Limite e Continuidade

Tamanho: px
Começar a partir da página:

Download "Limite e Continuidade"

Transcrição

1 Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de uma função real. Limites Seja f : R! R uma função de nida or 2 +, isto é, f) = 2 +. O grá co de f é uma reta que interceta o eio dos y no onto 0; ) e interceta o eio dos no onto ; 0) con ra Figura ). 2 Figura : Grá co da função f) = 2 +. Vamos considerar as tabelas 0; 5 0; 9 0; 99 0; 999 0; 9999 f) 2 2; 8 2; 98 2; 998 2; 9998 e ; 5 ; ; 0 ; 00 ; 000 f) 4 3; 2 3; 02 3; 002 3; 0002 :

2 2 Pelas tabelas, notamos que, quando se aroima de, notação!, tanto ela esquerda quanto ela direita temos que f) se aroima de 3. Neste caso, dizemos que f) tende ao ite 3 quando se aroima de, neste caso usamos a seguinte simbologia: f) = 3: Mais geralmente, temos a seguinte de nição. De nição 0. Seja f uma função qualquer. Se f aroima-se de uma constante L, quando se aroima de um número 0 tanto ela esquerda quanto ela direita, dizemos que f tende ao ite L. Neste caso, escreveremos f) = L:! 0 O número real L é chamado de ite de f no onto 0 con ra Figura abaio). A notação! 0 signi ca que está muito róimo de 0 mas 6= 0. Figura 2: Reresentação grá ca de!0 f) = L. Eemlo 0.2 Se f) = c é a função constante, então f) = c:! 0 Solução. Pelo grá co de f con ra Figura 3 abaio), temos que o ite de f é igual a c, em qualquer onto 0, ois a medida que nos aroimamos tanto ela esquerda, quanto ela direita de qualquer onto 0, f) se aroima de c.

3 3 Figura 3: Grá co da função f) = c. Eemlo 0.3 Se f) = é a função identidade, então f) = 0 :! 0 Solução. Pelo grá co de f con ra Figura 4), Figura 4: Grá co função f) =. temos que o ite de f é igual a 0, em qualquer onto 0, ois a medida que nos aroimamos tanto ela esquerda, quanto ela direita de qualquer onto 0, f) se aroima de c. Eemlo 0.4 Se f é a função de nida or + se ; f) = se > ; então f) não eiste.

4 4 Figura 5: Grá co da função f) = + se ; se > : Solução. Pelo grá co de f con ra Figura 5), temos que o ite de f é igual a quando se aroima de ela direita e é igual a 2 quando se aroima de ela esquerda. Assim, o ite de f não eiste no onto 0 =, ois ele deende de como se aroima de 0 =. Proriedade 0.5 Proriedades do ite de uma função) Sejam f, g funções quaisquer e c uma constante. Se!0 f) = L e!0 g) = M, então:.!0 f + g)) = L + M; 2.!0 f g)) = L M; 3.!0 cf)) = cl; 4.!0 fg)) = LM; 5.!0 f )) = L, com M 6= 0; g M 6.!0 jf)j = jlj ; 7.!0 [f)] n = L n, 8 n 2 Z e L 6= 0; Eemlo 0.6 Calcular o ite!0 a + b). Solução. Pelos Eemlos acima e as Proriedades e 3, temos que a + b) = a) + b = a + b = a 0 + b:! 0!0!0!0 Mais geralmente, a n n + + a + a 0 ) = a n n a 0 + a 0 :! 0

5 5 Eemlo 0.7 Calcular o ite : Solução. Pelas Proriedades e o Eemlo anterior, temos que = ) 3 + 2) = 4 5 : Mais geralmente, se b m m b 0 + b 0 6= 0. Eemlo 0.8 Calcular o ite a n n + + a + a 0 = a n n a 0 + a 0! 0 b m m + + b + b 0 b m m b 0 + b 0! : Solução. Note que não odemos alicar diretamente as roriedades, ois! =!2 2 4)! ) = 0 0 ; o que é uma forma indeterminada. Neste caso, devemos rimeiro maniular algebricamente a eressão Como temos que! : 2 4 = 2) + 2) e = 2) ) = 2) + 2)!2 2) ) = + 2)!2 ) =!2 + 2)!2 ) = 4 = 4; ois! 2 signi ca que 2) 6= 0. Note que, esse eemlo mostra que, ara uma função ter ite L quando tende 0, não é necessário que seja de nida em 0. Eemlo 0.9 Calcular o ite 3 : Solução. Note que não odemos alicar diretamente as roriedades, ois 3 = 3 ) ) = 3 = 0 0 ;

6 6 o que é uma indeterminação. Neste caso, devemos rimeiro maniular algebricamente a eressão Como temos que 3 : 3 = ) ) 3 = ) ) ) = ) = + + = 3; ois! signi ca que ) 6= 0. Mais geralmente, Eemlo 0.0 Calcular o ite n = n: 3 : Solução. Note que não odemos alicar diretamente as roriedades, ois 3 = 3 ) ) = 3 = 0 0 ; o que é uma indeterminação. Neste caso, devemos rimeiro maniular algebricamente a eressão Como fazendo a = 3 e b =, que 3 : a 3 b 3 = a b)a 2 + ab + b 2 ) = = 3 ) ); ou ainda; 3 = : Portanto, 3 = ) ) = = ) = = 3 ; ois! signi ca que ) 6= 0. Mais geralmente, n = n :

