A seguir veremos o conceito de limites das funções de duas ou mais variáveis.

Tamanho: px
Começar a partir da página:

Download "A seguir veremos o conceito de limites das funções de duas ou mais variáveis."

Transcrição

1 Limites de Função de várias variáveis. Limites: No curso de CDI-I estudamos ite de uma função real de uma variável. A definição rigorosa de ite é dada or: f ( L, ( / se A seguir veremos o conceito de ites das funções de duas ou mais variáveis. Consideremos a função z f (, de domínio definida em ontos (, bastantes róimos do onto f ( L D e um onto (, D, tais que f seja,. Denominamos vizinhança circular de raio do onto, ao conjunto dos ontos (,, tais que: ( ( ou ( ( que constitui o disco aberto de centro,, conforme ilustra a figura a seguir. Diremos que a constante l é o ite da função f, quando o onto variável (, tende ara o onto (,, quando dado um número, tão equeno quanto desejarmos, for ossível determinarmos em corresondência com ele um outro número, tal que ara todo (, que satisfaça a desigualdade: ( ( tenhamos Nestas condições odemos escrever: l f (, l ou f (, l f (, l ou (, (, Lembre-se: Limites fundamentais sen tg, e sen e e e f (, l, onde: e,788..., ois, quando (em radianos sen tg

2 Cálculo de ites No cálculo de ites de funções de várias variáveis alicamos as mesmas roriedades estudadas em CDI-I. Eemlos: ( =... = - (, (, =... = (, (, ln( (, (, sen( =... = (, (, =... = ln 5 (, (, =... = 6 Calcule: (, (, (, (, =.(.( (.( = (, (, ( ( (, (, (.( (, (, Observações: A condição de eistência do ite de uma função de uma variável é que os ites laterais, devem eistir e serem iguais, ou seja: f ( L f ( f ( L Para funções de várias variáveis, como eiste uma infinidade de caminhos ara se aroimar do onto de análise, devemos rovar que eiste o ite usando a sua definição, salvo as situações onde ode se emregar as roriedades. Proriedade: Semre que, or dois caminhos distintos, os ites forem diferentes, o ite da função não eiste. Nota: Se tomando vários caminhos o resultado insiste em ser o mesmo, use a definição ara rovar que este valor é realmente o ite de tal função. Eemlos: Calcule (, (, o Caminho Aroimar do onto (, usando o eio das abscissas, ou seja, = = (, (, o Caminho Aroimar do onto (, usando o eio das ordenadas, ou seja, = = (, (, Portanto, como eistem dois caminhos com ites diferentes, o ite não eiste.

3 Calcule (, (, o Caminho Aroimar do onto (, usando o eio das abscissas, ou seja, = = (, (, o Caminho Aroimar do onto (, usando o eio das ordenadas, ou seja, = = (, (, o Caminho Aroimar do onto (, usando a bissetriz dos quadrantes imares, ou seja, = = (, (, Portanto, como eistem dois caminhos com ites diferentes, o ite não eiste. Mostre que não eiste. (, (, Vamos tomar caminhos diferentes e verificar o que ocorre com o ite nesta direção. Se = (, (, (, (, Se (, (, = (, (, Se =...= (, (, (, (, Se =...= (, (, (, (, Se (, (, ( Portanto, como or dois caminhos diferentes o ite é diferente, conclui-se que o ite não eiste. Mostre que não eiste. (, (, Vamos tomar caminhos diferentes e verificar o que ocorre com o ite nesta direção. Se (, (, Se (, (, Se (, (, ( Portanto, como or dois caminhos diferentes o ite é diferente, conclui-se que o ite não eiste.

