devem ser preenchidos com as potências! Passe a vez para o próximo jogador. O jogo termina após 5 rodadas. Agora responda: 1. Pensando na multiplicação, qual a propriedade de potenciação você pode utilizar para preencher a tabela mais rapidamente? Usando essas propriedades, preencha o Quadro abaixo. X Aluno Observe o Quadro. Existem valores que se repetem? Por quê? 3. Com relação à divisão, qual a propriedade de potenciação você pode utilizar para preencher a tabela mais rapidamente? Usando essa propriedade, preencha, o Quadro a seguir. Veja, já começamos o trabalho para você. 2

3 Utilizando a propriedade observada no item anterior, preencha as células em azul. Matemática Segunda Etapa Um novo olhar... Atividade: Verdadeiro ou Falso? Verifique se as afirmações a seguir são verdadeiras ou falsas. Justifique as verdadeiras e corrija as falsas. I = 5 5 II. 2 5 x 2 3 = 10 x 6 = 60 III. (3 4 ) 2 =

4 IV. (2 3 ) 2 = 2 6 = 64 V = 7-2 VI = ( ) ( )= 0 VII. Terceira Etapa Fique por dentro! Atividade Procurando a Alma Gêmea Aluno Confira, em seu grupo, o conjunto de 18 cartões que receberam de seu professor, antes de iniciar este novo jogo, que irá ajudá-lo a encontrar a sua alma gêmea. Antes de começar, decidam entre vocês quem é o primeiro jogador e uma ordem para as jogadas. Agora, observem as regras: Embaralhem os cartões sobre a mesa, virados para baixo. Na sua vez, vire dois cartões. Se os cartões virados forem equivalentes, por exemplo log2 8 e 3, retire esse par da mesa. Caso contrário, vire-os para baixo e passe a vez. Os demais colegas do grupo farão o mesmo procedimento. O jogo acaba quando todos os pares estiverem formados e o vencedor do jogo é o aluno que possuir a maior quantidade de pares. 1. Complete a tabela abaixo com os valores dos logaritmos. log 2 32 log 5 5 log

5 log 2 1 log log log Matemática log log Baseado no que você observou anteriormente, complete as igualdades. (a é um número real positivo e a 1) m a. log a a = b. log a a = c. log a 1= d. log a m n a = Quarta Etapa Quiz (U.E. Londrina) Supondo que exista, o logaritmo de a na base b é: a. a potência de base b e expoente a. b. a potência de base a e expoente b. c. o número ao qual se eleva a para obter b. d. a potência de base 10 e expoente a. e. o número ao qual se eleva b para obter a. 5

6 Aluno Quinta Etapa Análise das Respostas ao QUIZ 6

7 Etapa Flex Para saber + Quantos de nós, ao estudarmos a definição de logaritmo, já nos fizemos ou fizemos ao professor a seguinte pergunta: Por que a e b têm de ser positivos e, além disso, a tem que ser diferente de 1? Vamos contrariar estas afirmativas (fazendo justamente a negativo e depois a = 1) e aplicar a definição de logaritmo para ver o que acontece! Se, por absurdo, fizéssemos a = 1, ao aplicar a definição, teríamos: log 1 b = x 1 x = b Daí, para qualquer valor real de x, b seria sempre igual a 1, e não faria sentido tal cálculo. Por outro lado, se tivéssemos, por exemplo, b = -4, ao aplicar a definição, teríamos: log 2 (-4) = x 2 x = -4 Ou seja, para nenhum x real obteríamos um resultado negativo! Por fim, se tivéssemos, por exemplo, a = -2 e b = 8, teríamos: log (-2) 2 = x (-2) x = 8 E então, mais uma vez, nenhum número real satisfaria tal condição. Testando vários outros números, pode-se facilmente perceber a importância das condições de existência de um logaritmo. Além disso, a definição de logaritmo também pode verificar algumas propriedades básicas muito úteis, tais como: log a a = 1 pois a 1 = a log a 1 = 0 pois a 0 = 1 log a a n = n pois a n = a n. Matemática Agora, é com você! Que tal agora, exercitarmos o uso da definição de logaritmo? Exercícios 1. Calcule os logaritmos a seguir: a. log = b. log10000 = 7

