a) a soma de dois números pares é par. b) a soma de dois números ímpares é par. c) a soma de um número par com um número ímpar é ímpar.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "a) a soma de dois números pares é par. b) a soma de dois números ímpares é par. c) a soma de um número par com um número ímpar é ímpar."

Transcrição

1 !#"%$ & '%( )( *+'%,-"/. 0# <; Elementar, não? A afirmação acima, ue é uma das mais simles e óbvias da Matemática, é também uma ferramenta de grande utilidade na resolução de muitos roblemas envolvendo números naturais. Vamos comentar neste artigo alguns deles, em graus diferentes de dificuldade, mas inicialmente recisamos recordar três imortantes roriedades a) a soma de dois números ares é ar. b) a soma de dois números ímares é ar. c) a soma de um número ar com um número ímar é ímar. Dizemos ue dois números inteiros têm mesma aridade, uando são ambos ares ou ambos ímares. Assim, odemos dizer ue a soma de dois números inteiros é ar se, e somente se, eles têm mesma aridade. Vamos aos roblemas. Em um uartel existem 100 soldados e, todas as noites, três deles são escolhidos ara trabalhar de sentinela. É ossível ue aós certo temo um dos soldados tenha trabalhado com cada um dos outros exatamente uma vez? >B+H%=+?IHKJDGL Não. Escolha um soldado. Em cada noite em ue trabalha, ele está em comanhia de dois outros. Como 99 é um número ímar, não odemos formar ares de soldados semre diferentes ara trabalhar com o escolhido. Um jogo consiste de 9 botões luminosos (de cor verde ou vermelha) disostos da seguinte forma Aertando um botão do bordo do retângulo, trocam de cor ele e seus vizinhos (do lado ou em diagonal). Aertando o botão do centro, trocam de cor todos os seus 8 vizinhos orém ele não. Exemlos Aertando 1, trocam de cor 1,, 4 e 5. Aertando, trocam de cor 1,,, 4, 5 e 6. Aertando 5, trocam de cor 1,,, 4, 6, 7, 8 e 9.

2 Inicialmente todos os botões estão verdes. É ossível, aertando sucessivamente alguns botões, torná-los todos vermelhos? >B+H%=+?IHKJDGL Não é ossível. Observe ue aertando um botão do vértice do retângulo, trocam de cor 4 botões. Aertando um botão do meio de um lado, trocam de cor 6 botões e aertando um botão do centro trocam de cor 8 botões. Assim, cada vez ue aertamos um botão trocam de cor um número ar de botões. Como existem 9 botões, não é ossível ue todos trouem de cor. Escrevemos abaixo os números naturais de 1 a Antes de cada um deles, coloue sinais + ou de forma ue a soma de todos seja zero. Não é ossível fazer isto. Imaginando ue fosse ossível, deveríamos searar os números dados em dois gruos com a mesma soma. Então colocaríamos sinais negativos nos números de um dos gruos e sinais ositivos nos números do outro. Teríamos então uma soma igual a zero. Acontece ue a soma dos números naturais de 1 a 10 é igual a 55. Como este número é ímar, não odemos searar os números dados em dois gruos ue tenham a mesma soma. Como o leitor deve estar ercebendo, os argumentos utilizados ermitiram concluir ue as resostas dos três roblemas roostos foram iguais não é ossível fazer tal coisa. Na maioria das vezes, um argumento de aridade serve exatamente ara isto. Mostrar ue um determinado fato não ode ocorrer e isto não é desanimador, muito elo contrário. Serve ara nos convencer ue não adianta ficar gastando temo demais fazendo tentativas inúteis. As exeriências são valiosas no sentido de nos abrir os olhos ara a ossibilidade do roblema não ter solução e, a artir daí, buscar um argumento ue resolva definitivamente a uestão. É muito imortante também exlorar um roblema, ou seja, imaginar euenas modificações no enunciado e verificar o ue ocorre com sua resosta. Por exemlo, o roblema não tem solução orue a soma dos naturais de 1 até 10 é 55 (ímar). O ue ocorreria se a soma fosse ar? Este é um novo e atrativo roblema. Vamos enunciá-lo Escrevemos abaixo os números naturais de 1 a Antes de cada um deles, coloue sinais + ou de forma ue a soma de todos seja zero. A soma dos números naturais de 1 a 11 é 66. Como odemos seará-los em dois gruos de soma? Começando elos maiores observe ue = 0. Logo, =. O roblema A tem como uma solução ossível = 0