4 5 Seja f definida or f (,. Determine o ite de f (, quando (, (,. a Ao longo do eio dos. b Ao longo do eio dos. c Ao longo da bissetriz dos quadrantes ímares. d Ao longo da curva. Resosta: a = => b = => c = => d => Nota: Não odemos concluir a artir desses elementos que o ite de tal função eiste, devemos usar a definição, ou uma roriedade, ara oder rovar o que suseitamos. A seguir, rovaremos que o valor desse ite é zero, usando a seguinte roriedade. Proriedade: Se f (, e g(, é uma função itada numa bola aberta de centro em (,, (, (, então: f (,.g(,., (, ( Eemlos: No eemlo 6, verificamos que o ite insiste em ser nulo, usando a roriedade, rove que: (, (,. (, (, e, ara todo (, (,, ou seja, Assim,. (, (, (, (, Nota: A eressão (quando = e. Ainda:. é uma função itada. tem como valor mínimo (quando = e e como valor máimo.sen, ois (, (, (, (, e sen, ou seja, g(, é uma função itada. Calcule, caso eista, (, (,. e, ara todo (, (,, ou seja é uma função itada. (, (, Assim,. (, (, (, (,

5 Calcule, caso eista, (, (, o Caminho Aroimar do onto (, usando o eio das abscissas, ou seja, = = (, (, o Caminho Aroimar do onto (, usando o eio das ordenadas, ou seja, = = (, (, Portanto, como or dois caminhos diferentes o ite é diferente, conclui-se que o ite não eiste. Cuidado:, mas não é itada! Prova: Tome: não é itada logo não é itada 5

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites 0. Formas Indeterminadas 0=0 = 0 0 02. Oerações com os símbolos + = = ( ) = = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k=0 = ; k 6= 0 03.

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em 007. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a+ a, >, e a) f (

Leia mais

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique.

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique. INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A 008. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a a, >, e a) f ( ) =, = (a = )

Leia mais

Módulo (ou valor absoluto) de um número real: a função modular

Módulo (ou valor absoluto) de um número real: a função modular Matemática Básica Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Módulo (ou valor absoluto) de um número real: a função modular Parte 5 Parte 5 Matemática Básica

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais

Priscilla Bieites de Souza Macedo

Priscilla Bieites de Souza Macedo UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA Priscilla Bieites de Souza Macedo DIFERENTES DEMONSTRAÇÕES PARA O LIMITE: 0 Belo Horizonte 00 Priscilla Bieites

Leia mais

Unidade F. Limites. Débora Bastos IFRS CAMPUS RIO GRANDE

Unidade F. Limites. Débora Bastos IFRS CAMPUS RIO GRANDE 9 Unidade F Limites Débora Bastos IFRS CAMPUS RIO GRANDE 9. Noção de ites Quando queremos saber a ordenada do ponto em uma função, cuja lei é y= f(), em que = a, basta calcularmos f(a). O ponto (a,f(a))

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

Aula 4 de Exercícios

Aula 4 de Exercícios Aula 4 de Eercícios. Eercício : Uma carga q está uniformemente distribuída no segmento de reta de = 0 a = L sobre o eio, com densidade linear = q=l: Qual o camo elétrico gerado or este segmento de reta

Leia mais

Gabarito da Lista 6 de Microeconomia I

Gabarito da Lista 6 de Microeconomia I Professor: Carlos E.E.L. da Costa Monitor: Vitor Farinha Luz Gabarito da Lista 6 de Microeconomia I Eercício Seja Y um conjunto de ossibilidades de rodução. Dizemos que uma tecnologia é aditiva quando

Leia mais

Capítulo Diferenciabilidade de uma função

Capítulo Diferenciabilidade de uma função Cálculo - Capítulo.6 - Diferenciabilidade de uma função 1 Capítulo.6 - Diferenciabilidade de uma função.6.1 - Introdução.6.4 - Diferenciabilidade e continuidade.6. - Diferenciabilidade.6.5 - Generalização

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Aula 7 10 de setembro de 2010 Aula 7 Pré-Cálculo 1 Módulo (ou valor absoluto) de um número real x

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE Teorema 0.. Dadas f,g, : A R funções e 0 ponto de acumulação de A. (i) Supona eiste ǫ >

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO

EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO. Ano de Escolaridade (Decreto-Lei n. 86/8, de de Agosto Programas novos e Decreto-Lei n. 74/004, de 6 de Março) Duração da rova: 50 minutos.ª FASE 007 VERSÃO PROVA ESCRITA