8 c. log = d. log 104 1= 1317 e. log 2 2 = 13 f. log 7 7 = g. log = h. log = 2. Responda: a. Qual o logaritmo de 0,25 na base 2? b. Qual o logaritmo de 625 na base 5? E na base 25? E na base 125? Aluno c. Qual o número cujo logaritmo na base 3 vale 2? d. Qual a base na qual o logaritmo de 4 1 vale 1? e. Qual a base na qual o logaritmo de 243 vale 5? 8

Potências e logaritmos, tudo a ver!

Potências e logaritmos, tudo a ver! Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 2ª Série º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica

Leia mais

Gráfico de Funções: Seno, Cosseno e Tangente

Gráfico de Funções: Seno, Cosseno e Tangente Reforço escolar M ate mática Gráfico de Funções: Seno, Cosseno e Tangente Dinâmica 6 1ª Série 4º Bimestre Aluno DISCIPLINA Série CAMPO CONCEITO Matemática 1a do Ensino Médio Geométrico Trigonometria na

Leia mais

Palitos e triângulos

Palitos e triângulos Reforço escolar M ate mática Palitos e triângulos Dinâmica 8 2ª Série 3º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Funções Aluno Primeira Etapa Compartilhando

Leia mais

Tudo ou nada! Dinâmica 5. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO

Tudo ou nada! Dinâmica 5. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO Reforço escolar M ate mática Tudo ou nada! Dinâmica 5 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico. Geometria Analítica. Primeira Etapa Compartilhar

Leia mais

Pipocas do 9 o ano. Dinâmica 3. Aluno Primeira Etapa Compartilhar idéias. 9 Ano 3º Bimestre

Pipocas do 9 o ano. Dinâmica 3. Aluno Primeira Etapa Compartilhar idéias. 9 Ano 3º Bimestre Reforço escolar M ate mática Pipocas do 9 o ano Dinâmica 3 9 Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico-Simbólico Funções Primeira Etapa Compartilhar idéias

Leia mais

O DNA das equações algébricas

O DNA das equações algébricas Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações

Leia mais

Tô na área! Dinâmica 6. Primeira Etapa Compartilhar ideias. Aluno. 9º Ano 4º Bimestre

Tô na área! Dinâmica 6. Primeira Etapa Compartilhar ideias. Aluno. 9º Ano 4º Bimestre Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Aluno

Leia mais

Embrulhando uma Esfera!

Embrulhando uma Esfera! Reforço escolar M ate mática Embrulhando uma Esfera! Dinâmica 6 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 2 a do Ensino Médio Geométrico. Geometria Espacial: Esferas. Aluno Primeira

Leia mais

Teorema de Pitágoras: Encaixando e aprendendo

Teorema de Pitágoras: Encaixando e aprendendo Reforço escolar M ate mática Teorema de Pitágoras: Encaixando e aprendendo Dinâmica 7 9º ano 2º Bimestre Aluno DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Teorema de Pitágoras

Leia mais

Do Basquete ao futsal

Do Basquete ao futsal Reforço escolar M ate mática Do Basquete ao futsal Dinâmica 5 3ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 3ª do Ensino Médio Numérico Aritmético Análise Combinatória Aluno Primeira

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Invadindo o espaço Dinâmica 5 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 2ª Campo Algébrico Simbólico Introdução à geometria espacial Aluno

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Apontamentos de Matemática.º ano Introdução noção de potência Exemplo Uma bactéria divide-se dando origem a duas novas bactérias. Suponha que havia inicialmente duas bactérias e que ocorreram sucessivamente

Leia mais

União... matrimonial?

União... matrimonial? Reforço escolar M ate mática União... matrimonial? Dinâmica 1 3ª Série 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 3ª Numérico Aritmético Probabilidade Aluno Primeira Etapa Compartilhar

Leia mais

O sítio do Seu Epaminondas

O sítio do Seu Epaminondas Reforço escolar M ate mática O sítio do Seu Epaminondas Dinâmica 1 9º Ano 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico Simbólico Equação do 2º Grau Aluno Primeira

Leia mais

Semelhanças do cotidiano

Semelhanças do cotidiano Reforço escolar M ate mática Semelhanças do cotidiano Dinâmica 6 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Semelhança de Polígonos. Aluno Primeira Etapa

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

Potências e exponenciais... ou é o inverso?

Potências e exponenciais... ou é o inverso? Reforço escolar M ate mática Potências e exponenciais... ou é o inverso? Dinâmica 1 1ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Algébrico-Simbólico Função Exponencial.

Leia mais

PEGUE 10. Quantidade: 08 unidades

PEGUE 10. Quantidade: 08 unidades 1 PEGUE 10 Materiais Um tabuleiro e 66 cartas redondas com os numerais de 1 a 7 nas seguintes quantidades: 1 22 cartas; 6-2 cartas; 2-16 cartas; 7-2 cartas; 3-12 cartas; Coringa 1 carta. 4-7 cartas; 5-4

Leia mais

A realização de um grande sonho

A realização de um grande sonho Reforço escolar M ate mática A realização de um grande sonho Dinâmica 7 9º Ano 4º Bimestre Professor DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e

Leia mais

Comunidade de Prática Virtual Inclusiva Formação de Professores

Comunidade de Prática Virtual Inclusiva Formação de Professores O Mate erial Dourado Montessor ri O material Dourado ou Montessori é constituído por cubinhos, cubão, que representam: barras, placas e Observe que o cubo é formado por 10 placas, que a placa é formada

Leia mais

Jogos com Adições 1. JOGOS LIVRES

Jogos com Adições 1. JOGOS LIVRES Jogos com Adições Como explorar este material? 1. JOGOS LIVRES Objectivo: tomar contacto com o material, de maneira livre, sem regras. Durante algum tempo, os alunos brincam com o material, fazendo construções

Leia mais

JOGOS MATEMÁTICOS 2º ANO

JOGOS MATEMÁTICOS 2º ANO JOGOS MATEMÁTICOS 2º ANO ENCONTRE 1 Objetivos: - Realizar operações de adição e/ou subtração. - Estimular o cálculo mental. - Compor o número 1 com duas parcelas. Número de jogadores: 2 ou 4. Materiais:

Leia mais

Regulares, são só esses?

Regulares, são só esses? Reforço escolar M ate mática Regulares, são só esses? Dinâmica 8 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Ensino Médio 2ª Geométrico Introdução à Geometria Espacial Primeira Etapa Compartilhar

Leia mais

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Professor

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Noção de potência Quando temos uma multiplicação sucessiva em que o mesmo número se repete, podemos transformar essa expressão numa potência. Veja os exemplos., o é o número que se repete e o número de

Leia mais

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) 1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos

Leia mais

Colégio Adventista de Porto Feliz

Colégio Adventista de Porto Feliz Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor

Leia mais

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula.

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. PRODUTO CARTESIANO PAR ORDENADO Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. ( x, y ) pode ser indicado para representar uma determinada posição e que esta ordem de primeiro

Leia mais

Calculo de cabeça, não, com a cabeça!

Calculo de cabeça, não, com a cabeça! Reforço escolar M ate mática Calculo de cabeça, não, com a cabeça! Dinâmica 2 9º Ano 2º Bimestre Aluno DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico Simbólico Equação do 2º.

Leia mais

DAMA DAS EQUAÇÕES DO 1º GRAU

DAMA DAS EQUAÇÕES DO 1º GRAU 1 DAMA DAS EQUAÇÕES DO 1º GRAU Resolver equações de 1 grau; Estimular o raciocínio. Duplas. Material (um para cada dupla): Tabuleiro8x8 com 64 casas. 64 peças. O jogo é composto por um tabuleiro 8x8 com

Leia mais

DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios.

DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios. DANÔMIO Objetivos Aprimorar o conhecimento da multiplicação de monômios. Materiais Dado feito de papel com um monômio em cada face, 6 tabelas que apresentam todas combinações de produtos dos monômios de

Leia mais

Equacionando o cotidiano...

Equacionando o cotidiano... Equacionando Reforço escolar M ate mática o cotidiano... Dinâmica 8 9º Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Algébrico simbólico Equações redutíveis do 2 grau Aluno

Leia mais

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Professor Matemática 3ª do Ensino Médio Algébrico-Simbólico DINÂMICA Fácil e poderoso. Polinômios

Leia mais

Uma atividade radical!

Uma atividade radical! Reforço escolar M ate mática Uma atividade radical! Dinâmica 4 9º Ano 1º Bimestre Matemática Ensino Fundamental 9ª Algébrico Simbólico Radicais. PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE QUEBRA CABEÇA

Leia mais

Analista TRT 10 Região / CESPE 2013 /

Analista TRT 10 Região / CESPE 2013 / Ao comentar sobre as razões da dor na região lombar que seu paciente sentia, o médico fez as seguintes afirmativas. P1: Além de ser suportado pela estrutura óssea da coluna, seu peso é suportado também

Leia mais

Social do 9º ano com muita pizza

Social do 9º ano com muita pizza Reforço escolar M ate mática Social do 9º ano com muita pizza Dinâmica 1 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 9º Ano do Ensino Fundamental Numérico Aritmético. Números reais. Primeira

Leia mais

Uma atividade bem redonda!

Uma atividade bem redonda! Reforço escolar M ate mática Uma atividade bem redonda! Dinâmica 6 9º Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Geométrico Circunferência e círculo Primeira Etapa Compartilhar

Leia mais

ROTEIRO DE RECUPERAÇÃO

ROTEIRO DE RECUPERAÇÃO MATEMÁTICA ROTEIRO DE RECUPERAÇÃO ENSINO FUNDAMENTAL ANO: 9º TURMAS: A B C D E ETAPA: 1ª ANO: 2017 PROFESSORA: THAIS ANDRADE E FERNANDO SIMÕES ALUNO(A): Nº: I INTRODUÇÃO Este roteiro tem como objetivo

Leia mais

Frações sem mistérios

Frações sem mistérios Reforço escolar M ate mática Frações sem mistérios Dinâmica 2 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática DINÂMICA 9º Ano do Ensino Fundamental Frações Sem Mistérios Numérico

Leia mais

3 Limites. Exemplo 3.1

3 Limites. Exemplo 3.1 3 Ao expor o método dos incrementos fizemos uso da expressão limite. Muito mais que uma notação a noção de limite alcança um horizonte bem mais amplo dentro do contexto matemático, na realidade muito pouco

Leia mais

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa. LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

Nº: Atividade Avaliativa P4

Nº: Atividade Avaliativa P4 Centro Educacional La Salle Av. Dom Pedro I, 151 Bairro Dom Pedro Manaus/AM Fone: (92) 3655-1200 E-mail: lasalle.manaus@lasalle.org.br ALUNO (A): Nº: TURMA 16 VALOR: 5 pontos DISCIPLINA: Matemática TRIMESTRE:

Leia mais

MÚLTIPLOS DE UM NÚMERO NATURAL

MÚLTIPLOS DE UM NÚMERO NATURAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ======================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para

Leia mais

POTENCIAÇÃO. Por convenção temos que: 1) Todo o número elevado ao expoente 1 é igual à própria base, exemplo: a) 8¹ = 8 b) 5¹ = 5

POTENCIAÇÃO. Por convenção temos que: 1) Todo o número elevado ao expoente 1 é igual à própria base, exemplo: a) 8¹ = 8 b) 5¹ = 5 POTENCIAÇÃO 6º ANO - Prof. Patricia Caldana Consideremos uma multiplicação em que todos os fatores são iguais Exemplo: 5 x 5 x 5, indicada por 5³, ou seja, 5³ = 5 x 5 x 5 = 125 onde: 5 é a base (fator

Leia mais

DESCRIÇÃO DAS ATIVIDADES:

DESCRIÇÃO DAS ATIVIDADES: DESCRIÇÃO DAS ATIVIDADES: 1) O JOGO DOS PALITOS E A PROBABILIDADE: esta sequência didática apresentada aos anos iniciais (1º/5º ano) do Ensino Fundamental tem como objetivo possibilitar conhecimentos das

Leia mais

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação

Leia mais

1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha,

1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, 1. Jogo dos saltos 1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, e por um conjunto de fichas de 2 cores diferentes

Leia mais

Equipe de Matemática. Matemática. Divisibilidade

Equipe de Matemática. Matemática. Divisibilidade Aluno (a): Série: 3ª Turma: TUTORIAL 1B Ensino Médio Equipe de Matemática Data: Matemática Divisibilidade Divisores de um número natural são todos os números naturais que ao dividirem tal número, resultarão

Leia mais

Nº de jogadores 2 Tempo de jogo 15 minutos Idade a partir dos 10 anos

Nº de jogadores 2 Tempo de jogo 15 minutos Idade a partir dos 10 anos Nº de jogadores 2 Tempo de jogo 15 minutos Idade a partir dos 10 anos 1 Introdução: Neste jogo, cada jogador tem uma família de 3 elementos (Pai,Mãe e filho). Cada membro da família tem uma Escala de Poupança

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

Ampliando os horizontes geométricos

Ampliando os horizontes geométricos Reforço escolar M ate mática Ampliando os horizontes geométricos Dinâmica 8 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 9º Ano do Ensino Fundamental Geométrico. Semelhança de Polígonos.

Leia mais

INTRODUÇÃO À ENGENHARIA

INTRODUÇÃO À ENGENHARIA INTRODUÇÃO À ENGENHARIA 2015 NOTA AULA PRÁTICA No. 07 LOGARITMOS E ESCALAS LOGARÍTMICAS PROFS. ANGELO BATTISTINI, RODRIGO DI MÔNACO NOME RA TURMA NOTA Montagem sobre a figura de J. S. Bach, criador da

Leia mais

Abril Educação Divisibilidade Aluno(a): Número: Ano: Professor(a): Data: Nota:

Abril Educação Divisibilidade Aluno(a): Número: Ano: Professor(a): Data: Nota: Abril Educação Divisibilidade Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Numa seqüência de 500 dias, se o primeiro for uma 3ª. Feira, que dia da semana será o último dia? Questão 2 A afirmação

Leia mais

Qual é o tempo? INTRODUÇÃO

Qual é o tempo? INTRODUÇÃO LOGARÍTMOS INTRODUÇÃO Qual é o tempo? Amanda ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.

Leia mais

GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais.

GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais. OS NÚMEROS INTEIROS E O JOGO DO VAI-VEM GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais. Sabrina Bobsin Salazar, salazar.ufpel@gmail.com Eduardo da Silva Schneider, schneider.ifm.ufpel@gmail.com

Leia mais

Oficina Operações. b) Quantos quilômetros a mais ele percorreu na terça feira em relação à quinta feira?

Oficina Operações. b) Quantos quilômetros a mais ele percorreu na terça feira em relação à quinta feira? Oficina Operações PROBLEMA 1 Um atleta, preparando-se para a corrida de São Silvestre, realizou os seguintes treinos na semana que antecedeu a prova: Segunda-feira: 18 km Terça feira: 20 km Quarta feira:

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS EDU 1500 FUNDAMENTOS TEÓRICOS E METODOLÓGICOS DO ENSINO DE MATEMÁTICA PROFESSORA LYGIANNE BATISTA VIEIRA

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS EDU 1500 FUNDAMENTOS TEÓRICOS E METODOLÓGICOS DO ENSINO DE MATEMÁTICA PROFESSORA LYGIANNE BATISTA VIEIRA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS EDU 1500 FUNDAMENTOS TEÓRICOS E METODOLÓGICOS DO ENSINO DE MATEMÁTICA PROFESSORA LYGIANNE BATISTA VIEIRA SUGESTÃO DE ATIVIDADES PARA TRABALHAR A MULTIPLICAÇÃO

Leia mais

JOGOS E HABILIDADES. Marie-Claire Ribeiro Póla Mariele Cestari Esteves Supera Londrina