3 Fica ao encargo do leitor mostrar ue semre ue a soma dos naturais de 1 até n é ar então odemos seará-los em dois gruos de igual soma. Você ode utilizar o caminho ue utilizamos acima, ou buscar uma outra forma. =+TKUVTEWKT8XYZU+[\T8] W YE] ^_`UV] atku+w8ykbw c8de Y8aT8W Você ode roor aos seus amigos os roblemas ou A com uma lista grande de números naturais consecutivos. O roblema terá ou não solução caso a soma desses números seja ar ou ímar, resectivamente. Entretanto, é ossível encontrar o resultado desta soma raidamente, sem recisar somar todas as arcelas. A soma de todos os naturais de 1 até n é ( 1 + n) n igual a. Por exemlo, a soma de todos os naturais de 1 até 10 é (1 + 10) = = 55. Procure demonstrar este fato e, se não conseguir, ergunte ao seu rofessor ou escreva ara a EUREKA! Mostre ue se a, b e c são inteiros ímares, a euação ax + bx + c = 0 não tem raiz racional. Comentários 1) Um número é raiz de uma euação dada se uando for substituído no lugar do x a igualdade ficar correta. Por exemlo, x = é raiz (ou solução) da euação x = 0 orue 4 = 0. Ainda, x = é solução da euação x x + x 10 = 0 orue = 0. Freüentemente não sabemos como resolver uma euação mas, em geral, odemos verificar se um certo valor de x é ou não uma de suas raízes. ) Um número é racional uando uder ser escrito como uma fração de numerador e denominador inteiros. Por exemlo, 7 e 1 4 são exemlos de números racionais. ) Quando desejamos demonstrar ue certo fato é imossível utilizamos freüentemente o método da redução ao absurdo. Este método consiste em imaginar o contrário, ou seja, ue tal fato seja ossível. A artir daí rocuramos chegar a uma contradição, a um absurdo. Conseguindo isso, teremos mostrado ue nossa hiótese (a do contrário) é falsa e conseüentemente, ue a afirmação inicial é verdadeira. Vamos ver tudo isso na solução do roblema. Não se reocue se você ainda não sabe resolver uma euação do segundo grau. Isto não será necessário. Tudo o ue recisamos é verificar se um número racional ode ser uma raiz. gsh%ikjmlnho%hrmsthmu%ikvwrx y Imaginemos ue o número racional seja raiz da euação ax + bx + c = 0 onde a, b e c são inteiros ímares. Logo, fazendo a substituição, devemos ter,

4 a + b + c = 0 a + b + c = 0 a + b + c = 0 Vamos acrescentar agora uma hiótese imortante ara facilitar nosso trabalho. Vamos suor ue a nossa fração seja irredutível, ou seja, ue ela já foi simlificada ao máximo. Por exemlo, no lugar de 6 4 estaremos considerando o ue é a mesma coisa. Consideramos então, ara a solução do roblema, ue e não são ambos ares. Observe agora a euação a + b + c = 0 nos seguintes casos a) e são ímares neste caso, a é ímar, b é ímar e c é ímar. Como a soma de três números ímares é ímar, o resultado não ode ser zero. b) é ar e é ímar neste caso, a é ar, b é ar e c é ímar. Como a soma de dois números ares e um ímar é ímar, o resultado não ode ser zero. c) é ímar e é ar vale o mesmo argumento do caso b). Demonstramos então ue nenhuma fração de numerador e denominador inteiros ode ser raiz da euação ax + bx + c = 0 onde a, b e c são inteiros ímares. Um tabuleiro 6 6 está coberto com dominós 1. Mostre ue existe uma reta ue seara as eças do tabuleiro sem cortar nenhum dominó. Cada dominó é formado or dois uadrados e ortanto, se o tabuleiro está inteiramente coberto, 18 dominós foram utilizados. Imagine agora uma reta (horizontal, or exemlo) ue seare o tabuleiro em duas artes. Se ela não corta nenhum dominó, está resolvido o roblema. Suonha então ue ela corte ao meio um dominó. Neste caso, acima desta reta teremos n dominós inteiros mais meio dominó, ou seja, teremos acima desta reta n + 1 uadrados, ue é um número ímar. Mas isto é imossível orue se o tabuleiro tem 6 unidades de largura, ualuer reta o dividirá em artes ue contém números ares de uadrados acima e abaixo dela. Assim, se uma reta corta um dominó, deverá cortar um outro dominó. Para a divisão do tabuleiro, existem 10 retas ossíveis e, se cada uma delas cortar dois dominós, deveríamos ter 0 dominós no tabuleiro. Como eles são aenas 18 então existe uma reta (elo menos) ue não corta nenhum dominó. { s h%u%ikvwrx} %xs x %v}~%j% }x