7 Observação 0. Se!0 f) = L, L 6= 0 e!0 g) = 0, então!0 f) g) não eiste. 7 Eemlo 0.2 Mostrar que não eiste Solução. Como temos, ela Observação anterior, que ) = 3 6= 0 e 2 ) = 0 não eiste. Eemlo 0.3 Mostrar que não eiste s ) 2 Solução. Como temos, elo Observação, que não eiste. + 3) = 4 6= 0 e )2 = 0 s ) 2

8 8 De nição Formal de Limite Formalmente, dizemos que f) = L;! 0 se dado um número real " > 0, arbitrariamente equeno, eiste em corresondência um > 0 tal que 8 2 R; 0 < j 0 j < ) jf) Lj < ": Figura 6: Reresentação grá ca de!0 f) = L. Uma vez que j 0 j é a distância de a 0 e jf) Lj é a distância de f) a L, e como " ode ser arbitrariamente equeno, a de nição de ite ode ser escrita em alavras da seguinte forma:!0 f) = L signi ca que a distância entre f) e L ca arbitrariamente equena tomando-se a distância de a a su cientemente equena mais não 0). Ou ainda,!0 f) = L signi ca que os valores de f) odem ser tornados tão róimos de L quanto desejarmos, tomando-se su cientemente róimo de a mas não igual a a). Eemlo 0.4 Mostrar, usando a de nição formal de ite, que 2 3) =!2 Solução. Devemos mostrar que, ara todo " > 0, dado arbitrariamente, odemos encontrar um > 0 tal que 2 R; 0 < j 2j < ) j2 3) j < ": Na resolução deste tio de desigualdade odemos, em geral, obter > 0 desenvolvendo a a rmação envolvendo ". De fato, j2 3) j = j2 4j = 2 j 2j < " ) j 2j < " 2 :

9 9 Assim, dado " > 0, eiste " 2 tal que 0 < j 2j < ) j2 3) j < "; ois j 2j < ) j 2j < " 2 ) 2 j 2j < " ) j2 3) j = 2 j 2j < ": Limites Laterais Seja f : R f0g! R a função de nida or se > 0; f) = + se < 0: O grá co de f é mostrado na Figura 7. Figura 7: Grá co da função f) = se > 0; + se < 0: e Vamos considerar as tabelas 0; 5 0; 0; 0 0; 00 0; 000 f) 0; 5 0; 9 0; 99 0; 999 0; ; 5 0; 0; 0 0; 00 0; 000 f) 0; 5 0; 9 0; 99 0; 999 0; 9999 : Pelas tabelas, notamos que, quando se aroima de 0 ela esquerda, notação! 0, f) se aroima de e quando se aroima de 0 ela direita, notação! 0 +, f) se aroima de. Logo,!0 f) = e f) = :!0 +

10 0 As notações f) = L e f) = L! 0! + 0 signi ca que: f aroima-se do ite L, quando se aroima ela esquerda e ela direita de 0 resectivamente. O número real L é chamado de ite lateral à esquerda ou a direita) de f con ra Figura 8). Figura 8: Grá co da função f. Observação 0.5!0 f) = L se, e somente se,! 0 f) = f) = L;! + 0 ou seja, o ite de uma função em um onto só eiste, se os ites laterais eistirem e forem iguais. Essa observação garante que todas as roriedades de ite continuam válidas ara ites laterais. Eemlo 0.6 Seja f a função de nida or se ; f) = 2 se > : Determinar! f) e! + f). Solução. Como! signi ca que <, logo f) = e, elas roriedades de ites que, ela Observação anterior, continuam válidas ara ites laterais), obtemos! 5 + 5) = 5 ) + 5 = 0: Como! + signi ca que >, temos que f) = :

11 Note que não odemos alicar diretamente as roriedades, ois 2! =! + 2 )! ) = 0 0 ; o que é uma indeterminação. Neste caso, devemos rimeiro maniular algebricamente a eressão Como temos que Note que : 2 = ) + ) e = + ) + 3) 2! = ) + )! + + ) + 3) =! = :! f) 6= f):! + Portanto,! f) não eiste. Eemlo 0.7 Seja f uma função de nida or Determine se ossível,!0 f) = jj : f), f) e f):!0 +!0 Solução. A função f não é de nida em = 0, ois f) = j0j = 0 o que é uma 0 0 indeterminação. Observe que! 0 +, então > 0, logo jj = e assim, f) = =. Portanto, f) = :!0 + Por outro lado,! 0, então < 0, logo jj = e assim f) = modo,!0 f) = : =. Deste Como f) 6= f), temos que f) não eiste.!0 +!0!0 Eemlo 0.8 Seja f uma função de nida or 8 >< 3 se < f) = 4 se = >: 2 + se > Determine se ossível, Solução. Se! f), f) e f): + então <, assim f) = + f) = : 3 ) = 2. Por outro lado, se! + então >, assim 2 + ) = 2. Como f) = f), + + temos que f) = 2:

12 2 Limites In nitos e no In nito Seja f : R f2g! R a função de nida or O grá co de f é mostrado na Figura 9. f) = 3 2) 2 : Figura 9: Grá co da função f) = 3 2) 2. Vamos considerar as tabelas f) e f) : Pelas tabelas, notamos que, quando se aroima de 2 tanto ela esquerda quanto ela direita temos que f) cresce sem ite. Neste caso, dizemos que f) tende ao in nito +) quando se aroima de 2, em símbolos A notação f) = +:!2 f) = + ou f) =! 0!0 signi ca que: f cresce sem ite ou decresce sem ite resectivamente quando se aroima de 0. Neste caso, dizemos que f tem ite in nito ou, equivalentemente, o ite de f quando se aroima de 0 não eiste. Eemlo 0.9 Mostrar que ) 4 = +: Solução. Pelo grá co de f) = ) 4 con ra Figura 0), temos que o ite de f tende ao in nito no onto 0 =. Pois a medida que se aroima de tanto ela esquerda quanto ela direita f) cresce sem ite.