JOGOS E HABILIDADES. Marie-Claire Ribeiro Póla Mariele Cestari Esteves Supera Londrina JOGOS E HABILIDADES Marie-Claire Ribeiro Póla mariepola@yahoo.com.br Mariele Cestari Esteves Supera Londrina mariele.londrina@metodosupera.com.br Resumo: São inúmeras as habilidades que podem ser desenvolvidas

Leia mais

Jogos e Brincadeiras II

Jogos e Brincadeiras II Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. runo Holanda ula 2 Jogos e rincadeiras II Neste artigo continuaremos o assunto iniciado no material anterior. O primeiro exercício,

Leia mais

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria

APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria O que é preciso saber (passo a passo) Seja: Potenciação O expoente nos diz quantas vezes à base

Leia mais

Os logaritmos decimais

Os logaritmos decimais A UA UL LA Os logaritmos decimais Introdução Na aula anterior, vimos que os números positivos podem ser escritos como potências de base 10. Assim, introduzimos a palavra logaritmo no nosso vocabulário.

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula

Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula Data de recebimento pelo aluno Universidade Federal de Juiz de Fora/Colégio de Aplicação João XIII 6º ano/ Ensino Fundamental / Matemática/2017 Profa.: Cláudia Tavares Barbosa dos Santos Profa.: Camila

Leia mais

P.A. e P.G., elas têm razão!

P.A. e P.G., elas têm razão! Reforço escolar M ate mática P.A. e P.G., elas têm razão! Dinâmica 3 2º Série 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 1ª Algébrico Simbólico Funções DINÂMICA P.A. e P.G., elas

Leia mais

Ruas e esquinas. Dinâmica 6. Aluno Primeira Etapa Compartilhar ideias. 3ª Série 4º Bimestre

Ruas e esquinas. Dinâmica 6. Aluno Primeira Etapa Compartilhar ideias. 3ª Série 4º Bimestre Reforço escolar M ate mática Ruas e esquinas Dinâmica 6 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica. Aluno Primeira Etapa Compartilhar

Leia mais

Teorema de tales e semelhança de polígonos

Teorema de tales e semelhança de polígonos Reforço escolar M ate mática Teorema de tales e semelhança de polígonos Dinâmica 7 9º Ano 1º Bimestre Aluno Matemática Ensino Fundamental 9ª Geométrico Semelhança de polígonos. PRIMEIRA ETAPA COMPARTILHAR

Leia mais

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA tânia@mat.unb.br CAPÍTULO 1 JOGOS E ATIVIDADES PARA INTRODUÇÃO DE NÚMEROS NEGATIVOS A idéia

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Aula Teórica: Potenciação e Potência de dez

Aula Teórica: Potenciação e Potência de dez Aula Teórica: Potenciação e Potência de dez Objetivo Familiarizá-lo com a utilização de expoentes e potências de dez, que são de uso frequente nas práticas de laboratório e também nos trabalhos e atividades

Leia mais

XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos

XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos Reservado para a correção Prova Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5 otal # 0 Nota Instruções e Regulamento: 1. Identifique

Leia mais

SISTEMA ANGLO DE ENSINO G A B A R I T O

SISTEMA ANGLO DE ENSINO G A B A R I T O Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS

Leia mais

KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES. GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais

KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES. GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais José Vilani de Farias, IFRN, vilani.farias@ifrn.edu.br Amilde Martins da Fonseca, IFRN,

Leia mais

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Quebra-Cabeça de Cartões

Quebra-Cabeça de Cartões Quebra-Cabeça Reforço escolar M ate mática de Cartões Dinâmica ª Série º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática DINÂMICA HABILIDADE BÁSICA ª do Ensino Médio Quebra Cabeça de Cartões

Leia mais

Atividade Complementar Resolução de exercícios

Atividade Complementar Resolução de exercícios UNIVERSIDADE FEDERAL DA PARAÍBA Projeto PIBID/Matemática Bolsista: Victor Lucas Andrade Sá 11318110 Colégio sesquicentenário Atividade Complementar Resolução de exercícios Objetivos Específicos Conteúdos