5 Os números naturais de 1 até 1998 são escritos em um imenso uadro negro. Em seguida, um aluno aaga dois uaisuer colocando no lugar sua diferença (não negativa). Deois de muitas oerações, um único número ficará escrito no uadro. É ossível ue esse número seja zero? Em uma ilha lana existem 11 cidades numeradas de 1 a 11. Estradas retas ligam 1 a, a, a 4,..., 10 a 11 e 11 a 1. É ossível ue uma reta corte todas as estradas?

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA TAUTOLOGIA C1 C2 C3 v A coluna C3 é formada or valores lógicos verdadeiros (), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA C1 C2 C3 C1 C2 C3 A coluna C3 é formada or valores lógicos falsos (), Logo,

Leia mais

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9 Ésófatorar... Serámesmo? Neste equeno artigo resolveremos o roblema 2 da USAMO (USA Mathematical Olymiad) 2005: Problema. Prove que o sistema x 6 + x + x y + y = 147 157 x + x y + y 2 + y + z 9 = 157 147

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

EXERCÍCIOS. 3) Escreva a negação das seguintes proposições numa sentença o mais simples possível.

EXERCÍCIOS. 3) Escreva a negação das seguintes proposições numa sentença o mais simples possível. EXERCÍCIOS 1) Considere as roosições : Está frio e : Está chovendo. Traduza ara linguagem corrente as seguintes roosição: a) ~ b) c) ~ ~ d) ~ e) ( ~) ( ~) 2) Considere as roosições : A Terra é um laneta

Leia mais

UFJF MÓDULO III DO PISM TRIÊNIO 2009-2011 GABARITO DA PROVA DE FÍSICA

UFJF MÓDULO III DO PISM TRIÊNIO 2009-2011 GABARITO DA PROVA DE FÍSICA UFJF MÓDULO III DO PISM TRIÊNIO 9- GABARITO DA PROVA DE FÍSICA Na solução da rova, use uando necessário: 8 Velocidade da luz no vácuo c = 3, m/s 7 Permeabilidade magnética do vácuo =4π T m / A 9 Constante

Leia mais

XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Fase Final (6 de novembro de 2010) Nível α (6 o e 7 o anos do Ensino Fundamental)

XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Fase Final (6 de novembro de 2010) Nível α (6 o e 7 o anos do Ensino Fundamental) V OLMPÍD PULST D MTMÁTC Prova da Fase Final (6 de novembro de Nível α (6 o e 7 o anos do nsino Fundamental wwwommatbr Folha de Perguntas nstruções: duração da rova é de hmin O temo mínimo de ermanência

Leia mais

Topologia digital. Vizinhança

Topologia digital. Vizinhança Toologia digital Uma imagem digital resulta de um rocesso de amostragem de uma imagem contínua usando uma artição discreta envolvendo olígonos regulares. Esuemas de artição usando olígonos regulares triangular

Leia mais

Um jogo de preencher casas

Um jogo de preencher casas Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos

Leia mais

FINANCEIRA. Reginaldo J. Santos. Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi Agosto de 2005. 10 de abril de 2009

FINANCEIRA. Reginaldo J. Santos. Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi Agosto de 2005. 10 de abril de 2009 INTRODUÇÃO À MATEMÁTICA FINANCEIRA Reginaldo J. Santos Deartamento de Matemática-ICEx Universidade Federal de Minas Gerais htt://www.mat.ufmg.br/~regi Agosto de 2005 última atualização em 10 de abril de

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Segunda aula de mecânica dos fluidos básica. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti

Segunda aula de mecânica dos fluidos básica. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti Segunda aula de mecânica dos fluidos básica Estática dos Fluidos caítulo 2 do livro do rofessor Franco Brunetti NO DESENVOLVIMENTO DESTA SEGUNDA AULA NÃO IREI ME REPORTAR DIRETAMENTE AO LIVRO MENCIONADO