Leia mais

Física III. João Francisco Fuzile Rodrigues Garcia Maiara Fernanda Moreno

Física III. João Francisco Fuzile Rodrigues Garcia Maiara Fernanda Moreno Física III João Francisco Fuzile Rodrigues Garcia 8549323 Maiara Fernanda Moreno 8549344 Eercício 23.85 Ao longo do eio central de um disco carregado uniformemente, em um onto a 0,60m do centro do disco,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 04 - a Fase Proposta de resolução GRUPO I. Usando as leis de DeMorgan, e a probabilidade do acontecimento contrário, temos que: P A B P A B P A B então P A B 0,48

Leia mais

Itens para resolver (CONTINUAÇÃO)

Itens para resolver (CONTINUAÇÃO) PREPARAR EXAME NACINAL Itens para resolver (CNTINUAÇÃ) e. Seja g a função, de domínio IR\{}, definida por g(). Sem usar a calculadora, determine, se eistirem, as equações das assíntotas do gráfico de g.

Leia mais

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,

Leia mais

1 + tg x. 3 sen 16x sen 2x + cos 4x. cos x cotg x (x) 1 + x2 + 1 (z) sec x cos x. (j) f(x) = 1 t. (n) f(x) = x 2 arctan(2x) + tan 3 (4x) sec 4 (x 2 )

1 + tg x. 3 sen 16x sen 2x + cos 4x. cos x cotg x (x) 1 + x2 + 1 (z) sec x cos x. (j) f(x) = 1 t. (n) f(x) = x 2 arctan(2x) + tan 3 (4x) sec 4 (x 2 ) Lista de Eercicios de Cálculo I () Calcule, utilizando a denic~ao, a derivada das seguintes func~oes: (a) f() = 5 (b) f() = + (c) f() = k (d) f() = (e) f() = (f) f() = (g) f() = (h) f() = n ara n (i) f()

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA

FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA Última atualização: 9/05/007 Índice Sistema de coordenadas olares Conjunto abrangente 6 Coordenadas Cartesisnas x Coordenadas Polares 8 Simetrias

Leia mais

Limites: Noção intuitiva e geométrica

Limites: Noção intuitiva e geométrica Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites 3.A Em cada caso abaio calcule o ite de f (), quando! a (a) f () = 2 + 5; a = 7 (b) f () = 3 3 + + ; a = 0 (c) f () = 2 + 3 0 ; a = 5 (d) f () = 2 4 + 5 3 + 2 2 ; a = 2 (e) f () =

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

CURSO: MARKETING ECONOMIA I Época de Recurso 4 de Março de 2009 duração: 2h. Resolução NOME: Nº. GRUPO I (7 valores)

CURSO: MARKETING ECONOMIA I Época de Recurso 4 de Março de 2009 duração: 2h. Resolução NOME: Nº. GRUPO I (7 valores) URO: MARKTING ONOMIA I Éoca de Recurso 4 de Março de 2009 duração: 2h NOM: Nº. RPONA NO NUNIAO Resolução GRUPO I (7 valores) deve assinalar com um círculo a resosta correcta cada questão tem uma cotação

Leia mais

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que.

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que. FORMAS INDETERMINADAS E A REGRA DE L HÔPITAL RICARDO MAMEDE Consideremos o ite. Se tanto o numerador como o denominador tendem para valores initos quando a, digamos α e β, e β, então pela álgebra dos ites

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como, pela observação da figura podemos constatar que os gráficos das duas funções se intersetam num ponto de ordenada

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução MATEMÁTICA A - 1o Ano Funções - a Derivada concavidades e pontos de infleão) Propostas de resolução Eercícios de eames e testes intermédios 1. Por observação do gráfico de f, podemos observar o sentido

Leia mais

VIGAS. Figura 1. Graus de liberdade de uma viga no plano

VIGAS. Figura 1. Graus de liberdade de uma viga no plano VIGS 1 INTRODUÇÃO viga é um dos elementos estruturais mais utiliados em ontes, assarelas, edifícios rincialmente ela facilidade de construção. Qual a diferença entre a viga e a barra de treliça? Uma viga