13 3 Figura 0: Grá co da função f) = ) 4. Eemlo 0.20 Encontre 3 e! 3 : Solução. Quando torna-se muito grande 3 também ca muito grande. Por eemlo: 0 3 = = = : Na realidade, odemos fazer 3 tão grande quanto quisermos tomando grande o su - ciente. Portanto odemos escrever 3 = : Analogamente, quando é muito grande em módulo), orém negativo, 3 também o é. Assim,! 3 = : De nição 0.2 A reta = 0 é uma assíntota vertical do grá co de f se elo menos uma das seguintes condições for satisfeita:.!0 f) = ou!0 f) = +. 2.! + 0 f) = ou! + 0 f) = +. Observação 0.22 Se!0 f) = L, L 6= 0 e!0 g) = 0, então!0 f) + ou!0 f) g) = Geralmente,, isto é, o ite não eiste. n n + + a + a 0 )!+ =!+ n a n + a n + + a n + a 0 n ) n = ; g) =

14 4 ois, n + a n!+ + + a n + a 0 n ) = a n n e!+ n = onde a n > 0 ou a n < 0. Se n 2 N é ímar, então Eemlo 0.23 Encontre a n n + + a + a 0 ) =!! 2 ) : Solução. Seria errado escrever! 2 ) =! 2 =. As! roriedades de ite não odem ser alicadas ara ites in nitos, ois não é um número não odemos de nir! 2 = ) =! ois, como e! com seu roduto.! Agora, seja f : R! R a função de nida or O grá co de f) é mostrado na Figura. ). Contudo, odemos escrever! )! = ; ) tornam-se arbitrariamente grandes, o mesmo acontece f) = 2 : Figura : Grá co da função f) = 2. Vamos considerar as tabelas 0 00 :000 0:000 00:000 f) e 0 00 :000 0:000 00:000 f)

15 Pelas tabelas, notamos que, quando cresce sem ite tanto ela esquerda quanto ela direita temos que f) se aroima de 0. Neste caso, dizemos que f) tende ao ite 0 quando cresce decresce) sem ite, em símbolos A notação!+ 2 = 0 ou f) = L ou!+! 2 = 0: f) = L! signi ca que: f) tem ite L quando cresce sem ite ou decresce sem ite resectivamente. Neste caso, dizemos que f tem ite no in nito. De nição 0.24 A reta y = L é uma assíntota horizontal do grá co de f se elo menos uma das seguintes condições for satisfeita:.! f) = L; 2.!+ f) = L. Observação 0.25 Sejam K 2 R e r 2 Q, r > 0. Então K!+ = 0 e r K! = 0: r Podemos, também, considerar o caso em que tanto como f) cresça ou decresça sem ite. Neste caso, denotaremos or f)!+ = + ou f) =!+ ; f) = :! f) = + ou! Além disso, se g) = L, L 6= 0 e f) =, então f) g) =. n =. Eemlo 0.26 Calcule Solução. Para calcular o ite no in nito de uma função racional, rimeiro dividimos o numerador e o denominador ela maior otência de que ocorre no denominador. Nesse caso a maior otência de no denominador e 2. Logo, = De modo similar, temos que Geralmente, = = = = = 3 5 2! = a n n + + a + a 0 ) = a n + a n!+!+ + + a n + a 0 n ) = a n n onde a n > 0 ou a n < 0. 5

16 6 Eemlo 0.27 Calcular, se eistir, o ite! : Solução. Note que não odemos alicar diretamente as roriedades, ois! =! )! ) = ; o que é uma indeterminação. Pela observação anterior, temos que! =! = + ) ! ) 2 2 = 2!+ + ) 2! ) = = 2 : 2 Eemlo 0.28 Calcular, se eistir, o ite! : Solução. Como a maior otência de no denominador é o rorio, temos:! =! =! = 0: De modo similar, temos que! = 0: Eemlo 0.29 Calcular, se eistir, o ite! : Solução.! =!+ = =!+ q q!+ +!+ 2!+ +!+ =!+ = = q + 2 ) +