Leia mais

MICROECONOMIA II (2011-12) João Correia da Silva (joao@fep.up.pt) 29-03-2012

MICROECONOMIA II (2011-12) João Correia da Silva (joao@fep.up.pt) 29-03-2012 MICROECONOMIA II 1E108 (2011-12) 29-03-2012 João Correia da ilva (joao@fe.u.t) 2. Estruturas de Mercado 2.1. Concorrência Perfeita. 2.2. Monoólio. 2 CONCORRÊNCIA PERFEITA O modelo de concorrência erfeita

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

EA072 Prof. Fernando J. Von Zuben DCA/FEEC/Unicamp. Tópico P2.7: Teoria de Jogos 3. EA072 Prof. Fernando J. Von Zuben DCA/FEEC/Unicamp

EA072 Prof. Fernando J. Von Zuben DCA/FEEC/Unicamp. Tópico P2.7: Teoria de Jogos 3. EA072 Prof. Fernando J. Von Zuben DCA/FEEC/Unicamp Teoria de Jogos ntrodução... Exemlo de jogos... 5. Pilha de alitos... 5. Jogo de sinuca (bilhar inglês ou snooker)... 5.3 Duelo... 6.4 Lançamento de novos rodutos no mercado... 6.5 Dilema do risioneiro...

Leia mais

P(seleção de um elemento baixo) = p P(seleção de um elemento médio) = p. P(seleção de um elemento alto) = p

P(seleção de um elemento baixo) = p P(seleção de um elemento médio) = p. P(seleção de um elemento alto) = p . A Distribuição Multinomial - Teste Qui-Quadrado. Inferência Estatística Uma imortante generalização da rova de Bernoulli (), é a chamada rova multinomial. Uma rova de Bernoulli () ode roduzir dois resultados

Leia mais

CAPÍTULO 3 - RETIFICAÇÃO

CAPÍTULO 3 - RETIFICAÇÃO CAPÍTULO 3 - RETFCAÇÃO A maioria dos circuitos eletrônicos recisa de uma tensão cc ara oder trabalhar adequadamente Como a tensão da linha é alternada, a rimeira coisa a ser feita em qualquer equiamento

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

MICROECONOMIA II (2010-11) João Correia da Silva (joao@fep.up.pt) 11-04-2011

MICROECONOMIA II (2010-11) João Correia da Silva (joao@fep.up.pt) 11-04-2011 MICROECONOMIA II E08 00- -04-0 João Correia da Silva joao@fe.u.t . Estruturas de Mercado.. Concorrência Perfeita... Monoólio. MONOPÓLIO O Monoólio é uma estrutura de mercado na ual:. Existe aenas emresa

Leia mais

3)Seno de alguns arcos importantes

3)Seno de alguns arcos importantes Aula 4-A -Funções trigonométricas no ciclo trigonométrico ) Função seno (definição) )Gráfico da função seno )Seno de alguns arcos imortantes 4) Equações e inequações 5) Resolução de exercícios ) Função

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

COMPARAÇÃO DO DESEMPENHO ACADÊMICO DOS INGRESSANTES EM GEOGRAFIA PELO VESTIBULAR E PELO PAIES

COMPARAÇÃO DO DESEMPENHO ACADÊMICO DOS INGRESSANTES EM GEOGRAFIA PELO VESTIBULAR E PELO PAIES COMPARAÇÃO DO DESEMPENHO ACADÊMICO DOS INGRESSANTES EM GEOGRAFIA PELO VESTIBULAR E PELO PAIES Sylio Luiz Andreozzi 1 Fláia Aarecida Vieira de Araújo 2 Introdução As uniersidades úblicas brasileiras determinam

Leia mais

Modelagem Conceitual parte II

Modelagem Conceitual parte II Modelagem Conceitual arte II Vitor Valerio de Souza Camos Objetivos Aresentar o conceito de. Mostrar a cardinalidade de. Aresentar os tios de s. Aresentar o conceito de entidade fraca Aresentar o conceito

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

Elasticidade - Demanda e Preço

Elasticidade - Demanda e Preço José Lásaro Cotta Elasticidade - Demanda e Preço Monografia aresentada ao Curso de Esecialização em Matemática Para Professores, elaborado elo Deartamento de Matemática da Universidade Federal de Minas

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

MICROECONOMIA II (2011-12) João Correia da Silva (joao@fep.up.pt) 26-03-2012

MICROECONOMIA II (2011-12) João Correia da Silva (joao@fep.up.pt) 26-03-2012 MICROECONOMIA II 1E108 (2011-12) 26-03-2012 João Correia da Silva (joao@fe.u.t) 1. A EMPRESA 1.1. Tecnologia de Produção. 1.2. Minimização do Custo. 1.3. Análise dos Custos. 1.4. Maximização do Lucro.