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas ac C Á L C U L O D I F E R E N C I A L E I N T E G R A L I 02 Prof. ADRIANO CATTAI Apostila 02: Assíntotas NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

Exames Nacionais. Prova Escrita de Matemática A 2009 VERSÃO Ano de Escolaridade Prova 635/1.ª Fase. Grupo I

Exames Nacionais. Prova Escrita de Matemática A 2009 VERSÃO Ano de Escolaridade Prova 635/1.ª Fase. Grupo I Exames Nacionais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n. 7/00, de 6 de Março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

Curso de Pré Cálculo Dif. Int. I Aula 03 Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha

Curso de Pré Cálculo Dif. Int. I Aula 03 Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha SUMÁRIO 4 FUNÇÃO REAL DE UMA VARIÁVEL REAL 1 4.1 DEFINIÇÃO E NOTAÇÃO Definição Dados dois conjuntos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +

Leia mais

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira MATEMÁTICA 3 Professor Renato Madeira MÓDULO 1 Lógica SUMÁRIO 1. Proosição. Negação 3. Conectivos 4. Condicionais 4.1. Relação de imlicação 4.. Relação de equivalência 5. Álgebra das roosições 6. Quantificadores

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. Considerando a eperiência aleatória que consiste em escolher, ao acaso, um jovem inscrito no clube, e os acontecimentos:

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Matemática E Extensivo V. 4

Matemática E Extensivo V. 4 Etensivo V. Eercícios n 0) a) Por roriedade, 0. Logo 0. Ou ainda, 0 0 0 0! 0! 0! b) Por roriedade, n 0. Logo. Ou ainda, 0 0!! 0!!! c) Por roriedade, n n. Logo. Ou ainda,!!( )!!!!!! d) Por roriedade, n.

Leia mais

Capítulo 2. Integrais de linha. 2.1 Independência do caminho nas integrais de linha

Capítulo 2. Integrais de linha. 2.1 Independência do caminho nas integrais de linha Caítulo 2 Integrais de linha 2.1 Indeendência do caminho nas integrais de linha Definição 2.1 Dados um domínio D R 3 e P, Q, R : D R camos escalares contínuos, dizemos que a integral de linha é indeendente

Leia mais

A o ângulo à superior a 180º, na opção B é inferior a 90º e na opção C é superior a 135º. e sen 0.

A o ângulo à superior a 180º, na opção B é inferior a 90º e na opção C é superior a 135º. e sen 0. Preparar o Eame 0 06 Matemática A Página 55. Sabemos que radianos equivalem a 80º, pelo que a um ângulo de radianos vai corresponder 80,6 graus. Este ângulo só pode estar representado na opção D. Na opção

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

r 5 200 m b) 1 min 5 60 s s t a 5

r 5 200 m b) 1 min 5 60 s s t a 5 Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 0 Um atleta desloca-se à velocidade constante de 7,8 m/s numa ista circular de raio 00 m. Determine as medidas, em radianos e

Leia mais

ALGA- 2005/ (i) det. 7 (ii) det. det (A) = a 11 a 22 a 33 a 44 a 55 a Calcule: (a) det

ALGA- 2005/ (i) det. 7 (ii) det. det (A) = a 11 a 22 a 33 a 44 a 55 a Calcule: (a) det ALGA- 00/0. (a) Calcule o sinal das seguintes ermutações: (i) (; ; ; ; ) (ii) (; ; ; ; ; ) (b) Use os resultados da alínea (a) ara calcular, usando a de nição, os determinantes: 0 0 0 0 0 0 0 0 0 0 0 0

Leia mais

Exercícios orientados para a Prova Escrita de Fundamentos de Matemática Aplicada C Prof. Germán Suazo

Exercícios orientados para a Prova Escrita de Fundamentos de Matemática Aplicada C Prof. Germán Suazo Ministério da Educação Universidade Federal de Pelotas Centro de Educação a Distância Curso de Licenciatura em Matemática a Distância Eercícios orientados para a Prova Escrita de Fundamentos de Matemática