17 Teorema 0.30 Teorema do Confronto, do sanduíche ou do imrensamento) Suonhamos que f) h) g) ara todo em um intervalo aberto contendo a, eceto ossivelmente ara o rorio a. Se!a f) = L =!a g) então!a = L: Prova. A demonstração desse teorema ode ser encontrada em tetos mais avançados. 7 Eemlo 0.3 Sabendo que!0 sen não eiste, mostre que!0 2 sen = 0. Solução. Observe inicialmente que não odemos usar 2 sen =!0 or que sen não eiste:no entanto, sabemos que!0 sen ; assim, multilicando a última desigualdade or 2, obtemos 2 2 sen 2 :!0 2 sen!0 Por outro lado, como 2 =!0!0 2 ) = 0, concluimos elo teorema do confronto que!0 2 sen = 0: Continuidade Vamos considerar a função f : R! R de nida or 2 4 se 6= 2; 2 f) = 4 se = 2: Note que:. f2) = 4, isto é, f é de nida no onto 0 = 2; 2.!2 f) =! =!2 + 2) = 4, isto é,!2 f) eiste; 3.!2 f) = 4 = f2). De nição 0.32 Sejam f uma função e 0 2 R ado. Dizemos que f é contínua em 0 se as seguintes condições são satisfeitas:. f 0 ) eiste, isto é, f está de nida no onto 0 ;

18 8 2.!0 f) eiste, isto é,!0 f) é um número real; 3.!0 f) = f 0 ). Observação 0.33 Sejam f uma função e 0 2 X = Dom f um intervalo aberto:. Se f é contínua em 0, então f) = f ):! 0!0 2. Dizemos que f é contínua em X se f é continua em todos os ontos de X. Intuitivamente, f é contínua em X se o grá co de f ode ser traçado, comletamente, sem tirarmos o láis do ael. Se elo menos uma das condições da de nição de função contínua f em 0 não for satisfeita, dizemos que f é descontínua em 0. Neste caso, temos os seguintes tios descontinuidade:. O onto 0 é uma descontinuidade removível de f se f 0 ) não está de nido e!0 f) eistir ou! 0 f) 6= f 0 ): Porque odemos removê-la de nindo adequadamente o valor f 0 ). 2. O onto 0 é uma descontinuidade tio salto de f se os ites laterais eistirem e são diferentes, isto é,! 0 f) 6= f):! O onto 0 é uma descontinuidade essencial de f se f) = ou f) = :! 0! + 0 Eemlo 0.34 Determinar se a função f) = 4 é contínua em 0 = 2. Caso contrário, dizer o tio de descontinuidade. Solução. Neste tio de roblema, devemos rimeiro encontrar o domínio da função f. É fácil veri car que Dom f = R fg. Como 0 = 2 2 Dom f, odemos falar da continuidade ou não de f em 0 = 2. f2) = 24 2 = 5;

19 9 isto é, f está de nida no onto 0 = 2; isto é,!2 f) eiste; 4 f) =!2!2 = 24 2 = 5; f) = 5 = f2):!2 Portanto, f é contínua em 0 = 2. Eemlo 0.35 Determinar se a função f) = é contínua em 0 = 2. Caso contrário, dizer o tio de descontinuidade. Solução. É claro que Dom f = R f2g. Como 0 = 2 =2 Dom f temos que f é descontínua em 0 = 2, isto é, f não está de nida no onto 0 = 2 con ra Figura 2). Figura 2: Grá co da função f) = Neste caso, devemos dizer o tio de descontinuidade de f. 2 2!2 2 =!2 2) + ) 2 =!2 + ) = 3: Assim, 0 = 2 é uma descontinuidade removível de f, ois f não está de nida no onto 0 = 2, no entanto,!2 f) eiste. Note que, a função g : R! R de nida or f) se 6= 2; g) = 3 se = 2; é contínua em 0 = 2. Eemlo 0.36 Determinar se a função se 6= ; f) = 2 se = é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade.

20 20 Solução. É claro que Dom f = R. Como 0 = 2 Dom f temos que f está de nida no onto 0 =, isto é, f) = = + 2) ) = + 2) = 3: Como f) 6= f) temos que f é descontínua em 0 = con ra Figura 3). Figura 3: Grá co da função f) = se 6= ; 2 se = : Assim, 0 = é uma descontinuidade removível de f, ois, aesar de f estar de nida no onto 0 =, f) 6= f). Note que, função g : R! R de nida or f) se 6= ; g) = 3 se = ; é contínua em 0 =. Eemlo 0.37 Determinar se a função f) = + 3 se < ; + 2 se é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade. Solução. É claro que Dom f = R. Como 0 = 2 Dom f temos que f está de nida no onto 0 =, isto é, f) =. Por outro lado, e f) = + 3) = 2 f) = ) = Como f) = 2 6= = + f) temos que f) não eiste e, assim, f é descontínua em 0 = con ra Figura ). Portanto, 0 = é uma descontinuidade tio salto de f, ois, f) 6= + f):

21 2 Eemlo 0.38 Determinar se a função f) = é contínua em 0 = 0. Caso contrário, dizer o tio de descontinuidade. Solução. É claro que Dom f = R f0g. Como 0 = 0 =2 Dom f temos que f é descontínua em 0 = 0, isto é, f não está de nida no onto 0 = 0. Note que,!0 f) =!0 = e f) =!0 +!0 + = +: Portanto, 0 = 0 é uma descontinuidade essencial de f. Proriedade 0.39 Sejam f; g : X R! R duas funções. Se f e g são contínuas em 0 2 X, então:. f + g é contínua em 0 2 X; 2. f g é contínua em 0 2 X; 3. cf, onde c é uma constante, é contínua em 0 2 X; 4. fg é contínua em 0 2 X; 5. f, com g g 0) 6= 0, é contínua em 0 2 X; 6. jfj é contínua em 0 2 X.