Leia mais

Modelo Fuzzy de tomada de decisão para avaliação de projetos de Responsabilidade Socioambiental (RSA)

Modelo Fuzzy de tomada de decisão para avaliação de projetos de Responsabilidade Socioambiental (RSA) Modelo uzzy de tomada de decisão ara avaliação de rojetos de Resonsabilidade Socioambiental (RSA) Katia Cristina Garcia Laboratório Interdiscilinar de Meio Ambiente - COPPE/URJ Centro de Tecnologia, Bloco

Leia mais

Lista de Exercícios - Potenciação

Lista de Exercícios - Potenciação Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 14 - Potenciação ou Exponenciação - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=20lm2lx6r0g Gabaritos

Leia mais

r 5 200 m b) 1 min 5 60 s s t a 5

r 5 200 m b) 1 min 5 60 s s t a 5 Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 0 Um atleta desloca-se à velocidade constante de 7,8 m/s numa ista circular de raio 00 m. Determine as medidas, em radianos e

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Unidade VII - Teoria Cinética dos Gases

Unidade VII - Teoria Cinética dos Gases Unidade VII - eoria Cinética dos Gases fig. VII.. Nesse rocesso, a ressão em um gás aumenta e o olume diminui. Isto é, a colisão de suas moléculas dee aumentar, sua energia cinética aumenta e diminui a

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Minicurso. Rosali Brusamarello. Universidade Estadual de Maringá, Paraná, Brasil. e-mail: brusama@uem.br

Minicurso. Rosali Brusamarello. Universidade Estadual de Maringá, Paraná, Brasil. e-mail: brusama@uem.br I Colóuio Regional da Região Centro-Oeste, 3 a 6 de novembro de 009 Universidade Federal de Mato Grosso do Sul Minicurso Euações Algébricas Rosali Brusamarello 1 Introdução É difícil precisar uando as

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

SIMULADOS & TUTORIAIS

SIMULADOS & TUTORIAIS SIMULADOS & TUTORIAIS TUTORIAIS CSS O que é CSS e sua sintaxe Coyright 2013 Todos os Direitos Reservados Jorge Eider F. da Silva Proibida a rerodução deste documento no todo ou em arte or quaisquer meios,

Leia mais

N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas.

N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas. 1 N1Q1 Solução a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas. b) Há várias formas de se cobrir o tabuleiro com peças dos tipos A e B, com pelo

Leia mais

Projeto de Trabalho de Conclusão de Curso

Projeto de Trabalho de Conclusão de Curso MARCELO RIBEIRO DA LUZ MARCOS KUFNER Projeto de Trabalho de Conclusão de Curso Trabalho aresentado ara a discilina de Laboratório de Estatística II do curso de graduação em Estatística da Universidade

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO-2º BI- 7º ANO-MATEMÁTICA ALUNO:...TURMA:...Profa.M.Luisa NÚMEROS RACIONAIS

EXERCÍCIOS DE RECUPERAÇÃO-2º BI- 7º ANO-MATEMÁTICA ALUNO:...TURMA:...Profa.M.Luisa NÚMEROS RACIONAIS EXERCÍCIOS DE RECUPERAÇÃO-º BI- º ANO-MATEMÁTICA ALUNO:...TURMA:...Profa.M.Luisa NÚMEROS RACIONAIS. Leia o problema: Rafael foi ao supermercado e comprou uma lata de ervilha por R$,0, um pacote R$,0 e

Leia mais

GABARITO. Física B 07) 56 08) A 09) E. Nas lentes divergentes as imagens serão sempre virtuais. 10) A

GABARITO. Física B 07) 56 08) A 09) E. Nas lentes divergentes as imagens serão sempre virtuais. 10) A Física B Extensivo V. 4 Exercícios 0) V V V V F 0. Verdadeiro. Lentes, disositivos que ormam imagem usando essencialmente as leis da reração. 0. Verdadeiro. Eselhos vértice, oco, centro de curvatura. Lentes:

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

A Torre de Hanói e o Princípio da Indução Matemática

A Torre de Hanói e o Princípio da Indução Matemática A Torre de Hanói e o Princípio da Indução Matemática I. O jogo A Torre de Hanói consiste de uma base com três pinos e um certo número n de discos de diâmetros diferentes, colocados um sobre o outro em

Leia mais

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE MATEMÁTICA -IE TEORIA DOS NÚMEROS. Texto de aula. Professor Rudolf R. Maier

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE MATEMÁTICA -IE TEORIA DOS NÚMEROS. Texto de aula. Professor Rudolf R. Maier UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE MATEMÁTICA -IE TEORIA DOS NÚMEROS Texto de aula Professor Rudolf R Maier Versão atualizada 005 Estas notas são o resultado da exeriência nas aulas do curso do mesmo

Leia mais

Preparação para o teste intermédio de Matemática 8º ano

Preparação para o teste intermédio de Matemática 8º ano Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos

Leia mais

O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11.

O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11. EXERCÍCIOS DE RECUPERAÇÃO 7º ANO º BIMESTRE MATEMÁTICA PROFº PAULO 1. Dois números de sinais contrários são opostos? Justifique. O sinal de menos ( ) colocado antes de um número indica o oposto desse número.

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Lista de Exercícios 3 Estrutura Condicional

Lista de Exercícios 3 Estrutura Condicional 1 Lista de Exercícios 3 Estrutura Condicional 1. A nota final de um estudante é calculada a partir de três notas atribuídas respectivamente a um trabalho de laboratório, a uma avaliação semestral e a um

Leia mais

01. Considere as seguintes proposições:

01. Considere as seguintes proposições: 01. Considere as seguintes proposições: p: O restaurante está fechado. q: O computador está ligado. A sentença O restaurante não está fechado e o computador não está ligado assume valor lógico verdadeiro

Leia mais

12 E 13 DE DEZEMBRO DE 2015

12 E 13 DE DEZEMBRO DE 2015 PROBLEMAS DO 1 o TORNEIO CARIOCA DE MATEMÁTICA 12 E 13 DE DEZEMBRO DE 2015 Conteúdo Notações 1 1 O suer-mdc 1 2 Os Reis do etróleo 2 3 Quadraturas de Triângulos 3 4 Um roblema bimodular 4 5 Sistemas de

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 20 - Backroagation Introdução Redes de uma camada resolvem aenas roblemas linearmente searáveis Solução: utilizar mais de uma camada Camada 1: uma

Leia mais

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos

Leia mais

Geometria Plana. Exercı cios Objetivos. (a) 2. (b) 1. (c) 2. Dado: 11 3, 32

Geometria Plana. Exercı cios Objetivos. (a) 2. (b) 1. (c) 2. Dado: 11 3, 32 Exercı cios Objetivos 1. (009/1) Paulo e Marta esta o brincando de jogar dardos. O alvo e um disco circular de centro O. Paulo joga um dardo, que atinge o alvo num onto, que vamos denotar or P; em seguida,

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 Este é o 6º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Fluxo de Potência em Redes de Distribuição Radiais

Fluxo de Potência em Redes de Distribuição Radiais COE/UFRJ rograma de Engenharia Elétrica COE 751 Análise de Redes Elétricas Fluxo de otência em Redes de Distribuição Radiais 1.1 Formulação do roblema Os métodos convencionais de cálculo de fluxo de otência

Leia mais

Aula 8 Distância entre pontos do plano euclidiano

Aula 8 Distância entre pontos do plano euclidiano Distância entre pontos do plano euclidiano MÓDULO - AULA 8 Aula 8 Distância entre pontos do plano euclidiano Objetivos Nesta aula, você: Usará o sistema de coordenadas para calcular a distância entre dois

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS UFGD FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS FACET WILHELM DOS SANTOS PAES

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS UFGD FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS FACET WILHELM DOS SANTOS PAES UNIVERSIDADE FEDERAL DA GRANDE DOURADOS UFGD FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS FACET WILHELM DOS SANTOS PAES CRIPTOGRAFIA EM BLOCOS: UM ENFOQUE EM SUA APLICAÇÃO NO ENSINO DE MATRIZES DISSERTAÇÃO

Leia mais

III APRESENTAÇÃO E INTERPRETAÇÃO DOS RESULTADOS

III APRESENTAÇÃO E INTERPRETAÇÃO DOS RESULTADOS III APRESENTAÇÃO E INTERPRETAÇÃO DOS RESULTADOS A aresentação dos resultados advém dos factos observados durante a colheita de dados e do tratamento estatístico. O tratamento dos dados é efectuado através

Leia mais

PROVA DE FÍSICA 2º ANO - ACUMULATIVA - 2º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - ACUMULATIVA - 2º TRIMESTRE TIPO A PROA DE FÍSICA º ANO - ACUMULATIA - º TRIMESTRE TIPO A 0) Considere as seguintes roosições referentes a um gás erfeito. I. Na transformação isotérmica, o roduto. é roorcional à temeratura do gás. II. Na

Leia mais

Operações com números racionais decimais

Operações com números racionais decimais Divisão 1º: Divisão exata Operações com números racionais decimais Considere a seguinte divisão: 1,4 : 0,05 Transformando em frações decimais, temos: Método prático 1º) Igualamos o números de casas decimais,

Leia mais

Colégio Politécnico da UFSM DPADP0024 : Processamento Digital de Imagens (Prof. Dr. Elódio Sebem)

Colégio Politécnico da UFSM DPADP0024 : Processamento Digital de Imagens (Prof. Dr. Elódio Sebem) Para melhor aroveitamento das informações roduzidas or diferentes sensores, alguns métodos de rocessamento de imagens têm sido roostos. Estes métodos combinam imagens de diferentes características esectrais

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

Guia de Consulta Rápida

Guia de Consulta Rápida Guia de Consulta Ráida Leia o Guia do Utilizador fornecido com o videorojector antes de o utilizar. ATENÇÃO Não olhe directamente ara a lente enquanto o videorojector estiver ligado. Efectuar a Ligação

Leia mais

Teoria da Computação Linguagens Formais e Autômatos

Teoria da Computação Linguagens Formais e Autômatos 1 Prof. Diógenes Furlan Teoria da Comutação Linguagens Formais e Autômatos Módulo 2 2015 2 Autômato de Pilha Modelo reconhecedor de alavras ara LLCs. Modelo da Máuina fita de entrada cabeça de leitura

Leia mais

Árvores Binárias de Pesquisa. Programação II Prof. Mateus Raeder. Árvores Binárias de Pesquisa. Árvores Binárias de Pesquisa. Classe Nodo Binário

Árvores Binárias de Pesquisa. Programação II Prof. Mateus Raeder. Árvores Binárias de Pesquisa. Árvores Binárias de Pesquisa. Classe Nodo Binário Programação II Conhecida também como: Árvore binária ordenada Árvore binária de busca Aresenta relação de ordem entre os nodos Ordem definida através do camo chamado chave CHAVE Prof. Mateus Raeder Chaves

Leia mais

1. ENTALPIA. (a) A definição de entalpia. A entalpia, H, é definida como:

1. ENTALPIA. (a) A definição de entalpia. A entalpia, H, é definida como: 1 Data: 31/05/2007 Curso de Processos Químicos Reerência: AKINS, Peter. Físico- Química. Sétima edição. Editora, LC, 2003. Resumo: Proas. Bárbara Winiarski Diesel Novaes 1. ENALPIA A variação da energia

Leia mais

OFICINA DE JOGOS APOSTILA DO PROFESSOR

OFICINA DE JOGOS APOSTILA DO PROFESSOR OFICINA DE JOGOS APOSTILA DO PROFESSOR APRESENTAÇÃO Olá professor, Essa apostila apresenta jogos matemáticos que foram doados a uma escola de Blumenau como parte de uma ação do Movimento Nós Podemos Blumenau.

Leia mais

Aula 16. Integra»c~ao por partes

Aula 16. Integra»c~ao por partes Aula 16 Integra»c~ao or artes H a essencialmente dois m etodos emregados no c alculo de integrais inde nidas (rimitivas) de fun»c~oes elementares. Um deles e a integra»c~ao or substitui»c~ao, elorada na

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites EXERCÍCIOS & COMPLEMENTOS 3. FORMAS INDETERMINADAS 0 0 0 0 OPERAÇÕES COM OS SÍMBOLOS + = = ( ) = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k =

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

ANÁLISE DE UM PROBLEMA DE SEMÁFORO

ANÁLISE DE UM PROBLEMA DE SEMÁFORO ANÁLISE DE UM PROBLEMA DE SEMÁFORO O jogo usualmente designado por Traffic Lights (em português, Semáforo) foi inventado por Alan Parr em 1998. Engane-se o leitor que pense que é apenas uma versão ligeiramente

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Matemática. Resolução das atividades complementares. M15 Análise Combinatória

Matemática. Resolução das atividades complementares. M15 Análise Combinatória Resolução das atividades comlementares Matemática M Análise Combinatória. 8 Lançam-se dois dados simultaneamente: um vermelho e outro branco. a) Quantos e quais são os resultados ossíveis? b) Quais são

Leia mais

CEFET-MA/COPEAC Seletivo Técnico 2008 Língua Portuguesa e Matemática 0

CEFET-MA/COPEAC Seletivo Técnico 2008 Língua Portuguesa e Matemática 0 PROCESSO SELETIVO AOS CURSOS TÉCNICOS SUBSEQÜENTES / 008 UNED SÃO LUÍS CEFET-MA/COPEAC Seletivo Técnico 008 Língua Portuguesa e Matemática 0 PROCESSO SELETIVO AOS CURSOS TÉCNICOS SUBSEQÜENTES / 008 UNED

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

Comentários da Prova de Raciocínio Lógico e Matemático (Nível Superior): EBSERH Professores Francisco e Sandro

Comentários da Prova de Raciocínio Lógico e Matemático (Nível Superior): EBSERH Professores Francisco e Sandro omentários da rova de (ível Superior): EBSERH rofessores Francisco e Sandro Questão 11 Existe apenas uma casa construída ocupando % de um lote cuja área não construída é de 3 m. Qual é a porcentagem da

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA 1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva

Leia mais

Crescimento Econômico, Progresso Técnico e Distribuição de Renda : uma abordagem pluralista

Crescimento Econômico, Progresso Técnico e Distribuição de Renda : uma abordagem pluralista Caítulo 7 O Modelo de Crescimento Harrod-Domar e seus desdobramentos. 7.1 Introdução. A abordagem ós-keynesiana ara o crescimento e distribuição de renda tem sua origem com as contribuições seminais de

Leia mais

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais...

Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2. 1.1 Adição e Subtração de Números Racionais...2. 1.2 Multiplicação e Divisão de Números Racionais... Sumário 1.OPERAÇÕES COM NÚMEROS RACIONAIS...2 1.1 Adição e Subtração de Números Racionais...2 1.2 Multiplicação e Divisão de Números Racionais...2 2.OPERAÇÕES COM NÚMEROS DECIMAIS...4 2.1 Adição e Subtração

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

Conteúdo Programático Anual MATEMÁTICA

Conteúdo Programático Anual MATEMÁTICA MATEMÁTICA 1º BIMESTRE 5ª série (6º ano) CALCULANDO COM NÚMEROS NATURAIS 1. Idéias associadas à adição 2. Idéias associadas à subtração 3. Idéias associadas à multiplicação 4. Idéias associadas à divisão

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

A MONTAGEM DA EQUAÇÃO PARA DETERMINAÇÃO DO PREÇO DE VENDA

A MONTAGEM DA EQUAÇÃO PARA DETERMINAÇÃO DO PREÇO DE VENDA A MONTAGEM DA EQUAÇÃO PARA DETERMINAÇÃO DO PREÇO DE! Como considerar o valor dos impostos no tempo.! A montagem da equação do preço na forma de um fluxo de caixa. Francisco Cavalcante(f_c_a@uol.com.br)

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L10) a Colocarei aqui algumas explicações e exemplos de exercícios para que você possa fazer todos com segurança e tranquilidade, no entanto,

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

Palavras-chave: LEM; Intervenção; Educação Matemática.

Palavras-chave: LEM; Intervenção; Educação Matemática. JOGOS E MATERIAIS MANIPULÁVEIS: UMA EXPERIÊNCIA COM PROFESSORES E ALUNOS DA EJA Guilherme Adorno de Oliveira Guiadorno1@gmail.com Marlova Caldatto maracaldatto@yahoo.com.br Valdeni Soliani Franco vsfranco@uem.br

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE MATEMÁTICA Apontamentos: Curso de Conhecimentos Básicos de Matemática Cursos do Departamento de Gestão Maria Cristina

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

Rotação de Espelhos Planos

Rotação de Espelhos Planos Rotação de Espelhos Planos Introdução Um assunto que costuma aparecer em provas, isoladamente ou como parte de um exercício envolvendo outros tópicos, é a rotação de espelhos planos. Neste artigo, exploraremos

Leia mais