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. 3.1 A Circunferência EXERCÍCIOS & COMPLEMENTOS 3.1 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa elos ontos A (5; 1) ; B (4; 2) e

Leia mais

lim f ( x) Limites Limites

lim f ( x) Limites Limites UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I 1. O ite de uma função

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Cálculo - James Stewart - 7 Edição - Volume 1

Cálculo - James Stewart - 7 Edição - Volume 1 Cálculo - James Stewart - 7 Edição - Volume. Eercícios. Eplique com suas palavras o significado da equação É possível que a equação anterior seja verdadeira, mas que f? Eplique.. Eplique o que significa

Leia mais

CAPITULO VI. LIMITES E CONTINUIDADE DE FUNÇÕES EM R n

CAPITULO VI. LIMITES E CONTINUIDADE DE FUNÇÕES EM R n CAPITULO VI LIMITES E CONTINUIDADE DE FUNÇÕES EM R n. Generalidades O conceito geral de função e outros associados foram já estudados quando se tratou da teoria dos conjuntos. Foi igualmente estudado com

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

1) Função tangente (definição) 2)Gráfico da função tangente. 3) Equações e inequações. 4) Resolução de exercícios

1) Função tangente (definição) 2)Gráfico da função tangente. 3) Equações e inequações. 4) Resolução de exercícios Aula 25-Funções trigonométricas no ciclo trigonométrico 1) Função tangente (definição) 2)Gráfico da função tangente 3) Equações e inequações 4) Resolução de exercícios 1) Função tangente definição: Lembre

Leia mais

Aula 16. Integra»c~ao por partes

Aula 16. Integra»c~ao por partes Aula 16 Integra»c~ao or artes H a essencialmente dois m etodos emregados no c alculo de integrais inde nidas (rimitivas) de fun»c~oes elementares. Um deles e a integra»c~ao or substitui»c~ao, elorada na

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

5.7 Aplicações da derivada ao estudo das funções.

5.7 Aplicações da derivada ao estudo das funções. Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 1) 1 Notação R n = R R R x R n : x = (x 1, x 2,, x n ) ; x

Leia mais

Capítulo 7: Escoamento Interno

Capítulo 7: Escoamento Interno Caítulo 7: Escoamento Interno Transferência de calor Escoamento interno O fluido está comletamente confinado or uma suerfície sólida: reresenta o escoamento de um fluido em um duto ou tubulação. Assim

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy

1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy 1ª Avaliação 1) Se = 3,666 e y = 0,777, calcule y ) Determine o conjunto solução do sistema de inequações: 7 0 1 3 0 3) Calcule m para que o gráfico de f( ) ( m 7m) no ponto de ordenada 10 = + corte o

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x.

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x. Professora: Elisandra Bär de Figueiredo Lista 4: Derivadas - Cálculo Diferencial e Integral I f( + h) f() 1. Para as funções dadas abaio calcule lim. h 0 h( (a) f() ) (b) f() (e) f() cos (c) f() 1 (f)

Leia mais

LIMITE DE UMA FUNÇÃO II

LIMITE DE UMA FUNÇÃO II LIMITE DE UMA FUNÇÃO II Nice Maria Americano Costa Pinto LIMITES À ESQUERDA E À DIREITA Se a função f() tende ao ite b, quando tende ao valor a por valores inferiores a a, diz-se que b éo ite à esquerda

Leia mais

O limite trigonométrico fundamental

O limite trigonométrico fundamental O ite trigonométrico fundamental Meta da aula Continuar a apresentação de ites de funções. Objetivo Ao final desta aula, você deverá ser capaz de: Calcular ites usando o ite trigonométrico fundamental.