22 22 Prova. Vamos rovar aenas o item. Como f e g são contínuas em 0 2 X temos que f) = f 0 ) e! 0 Logo, ela Proriedade de ites, obtemos g) = g 0 ):!0 f + g)) = [f) + g)] = f) + g)! 0!0!0!0 = f 0 ) + g 0 ) = f + g) 0 ): Portanto, f + g é contínua em 0 2 X. Teorema 0.40 Sejam f : X! R e g : Y! R duas funções, com Im f Y. Se f é contínua em 0 2 X e g é contínua em y 0 = f 0 ) 2 Y, então gf é contínua em 0 2 X. Prova. Como f e g são contínuas em 0 e y 0, resectivamente, temos que Assim, f) = f 0 ) e! 0 gy) = gy 0 ) = gf 0 )): y!y0! 0 g f)) =!0 gf)) = g!0 f)) = gf 0 )) = g f) 0 ): Portanto, g f é contínua em 0 2 X. Note que, se f) = a n n + + a + a 0, então f é contínua em todo R. Também, se então f é contínua em todo R, onde ]a; b[ e f) = a n n + + a + a 0 b m m + + b + b 0 ; b m m + + b + b 0 6= 0: Seja f : [a; b]! R uma função. Dizemos que f é contínua em [a; b] se f é contínua em f) = fa) e!a +!b f) = fb): Eemlo 0.4 Mostrar que a função f : [ 3; 3]! R de nida ela regra f) = 9 2 é contínua. Solução. Observe que ara todo 3 < a < 3 ou seja, a 2 ]a; b[) temos que f) = 9 2 = 9 a 2 = fa);!a!a logo ara todo a 2 ]a; b[ a função f é contínua. Além disso, f) =! ) = 0 = f 3) e! 3 +!3 f) =!3 9 2 ) = 0 = f3): Assim, f é contínua em [ 3; 3].

23 Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa a Lista de Eercícios. Determinar, se eistir, os ites abaio: a ) 25 g) 3 00!2 a 2 )! 5 a 3 ) a) b) c) d) e) f) h)! i)!3 2 ) 3 +8 q) r)! t 9 8) j)!4 t!9 3 s) t k) +2 2 t)! ! ! l) 2 m) 2 +6! ! 3 +3 t!0 n)!7! o) h!0 4 6+h h!0 t h) 3 8 h!0 h 2 8!9 3 e e 2!0 3 jj! u) + 3 ) ) h t!8 v) t + ) 3 t + 3) 5 t 2 t! +2 3 ) 7 t!0 t t 2 +t )3 +h 3+h) z) 3 h h!0 h 2. Sabendo que f) = 4, g) = 2 e h) = 0, determine os seguintes!2!2!2 ites: a) b) c) [f) + 5g)] d)!2 g) [g)] 3 g)h) e)!2!2 f) f) f) [h) + f)]!2!2!2 3f) 3. Determinar, se eistir, os seguintes ites laterias: a) b) c) d)! ) e) 9 2 f)!3!3 +! 0 3) !5 +!4 i) +3! j) g) k) 2 3! 8 +0 h) 7 l) 5 + j6 3j): +0) 2!7! Em cada alternativa determine os seguintes ites, caso eistam: f); f); f) +

24 2 2 se < ; a) f) = 4 se : 8 >< 2 se < ; b) f) = 2 se = ; >: 2 se > : 5. Seja f : R! R de nida or f) = se ; + c 2 se < : Determinar o valor c de modo que! f) eista. 6. Seja f : R! R de nida or 8 >< 2 + se < ; f) = c se = ; >: se > : Determinar o valor c de modo que f) eista. 7. Seja f : R! R de nida or f) = c se 2; 2 + c 5 se < 2: Determinar o valor c de modo que!2 f) eista. 8. Seja f : R! R de nida or 8 >< d 2 se 2; f) = c >: 2 + d se 2 < < 2; c se 2: Determinar os valores c e d de modo que o ite de f) eista em todo R. 9. Determinar, se eistir, os seguintes ites no in nito: a) b) c) d) e) f) k) g) 3 ) l)! ) ) h) 2 + m)! 2+7)+2) ) i) ) : j)!! ) n) 2 + +! : o) )

25 3 0. Determinar, se eistir, os seguintes ites in nitos: a) b) c) d) 6!5 +!5 5 f)! k)! 6 5 g) l) 5!4 4! 6 h)!5 5!4 +) m)! +) i) n) 4! + +) 2 ) 2. Mostrar que as seguintes funções são contínuas no onto indicado: a) f) = ; 0 = 4 c) f) = ; 0 = 2 b) f) = ; 0 = 5 d) f) = 3 2+ ; 0 = 8 2. Determinar se a função f) = 2 se < 4 se é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade. 3. Determinar se a função 8 >< 2 + se < f) = se = >: + se > é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade. 4. Determinar se a função f) = f) = 3 se 3 se > é contínua em 0 =. Caso contrário, dizer o tio de descontinuidade. 5. Determinar se a função f) = f) = j + 3j se 6= 2 2 se = 2 é contínua em 0 = 2. Caso contrário, dizer o tio de descontinuidade. 6. Determinar se a função 8 >< se f) = f) = 2 se < < 2 >: + se 2 é contínua em 0 = 2. Caso contrário, dizer o tio de descontinuidade.

26 4 7. Determinar se cada função é contínua ou descontínua em cada intervalo: a) f) = 4, em [4; 8]; b) f) =, em ]; 4[; c) f) = 2, em [ ; ]; 8. Seja f : R! R de nida or f) = 3 se 6= ; c se = : Determinar o valor c ara que f seja contínua em todo R. 9. Seja f : R! R de nida or f) = se ; + c 2 se < : Determinar o valor c ara que f seja contínua em todo R.

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016 1 Roteiro Atividades Mat146 Semana4: /08/16 a 6/08/016 1. Matéria dessa semana de acordo com o Plano de ensino oicial: Assíntotas Horizontais e Verticais. Continuidade. Material para estudar: Assíntotas

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco

Leia mais

Lista de Exercícios de Calculo I Limites e Continuidade

Lista de Exercícios de Calculo I Limites e Continuidade Lista de Eercícios de Calculo I Limites e Continuidade ) O gráfico a seguir representa uma função f de [ 6, 9] em Determine: ) Dada a função f definida por:, se f ( ), se, se Esboce o gráfico de f e calcule

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites EXERCÍCIOS & COMPLEMENTOS 3. FORMAS INDETERMINADAS 0 0 0 0 OPERAÇÕES COM OS SÍMBOLOS + = = ( ) = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k =

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

LIMITES E CONTINUIDADE

LIMITES E CONTINUIDADE LIMITES E CONTINUIDADE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 NOÇÃO INTUITIVA DE LIMITE

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

matematicaconcursos.blogspot.com

matematicaconcursos.blogspot.com Professor: Rômulo Garcia Email: machadogarcia@gmail.com Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente

Leia mais

Limites infinitos e limites no infinito Aula 15

Limites infinitos e limites no infinito Aula 15 Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Aula 7 10 de setembro de 2010 Aula 7 Pré-Cálculo 1 Módulo (ou valor absoluto) de um número real x

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

Fundamentos de Matem[atica I LIMITES. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matem[atica I LIMITES. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques LIMITES Gil da Costa Marques. O cálculo. Definição de limite. Funções contínuas e descontínuas.4 Limites quando a variável independente cresce indefinidamente em valor absoluto.5 Limites infinitos.6 Limites

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente

Leia mais

Limites. Uma introdu»c~ao intuitiva

Limites. Uma introdu»c~ao intuitiva Aula 4 Limites. Uma introdu»c~ao intuitiva Nos cap ³tulos anteriores, zemos uso de um ite especial para calcular derivadas: f 0 f(+ ) f() () =.!0 Neste cap ³tulo veremos os ites como ferramentas de estudo

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que Aula 5 Integrais inde nidas 5. Antiderivadas Sendo f() e F () de nidas em um intervalo I ½, dizemos que F e umaantiderivada ou uma rimitiva de f, emi, sef 0 () =f() ara todo I. Ou seja, F e antiderivada

Leia mais

5.1 O Teorema do Valor Médio & Aplicações

5.1 O Teorema do Valor Médio & Aplicações 5. O Teorema do Valor Médio & Aplicações. Se f () = + 4, encontre o número c que satisfaz a conclusão do TVM (Teorema do Valor Médio) no intervalo [; 8] : 2. Seja f () = j j. Mostre que não eiste um número

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Secção 5. Equações lineares não homogéneas.

Secção 5. Equações lineares não homogéneas. Secção 5 Equações lineares não omogéneas Farlow: Sec 36 a 38 Vimos na secção anterior como obter a solução geral de uma EDO linear omogénea Veremos agora como resoler o roblema das equações não omogéneas

Leia mais

Estudar tendências no comportamento de funções.

Estudar tendências no comportamento de funções. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 2007-2 Proessor:

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

Notas de Aula de Cálculo Diferencial e Integral

Notas de Aula de Cálculo Diferencial e Integral Notas de Aula de Cálculo Diferencial e Integral Volume I Fábio Henrique de Carvalho Copright c 03 Publicado por Fundação Universidade Federal do Vale do São Francisco Univasf) www.univasf.edu.br Todos

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9 Ésófatorar... Serámesmo? Neste equeno artigo resolveremos o roblema 2 da USAMO (USA Mathematical Olymiad) 2005: Problema. Prove que o sistema x 6 + x + x y + y = 147 157 x + x y + y 2 + y + z 9 = 157 147

Leia mais

2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados.

2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados. 2 Limites e Derivadas Copyright Cengage Learning. Todos os direitos reservados. 2.2 O Limite de uma Função Copyright Cengage Learning. Todos os direitos reservados. O Limite de uma Função Para encontrar

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA DÉCIMA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a Regra de L Hôpital, que será utilizada para solucionar indeterminações de ites de qualquer

Leia mais

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. 3.1 A Circunferência EXERCÍCIOS & COMPLEMENTOS 3.1 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa elos ontos A (5; 1) ; B (4; 2) e

Leia mais

Mestrado em Finanças e Economia Empresarial Microeconomia - 6 a Lista de Exercícios Prof.: Carlos Eugênio Monitora:Amanda Schutze

Mestrado em Finanças e Economia Empresarial Microeconomia - 6 a Lista de Exercícios Prof.: Carlos Eugênio Monitora:Amanda Schutze Mestrado em Finanças e Economia Emresarial Microeconomia - 6 a Lista de Exercícios Prof.: Carlos Eugênio Monitora:Amanda Schutze (schutze@fgvmail.br) Parte I - Exercícios Básicos a Questão As funções de

Leia mais

Distribuição de uma proporção amostral

Distribuição de uma proporção amostral Distribuição de uma roorção amostral Estatística II Antonio Roque Aula 4 Exemlo Ilustrativo: Suonha que se saiba que em uma certa oulação humana uma roorção de essoas igual a = 0, 08 (8%) seja cega ara

Leia mais

Matemática A Extensivo v. 5

Matemática A Extensivo v. 5 Matemática A Etensivo v. Eercícios ) D f() ( ) f(). Portanto, f() é ímpar. Demonstrar que a função f() é bijetora, isto é, injetora e sobrejetora. Pode ser um tanto "difícil". Para resolução da questão,

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Limites e Continuidade de Funções Reais de Uma Variável Real

Limites e Continuidade de Funções Reais de Uma Variável Real Limites e Continuidade de Funções Reais de Uma Variável Real Carla Montorfano João César Guirado João Roberto Gerônimo Jorge Ferreira Lacerda Rui Marcos de Oliveira Barros Valdeni Soliani Franco Apresentação

Leia mais

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que.

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que. FORMAS INDETERMINADAS E A REGRA DE L HÔPITAL RICARDO MAMEDE Consideremos o ite. Se tanto o numerador como o denominador tendem para valores initos quando a, digamos α e β, e β, então pela álgebra dos ites

Leia mais

(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit

(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 02: CÁLCULO DE LIMITES Neste tópico serão estudadas as técnicas de cálculo de limites de funções algébricas, usando alguns

Leia mais

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso Universidade Federal Fluminense Matemática I Professora Maria Emilia Neves Cardoso Notas de Aula / º semestre de Capítulo : Limite de uma função real O conceito de ite é o ponto de partida para definir

Leia mais

Comecemos por relembrar as propriedades dos limites das sucessões: b n = K e c IR então: lim. lim

Comecemos por relembrar as propriedades dos limites das sucessões: b n = K e c IR então: lim. lim .. Limites e Continuidade... Limites em IN Comecemos por relembrar as propriedades dos ites das sucessões: Propriedades dos Limites das Sucessões: Sejam n a n = L e n b n = K e c IR então: n [a n ± b n

Leia mais

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites www.cursoeduardochaves.com Cálculo I ª Lista de Eercícios Limites Calcule os ites: a (4 7 +5 b + 5 c ( 5 ++4 d + 5 4 e 5 + 4 + ++ f 6 4 Resp. : a b 0 c /8 d / e 9 5 f Calcule os ites abaio: a 4 b + c +5

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

Gabarito da Lista 8 de exercícios - Microeconomia 2 Professora: Joisa Dutra Monitor: Rafaela Nogueira

Gabarito da Lista 8 de exercícios - Microeconomia 2 Professora: Joisa Dutra Monitor: Rafaela Nogueira Gabarito da Lista de exercícios - Microeconomia Professora: Joisa Dutra Monitor: Rafaela Nogueira 1. No duoólio de Cournot, cada rma escolhe a quantidade que imiza o seu lucro dada a quantidade da outra

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

- Cálculo 1 - Limites -

- Cálculo 1 - Limites - - Cálculo - Limites -. Calcule, se eistirem, os seguintes ites: (a) ( 3 3); (b) 4 8; 3 + + 3 (c) + 5 (d) 3 (e) 3. Faça o esboço do gráfico de f() = entre 4 f() e f(4)? 3. Seja f a função definida por f()

Leia mais

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação.

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação. RIMITIVS Definições No caítulo anterior, centramos a nossa atenção no seguinte roblema: dada uma função, determinar a sua função derivada Neste caítulo, vamos considerar o roblema inverso, ou seja, determinar

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1 Solução dos exercícios do caítulo 2,. 31-32 Equações de um gás ideal = NRT U = NcT U = c R Exercício 1. (a) Exansão isotérmica de um gás ideal. Trabalho: W = 2 1 d = NRT 2 1 1 d = NRT ln 2 1 omo a energia

Leia mais

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D A Prática Leva à Perfeição Cálculo William D. Clark, P.D e Sandra Luna McCune, P.D Rio de Janeiro, 01 Para Sirley e Donice. Vocês estão sempre em nossos corações. Sumário Prefácio i I Limites 1 1 O conceito

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 7 DERIVADAS PARCIAIS TÓPICO Gil da Costa Marques Fundamentos da Matemática II 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação:

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS

INTRODUÇÃO À TEORIA DOS CONJUNTOS 1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1

Leia mais

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas ac C Á L C U L O D I F E R E N C I A L E I N T E G R A L I 02 Prof. ADRIANO CATTAI Apostila 02: Assíntotas NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

CPV seu pé direito também na medicina

CPV seu pé direito também na medicina matemática 0. Uma confeitaria roduz dois tios de bolos de festa. Cada quilograma do bolo do tio A consome 0, kg de açúcar e 0, kg de farinha. Por sua vez, o bolo do tio B consome 0, kg de açúcar e 0, kg

Leia mais

Capítulo 3 - Derivada e Diferencial

Capítulo 3 - Derivada e Diferencial Caítulo 3 - Derivada e Diferencial f( + h) f(). Para as funções dadas abaio calcule lim : h!0 h (a) f() = (b) f() = (e) f() = cos (c) f() = (f) f() = tan() (g) f() = log a (); a R + (d) f() = sin(3) (h)

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

Apostila Cálculo Diferencial e Integral I: Limites e Continuidade

Apostila Cálculo Diferencial e Integral I: Limites e Continuidade Instituto Federal de Educação, Ciência e Tecnologia da Bahia Campus Vitória da Conquista Coordenação Técnica Pedagógica Programa de Assistência e Apoio aos Estudantes Apostila Cálculo Diferencial e Integral

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

Limites indeterminados e as regras de L'Hopital

Limites indeterminados e as regras de L'Hopital Aula 3 Limites indeterminados e as regras de L'Hopital Nesta aula, estaremos apresentando as regras de L'Hopital, regras para calcular ites indeterminados, da forma 0=0 ou =, usando derivadas. Estaremos

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

PROFMAT AV2 MA

PROFMAT AV2 MA PROFMAT AV MA 11 011 Questão 1. Calcule as seguintes epressões: [ ] (1,0) (a) log n log n (1,0) (b) log a/ log, onde a > 0, > 0 e a base dos logaritmos é fiada arbitrariamente. (a) Como = n 1/n 3, temos

Leia mais

Módulo e Função Modular

Módulo e Função Modular INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA-UERJ DISCIPLINA: MATEMÁTICA (FUNÇÕES) PROF S : QUARANTA / ILYDIO / 1 a SÉRIE ENSINO MÉDIO Módulo e Função Modular Função definida por mais de uma sentença

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 07: Teorema do Valor Intermediário, Teorema do Confronto e Limite Trigonométrico Fundamental Objetivos da Aula Conhecer e aplicar o Teorema

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Somas de números naturais consecutivos

Somas de números naturais consecutivos Julho 006 - nº 5 Somas de números naturais consecutivos António Pereira Rosa Escola Secundária Maria Amália Vaz de Carvalho, Lisboa. Introdução O objectivo deste trabalho é abordar o roblema da reresentação

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA

MATEMÁTICA COMENTÁRIO DA PROVA COMENTÁRIO DA PROVA Os objetivos desta rova discursiva foram lenamente alcançados. Os conteúdos rinciais foram contemlados, inclusive comlementando os tóicos abordados na ª. fase, mostrando uma conveniente

Leia mais

Um Estudo Sobre a Enuberabilidade do Conjunto Q dos Números Racionais

Um Estudo Sobre a Enuberabilidade do Conjunto Q dos Números Racionais UNIVERSIDADE FEDERAL DE RONDÔNIA CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE MATEMÁTICA Relatório de Pesquisa Um Estudo Sobre a Enuberabilidade do Conjunto Q dos Números Racionais Laís Ribeiro

Leia mais

5.1 Máximos e Mínimos

5.1 Máximos e Mínimos 5. Máximos e Mínimos 5.A Se f (x) = x + 4, encontre o número c que satisfaz a conclusão do TVM (Teorema do x Valor Médio) no intervalo [; 8] : 5.B Seja f (x) = jx j : Mostre que não existe um número c

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Capítulo 1 Números Reais, Intervalos e Funções

Capítulo 1 Números Reais, Intervalos e Funções Capítulo Números Reais, Intervalos e Funções Objetivos Identi car os conjuntos numéricos; Conhecer e aplicar as propriedades relativas à adição e multiplicação de números reais; Utilizar as propriedades

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Devemosconsiderardoiscasos: 7 k ou7 k+1. Alémdisso, lembremo-nosdoseguintefato:

Devemosconsiderardoiscasos: 7 k ou7 k+1. Alémdisso, lembremo-nosdoseguintefato: Polos Olímicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 18 Resíduos Quadráticos Definição 1. Para todos a tais que mdc(a,m) = 1, a é chamado resíduo quadrático módulo

Leia mais

Derivada. Capítulo Retas tangentes e normais Número derivado

Derivada. Capítulo Retas tangentes e normais Número derivado Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

Aula 16. Integra»c~ao por partes

Aula 16. Integra»c~ao por partes Aula 16 Integra»c~ao or artes H a essencialmente dois m etodos emregados no c alculo de integrais inde nidas (rimitivas) de fun»c~oes elementares. Um deles e a integra»c~ao or substitui»c~ao, elorada na

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS1

INTRODUÇÃO À TEORIA DOS CONJUNTOS1 INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Matemática II - / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaio. (a) f () = 3 (b) g () = (c) h () = (d) f () = 1 3 + 5 1 3 (e) g () 2 (f) g () = jj 8 8

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

2.1 Representação Geométrica dos Números Reais

2.1 Representação Geométrica dos Números Reais Capítulo 2 Geometria Analítica Neste capítulo apresentaremos uma representação geométrica do conjunto dos números reais, o sistema de coordenadas cartesianas, a equação geral da reta, métodos gerais para

Leia mais

Produto interno, externo e misto de vectores

Produto interno, externo e misto de vectores MTDI I - 00/08 - Produto Interno Produto interno, externo e misto de vectores A noção de produto interno (ou escalar) de vectores foi introduzida no ensino secundário, para vectores com duas ou três coordenadass.

Leia mais