Leia mais

Matemática Básica. Capítulo Conjuntos

Matemática Básica. Capítulo Conjuntos Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo

Leia mais

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,

Leia mais

BAC004 Informática Teórica T2 Professora: Fabiana Costa Guedes Lista 05 Vetores e Matrizes Vetores

BAC004 Informática Teórica T2 Professora: Fabiana Costa Guedes Lista 05 Vetores e Matrizes Vetores BAC004 Informática Teórica T2 Professora: Fabiana Costa Guedes Lista 05 Vetores e Matrizes Vetores 1- Faça um programa que preencha um vetor com seis elementos numéricos inteiros, calcule e mostre: a.

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números

Leia mais

Roteiro de Recuperação do 3º Bimestre - Matemática

Roteiro de Recuperação do 3º Bimestre - Matemática Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Função Modular Função é uma lei ou regra que associa cada elemento de um conjunto A a um único elemento de um conjunto B. O conjunto A é chamado

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Por exemplo, vamos obter os termos de uma progressão geométrica de razão 2, partindo do número 3.

Por exemplo, vamos obter os termos de uma progressão geométrica de razão 2, partindo do número 3. Definição: Progressão geométrica (ou simplesmente PG) é uma seqüência de números não nulos em que cada um deles, multiplicado por um número fixo, fornece o próximo elemento da seqüência. Esse número fixo

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

Crescimento da dívida

Crescimento da dívida Valores em reais LOGARITMO CONTEÚDOS Logaritmo Propriedades dos logaritmos AMPLIANDO SEUS CONHECIMENTOS Uma empresa que trabalha com empréstimo, cobra juros absurdos. Se o devedor atrasar o pagamento da

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

d 5 = 2. Descreva com tuas palavras o padrão relacionado a TODAS as sequências anteriores.

d 5 = 2. Descreva com tuas palavras o padrão relacionado a TODAS as sequências anteriores. .5. Progressão Geométrica. (PG). Observem as sequências abaixo e determine os próximos três termos da sequência pelo padrão existente nos primeiros termos: (a n) = (3, 6,, 4, 48,...) a 6 = a 7 = a 8 =

Leia mais

+ Do que xxx e escadas

+ Do que xxx e escadas Reforço escolar M ate mática + Do que xxx e escadas Dinâmica 6 1º Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Geométrico Razões trigonométricas no triângulo retângulo

Leia mais

Resolução da Prova de Raciocínio Lógico do INPI de 2014, aplicada em 14/12/2014 (Cargo 22).

Resolução da Prova de Raciocínio Lógico do INPI de 2014, aplicada em 14/12/2014 (Cargo 22). Resolução da Prova de Raciocínio Lógico do INPI de 2014, aplicada em 14/12/2014 (Cargo 22). Tendo como referência a proposição P: Em outros países, seres vivos como microrganismos e animais geneticamente

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

O experimento. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções

O experimento. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções números e funções O experimento Objetivos da unidade Examinar uma função logarítmica discreta a partir da execução de uma mágica com cartas; Motivar o estudo dos logaritmos. licença Esta obra está licenciada

Leia mais

PLANO DE AULA: Data da aula: em aberto (há combinar com a supervisora).

PLANO DE AULA: Data da aula: em aberto (há combinar com a supervisora). PLANO DE AULA: Identificação: Mayara Fagundes Sena da Silva. Data da aula: em aberto (há combinar com a supervisora). Duração da aula: 2 Períodos. Conteúdo: Monômios. Conteúdos Específicos: - Partes de

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele

Leia mais

Manual básico de Go. MANUAL BÁSICO DE GO. Distribuição Gratuita.

Manual básico de Go. MANUAL BÁSICO DE GO. Distribuição Gratuita. MANUAL BÁSICO DE GO Distribuição Gratuita. Regras do GO: 1 As peças pretas começam a não ser que seja um jogo com handicap. 2 Os jogadores alternam suas jogadas, jogando-se uma peça por vez. 3 As peças

Leia mais