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1 Solução dos exercícios do caítulo 2,. 31-32 Equações de um gás ideal = NRT U = NcT U = c R Exercício 1. (a) Exansão isotérmica de um gás ideal. Trabalho: W = 2 1 d = NRT 2 1 1 d = NRT ln 2 1 omo a energia

Leia mais

Capítulo 6 - Integral Inde nida

Capítulo 6 - Integral Inde nida Caítulo - Integral Inde nida. Calcule as integrais inde nidas abaio usando integração imediata ou o método da substituição. e d (j) e d d e ( ) (k) d d arctan (l) ( ) d d sec tg (m) d ln d e (n) ( e )

Leia mais

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando 5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

1.1 Números Complexos

1.1 Números Complexos . O PLANO COMPLEXO VARIÁVEL COMPLEXA - 07.. Números Comlexos. Em cada caso, reduza a exressão à forma a + ib; a; b R: (a) ( i) + (3 + 4i) (b) ( + i) i (3 + 4i) (c) ( + i) ( + i) (d) ( i) (e) ( i) 3 + i

Leia mais

Chave de Correção MATEMÁTICA

Chave de Correção MATEMÁTICA CONCURSO VESTIBULAR 008 Chave de Correção MATEMÁTICA ª Questão Como uma semana tem 7 dias, ara determinarmos em que dia da semana caiu o dia de outubro de 9, devemos obter o resto da divisão de 798 or

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas Paridade das Funções Seno e Cosseno Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que Aula 5 Integrais inde nidas 5. Antiderivadas Sendo f() e F () de nidas em um intervalo I ½, dizemos que F e umaantiderivada ou uma rimitiva de f, emi, sef 0 () =f() ara todo I. Ou seja, F e antiderivada

Leia mais

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO Preparar o Eame 06 Matemática A EXAME NACIONAL DE MATEMÁTICA A 05.ª FASE VERSÃO / PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica

Leia mais

Notas de Aula de Cálculo Diferencial e Integral

Notas de Aula de Cálculo Diferencial e Integral Notas de Aula de Cálculo Diferencial e Integral Volume I Fábio Henrique de Carvalho Copright c 03 Publicado por Fundação Universidade Federal do Vale do São Francisco Univasf) www.univasf.edu.br Todos

Leia mais

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio Material Teórico - Círculo Trigonométrico Secante, cossecante e cotangente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5 de dezembro de

Leia mais

Capítulo Limites e continuidade

Capítulo Limites e continuidade Cálculo 2 - Capítulo 2.2 - Limites e continuidade Capítulo 2.2 - Limites e continuidade 2.2. - Domínio e imagem 2.2.3 - Continuidade 2.2.2 - Limites Limites são a base do Cálculo Diferencial e Integral

Leia mais

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 06 Universidade Federal do Rio

Leia mais

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Emresariais icroeconomia Licenciatura em Administração e Gestão de Emresas 3 de Novembro de Fernando Branco Eame de Finalistas Gabinete

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

Lista de Exercícios 2 1

Lista de Exercícios 2 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor

Leia mais

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

Avaliação 01. Onde P é o peso em quilogramas, A é a altura em cm e S é medido em m². Sendo assim calcule a superfície corporal de uma pessoa com:

Avaliação 01. Onde P é o peso em quilogramas, A é a altura em cm e S é medido em m². Sendo assim calcule a superfície corporal de uma pessoa com: Avaliação 0 ) Médicos ligados aos desportos de desenvolveram empiricamente a seguinte fórmula para calcular a área da superfície de uma pessoa em função do seu peso e sua Altura. 0,45 0,75 S( P, A) 0,007P

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

3)Seno de alguns arcos importantes

3)Seno de alguns arcos importantes Aula 4-A -Funções trigonométricas no ciclo trigonométrico ) Função seno (definição) )Gráfico da função seno )Seno de alguns arcos imortantes 4) Equações e inequações 5) Resolução de exercícios ) Função

Leia mais

3. ANÁLISE DE DADOS EXPERIMENTAIS

3. ANÁLISE DE DADOS EXPERIMENTAIS 3. AÁLISE DE DADOS EXPEIMETAIS 3. Introdução. Todo dado eerimental deve ser analisado através de algum tio de rocedimento. Um bom eerimentalista deve fazer todo o esforço ossível ara eliminar todos os

Leia mais

matematicaconcursos.blogspot.com

matematicaconcursos.blogspot.com Professor: Rômulo Garcia Email: machadogarcia@gmail.com Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Exresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais