Capítulo Limites e continuidade

Tamanho: px
Começar a partir da página:

Download "Capítulo Limites e continuidade"

Transcrição

1 Cálculo 2 - Capítulo Limites e continuidade Capítulo Limites e continuidade Domínio e imagem Continuidade Limites Limites são a base do Cálculo Diferencial e Integral de funções de diversas variáveis tanto quanto o eram para o Cálculo com funções de uma variável. Veremos aqui como formaliar e generaliar o conceito de ite aprendido antes com o intuito de aplicá-lo à definição de derivadas parciais, que será feita no Capítulo Domínio e imagem O domínio de uma função f() de uma variável é um intervalo ou conjunto de intervalos dos números reais. De modo semelhante, o domínio de uma função de duas variáveis, f(,), é uma região ou um conjunto de regiões do espaço R 2 e o domínio de uma função de três variáveis, f(,,), é uma região ou conjunto de regiões do espaço R 3. Como todas essas funções levam pontos do plano ou do espaço a coordenadas de um eio, que correspondem a pontos da reta dos reais, a imagem de qualquer uma delas será um conjunto de intervalos dos números reais. 0 f f(0) 0 f f( 0, 0 ) R R R 2 0 R w 0 f f( 0, 0, 0 ) 0 0 R 3 R Vamos, agora, eplicar melhor o que são o R 2 e o R 3, começando pelos números reais, que são o conjunto numérico base do Cálculo. A característica dos números reais que torna possível a idéia de ites é que, próimo a um número real, é sempre possível encontrar um outro número real distinto dele, por menor que seja essa distância. Isto torna possível aproimar-se o quanto for necessário de um certo número real sem, no entanto, alcançá-lo. O conjunto R 2 é conseguido a partir do conjunto dos números reais através do produto cartesiano R 2 = R R. Esse produto contrói pares ordenados (,), onde e pertencem a R. Sendo assim, o conjunto R 2 é dado por R 2 = {(,), R}. Isto significa que R 2 está associado ao conjunto de todos os pontos de um plano, do mesmo modo que R está associado ao conjunto de todos os pontos de uma reta.

2 Cálculo 2 - Capítulo Limites e continuidade 2 De modo semelhante, o conjunto R 3 é dado por R 3 = (R R) R, o que significa que R 3 = {(,,),, R}. O conjunto R 3 está associado ao conjunto de todos os pontos do espaço. De modo semelhante, podemos ter um conjunto R n, dado por R n = {(, 2,, n ), 2,, n R}. Estabelecidos o que são os conjuntos R 2 e R 3, podemos agora voltar à questão aos domínios e imagens de funções baseadas nesses conjuntos. O domínio e a imagem de uma função de diversas variáveis também são determinados pelo tipo de função. Os eemplos a seguir mostram a determinação de domínios e imagens de algumas funções. Eemplo : determine o domínio e a imagem da função f(,) = Solução: o domínio dessa função é o espaço R 2 = {(, ), R}, pois ela é válida para quaisquer valores reais de e ; a imagem é R + = { R 0}, pois f(, ) só assume valores positivos ou o valor nulo. Eemplo 2: determine o domínio e a imagem da função f(,) = 3 2. Solução: o domínio dessa função é o espaço R 2, pois ela é válida para quaisquer valores reais de e ; a imagem é R, pois a função corresponde a um plano infinito, que varre todos os valores do eio. Eemplo 3: determine o domínio e a imagem da função f(,) = +. Solução: esta função só é válida para + 0, o que corresponde ao conjunto R 2 com eceção da reta =, isto é, D(f) = { (, ) R 2 }. A função f(, ) nunca assume o valor ero, pois para isso a soma + deveria ser infinita, o que não corresponde a números reais (o infinito não é um número real). Portanto, Im(f) = R = { R 0}. As três primeiras funções mostradas nesses eemplos são representadas a seguir. Note os domínios dessas funções e os gráficos dessas funções. A terceira função não eiste sobre a reta = pois ela atinge valores infinitos quando se aproima dessa reta f(,) = f(,) = 3 2 Eemplo 4: determine o domínio e a imagem da função f(,) = Solução: esta função só é válida para , f(,) = + o que corresponde ao interior do círculo de raio 2 centrado em (0, 0), incluindo sua borda. Portanto, podemos escrever D(f) = { (, ) R }. Como f(, ) só pode assumir valores positivos ou nulos, mas com um valor máimo em (, ) = (0, 0) dado por f(0, 0) = 4 = 2, sua imagem é dada por Im(f) = [0, 2].

3 Cálculo 2 - Capítulo Limites e continuidade 3 O domínio da função do eemplo 3 e o gráfico desta são mostrados nas duas figuras a seguir D(f) = { (, ) R } f(,) = Eemplo 5: determine o domínio e a imagem da função f(,) = Solução: esta função só é válida para > > < 4, o que corresponde ao interior do círculo de raio 2 centrado em (0, 0), com a eclusão da sua borda. Portanto, podemos escrever D(f) = { (, ) R < 4 }. A função f(, ) só pode assumir valores positivos, com um valor mínimo em (, ) = (0, 0) dado por f(0, 0) = =, de modo que a sua imagem é dada por { 4 2 Im(f) = [0, ) = R }. 2 O domínio da função do eemplo 4 e o gráfico desta são mostrados nas duas figuras a seguir. A linha tracejada indica que a borda da figura não fa parte do domínio. Note que a função cresce indefinidamente conforme o seu domínio se aproima da circunferência de raio 2 centrada em (0,0) D(f) = { (, ) R < 4 } --- f(,) = Eemplo 6: determine o domínio e a imagem da função f(,,) = 3. Solução: esta função é válida para todos os valores de e de reais, mas só é válida para 0. Portanto, seu domínio fica D(f) = { (,, ) R 3 0 }, o que corresponde à parte superior do espaço R 3, incluindo o plano. A função f(,, ) pode ser qualquer valor real, de modo que sua imagem é dada por Im(f) = R. Eemplo 7: determine o domínio e a imagem da função f(,) = ln( ). Solução: esta função só é válida para > 0, o que corresponde ao eterior do círculo de raio 0 centrado em (0, 0), isto é, todos os pontos do espaço, com eceção de (0, 0) e ecluindo sua borda. Portanto, o domínio fica D(f) = { (, ) R > 0 }. A função f(, ) pode assumir qualquer valor real. Portanto, Im(f) = R. Uma representação do domínio da função do eemplo 4 e do seu gráfico são mostrados nas duas figuras a seguir. A linha tracejada indica que a borda da figura não fa parte do domínio. Note que a função cresce indefinidamente conforme o seu domínio se aproima da circunferência de raio 2 centrada em (0,0).

4 Cálculo 2 - Capítulo Limites e continuidade D(f) = { (, ) R } f(,) = ln( ) O último eemplo apresenta um fenômeno importante, que é ter como domínio toda uma região menos um ponto e sua borda. Isto implica que todos os pontos imediatamente adjacentes a (0, 0) também não faem parte do domínio da função. Essa eceção da borda tem a ver com a idéia de ite para funções de mais de uma variável, que será vista na seção seguinte. No entanto, a discussão do que é uma borda de uma determinada região do espaço envolve conceitos mais avançados, que serão vistos mais tarde Limites Para uma função f() de uma variável, dier que o ite de f() quando a é igual a um certo número L significa que, se tomarmos números cada ve mais próimos de = a, não importando por qual lado, a função f() se aproimará cada ve mais de L, até que, se pudéssemos nos aproimar indefinidamente de = a, teríamos f() = L. O eemplo a seguir ajuda a refrescar a memória. Eemplo : estime, por meio de aproimações sucessivas, o ite 0 sen. Solução: na tabela a seguir, faemos aproimações sucessivas de 0, obtendo os valores dados pela segunda linha da tabela. Note que, em = 0, a função não eiste e que, vindo da esquerda (números menores que 0) ou da direita (números maiores que 0), o ite é o mesmo. 0, 0, 0 0, , 00 0, 0 0, f() 0, , , , , , , , 8447 sen Portanto, podemos dier que =. 0 Eemplo 2: estime, por meio de aproimações sucessivas, o ite 0. Solução: na tabela a seguir, faemos aproimações sucessivas de 0, obtendo os valores dados pela segunda linha da tabela. Note que, em = 0, a função não eiste e que, vindo da esquerda (números menores que 0) ou da direita (números maiores que 0), os ites não são os mesmos. 0, 0, 0 0, , 00 0, 0 0, f() Neste caso, diemos que não eiste o ite procurado. Para funções de duas variáveis, quando queremos calcular um ite, devemos eplicitar as coordendas ( 0, 0 ) desse ite, de modo que escrevemos f(,) (,) ( 0, 0 ) para significar o ite de f(,) quando (,) ( 0, 0 ). No caso de funções de duas variáveis, podemos chegar próimo a um determinado ponto ( 0, 0 ) de várias formas diferentes. Os dois eemplos a seguir mostram

5 Cálculo 2 - Capítulo Limites e continuidade 5 formas de se tentar chegar a um ite usando aproimações sucessivas. Eemplo 3: estime, por meio de aproimações sucessivas, o ite (,) (0,0) sen ( ) Solução: na tabela a seguir, faemos aproimações sucessivas de 0 e de 0. O ite é estimado de diversas direções, obtendo os valores dados pela tabela (esses valores estão arredondados até a quarta casa decimal), com arredondamento na quarta casa decimal. Note que, em (, ) = (0, 0), a função não eiste e que, vindo de qualquer um dos lados, o ite é o mesmo. \ 0, 0, 0 0 0, 0 0, 0, , , 844 0, 845 0, 844 0, , , 0, , 9999, 0000, 0000, , , , 0 0, 844, 0000, 0000, 0000, 0000, , , 845, 0000, 0000, 0000, , 845 0, 0 0, 844, 0000, 0000, 0000, 0000, , 844 0, 0, , 9999, 0000, 0000, , , , , , 844 0, 845 0, 844 0, , 4546 sen( ) Portanto, podemos dier que (,) (0,0) =. É importante frisar que a função nunca chega realmente a esse valor. Na tabela, somente temos, 0000 como uma aproimação de um 0 seguido de um número muito grande de noves. Eemplo 4: estime, por meio de aproimações sucessivas, o ite 2 2 (,) (0,0) Solução: na tabela a seguir, faemos aproimações sucessivas de 0 e de 0. O ite é estimado de diversas direções, obtendo os valores dados pela tabela, com arredondamento na quarta casa decimal (os valores sem vírgulas são eatos). Note que, em (, ) = (0, 0), a função não eiste e que o valor ite muda, dependendo da direção de onde se vem. \ 0, 0, 0 0 0, 0 0, 0 0, , , , , 0, , , , , 0 0, , , , , 0 0, , , , , 0, , , , , , , , Portanto, diemos que o ite pedido não eiste. Os gráficos das funções dos eemplos 3 e 4 são feitos a seguir, de modo a facilitar a visualiação do processo de ite

6 Cálculo 2 - Capítulo Limites e continuidade Continuidade Relembrando o caso de funções de uma variável real, uma função f() é contínua em = 0 quando f( 0 ) eistir, o f() eistir e f() = f( 0 ). De modo semelhante, podemos dier que uma função f(,) é 0 0 contínua em ( 0, 0 ) se f( 0, 0 ) eistir, o f(,) eistir e f(,) = f( 0, 0 ). (,) ( 0, 0 ) (,) ( 0, 0 ) De um modo geral, podemos enunciar a definição a seguir. Definição - Dada uma função f(,, n ) é contínua em ( 0,, n0 ) se f( 0,, 0n ) eistir, f(,, n ) eistir e f(,, n ) = f( 0,, 0n ). (,, n) ( 0,, n0 ) (,, n) ( 0,, n0 ) Eemplo : verifique se f(,) = sen (2 + 2 ) é contínua em (0,0). sen( ) Solução: como já foi visto na seção anterior, (,) (0,0) =. No entanto, f(, ) não é definida em (0, 0). Portanto, a função não é contínua nesse ponto. Eemplo 2: verifique se f(,) = 2 2 Solução: como já foi visto na seção anterior, ponto. 2 é contínua em (0,0). + 2 (,) (0,0) não eiste. Portanto, a função não é contínua nesse + 2 A continuidade de uma função, se conhecida de antemão, pode ser usada para calcular um ite dela, como mostram os eemplos a seguir. Eemplo 3: calcule ( + 2). (,) (,2) Solução: a função f(, ) = + 2 corresponde a um plano no espaço, que é uma figura contínua. Portanto, ( + 2) = f(, 2) = = 5. (,) (,2) Eemplo 4: calcule (,) (,) (2 + 2 ). Solução: a função f(, ) = corresponde a um parabolóide no espaço, que é uma figura contínua. Portanto, (,) (,) (2 + 2 ) = f(, ) = ( ) = + = 2. Do mesmo modo que para funções de uma variável real, se uma função de n variáveis reais é contínua em todos os pontos do seu domínio, então ela é simplesmente chamada contínua, sem especificar em que pontos. Ficamos por aqui com a nossa discussão sobre ites e continuidade. No capítulo a seguir, construiremos o conceito de derivada a funções de diversas variáveis.

7 Cálculo 2 - Capítulo Limites e continuidade 7 Espaço R 2 : {(,) R, R}. Resumo Espaço R n : {(,, n ) R,, n R}. Domínio e imagem: o domínio de uma função f de diversas variáveis é o conjunto de todos os pontos onde ela é definida; sua imagem é o conjunto de todos os pontos aos quais o domínio leva, por meio da função. Limites: o ite de uma função f(,) quando (,) ( 0, 0 ), f(,), é o número (,) ( 0, 0 ) ao qual se chega aplicando f(,) a valores cada ve mais próimos de ( 0, 0 ). Para que o ite eista, esse número tem que ser o mesmo, independentemente de como seja feita a aproimação. Continuidade de uma função de n variáveis reais: dada uma função f(,, n ) é contínua em ( 0,, n0 ) se f( 0,, 0n ) eistir, f(,, n ) eistir e (,, n) ( 0,, n0 ) f(,, n ) = f( 0,, 0n ). (,, n) ( 0,, n0 )

8 Cálculo 2 - Capítulo Limites e continuidade 8 Eercícios - Capítulo 2.2 Nível Domínio e imagem Eemplo : escreva o domínio e a imagem da função f(,) = e 2 2. Solução: o domínio dessa função é D(f) = R 2, enquanto sua imagem é Im(f) = [0, ], pois a função eponencial só pode assumir valores positivos ou nulos e a função chega a um valor máimo em f(0, 0) =. E) Escreva os domínios e as imagens das funções dadas a seguir. a) f(,) = , b) f(,) = , c) f(,) = 9 2 2, d) f(,) = 2 2, e) f(,) = , f) f(,) = 4 + 4, g) f(,) = ln( ), h) f(,) = ln( 2 3 ). Limites Eemplo 2: calcule Solução: (3 (,) (,0) 3 ). (3 (,) (,0) 3 ) = = 0. E2) Calcule os seguintes ites: a) (,) (2,) (2 2 ), b) d) (,,) (0,0,0) ln( ). (,) (,0) sen, c) (,,) (,0,0) (2 + ln ), Nível 2 E) Verifique se f(,) = sen (2 + 2 ) é contínua em (0,0). sen ( ) E2) Verifique se f(,) = 2 + 2, (,) (0,0), é contínua em (0,0)., (,) = (0,0) Nível 3 E) Considere a função CES (Constant Elasticit of Substitution - Elasticidade de Substituição Constante) P(K,L) = A[αK ρ + ( α)l ρ ] /ρ. a) Calcule o ite de = ln P quando ρ 0. (Dica: use a regra de L Hôpital.) b) Mostre que o ite da função CES quando ρ 0 é a função de Cobb-Douglas.

9 Cálculo 2 - Capítulo Limites e continuidade 9 Respostas Nível E) a) D(f) = R 2, Im(f) = R + = { R 0}. b) D(f) = R 2, Im(f) = R +. c) D(f) = { (, ) R }, Im(f) = [0, 3]. d) D(f) = { (, ) R < }, Im(f) = R + = { R > 0}. e) D(f) = R2, Im(f) = R. f) D(f) = R 2, Im(f) = R +. g) D(f) = { (, ) R 2 (, ) (0, 0) }, Im(f) = R. h) D(f) = { (, ) R > 0 }, Im(f) = R. E2) a) 0, b), c) 0, d). Nível 2 E) Não é contínua em (0, 0), pois f(0, 0) não eiste. E2) Nível 3 É contínua em (0, 0), pois f(, ) = f(0, 0) =. (,) (0,0) E) a) = ln ( AK α L α) ρ 0 [ ( )] b) P = ep(lnp) = ep ln P = ep [ ln ( AK α L α)] = AK α L α. O ite pode ser deslocado ρ 0 ρ 0 ρ 0 para dentro das funções eponencial e logaritmo natural porque elas são contínuas.

Capítulo Diferenciabilidade de uma função

Capítulo Diferenciabilidade de uma função Cálculo - Capítulo.6 - Diferenciabilidade de uma função 1 Capítulo.6 - Diferenciabilidade de uma função.6.1 - Introdução.6.4 - Diferenciabilidade e continuidade.6. - Diferenciabilidade.6.5 - Generalização

Leia mais

Capítulo Aproximação linear e diferenciais

Capítulo Aproximação linear e diferenciais Cálculo 2 - Capítulo 3.1 - Aproimação linear e diferenciais 1 Capítulo 3.1 - Aproimação linear e diferenciais 3.1.1 - Aproimação linear 3.1.2 - Diferenciais Vamos, neste capítulo, generaliar os conceitos

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

y (x 0 ) = f (x 0 ) 2a = f (x 0 ) a = f (x 0 ) 2

y (x 0 ) = f (x 0 ) 2a = f (x 0 ) a = f (x 0 ) 2 Cálculo - Capítulo 3. - Aproimação quadrática 1 Capítulo 3. - Aproimação quadrática 3..1 - Aproimação quadrática para funções de uma variável 3.. - Aproimação quadrática para funções de duas variáveis

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Capítulo Formalização do conceito de limite

Capítulo Formalização do conceito de limite Cálculo 2 - Capítulo 2.3 - Formalização do conceito de ite Capítulo 2.3 - Formalização do conceito de ite 2.3. - Limite de uma função de uma variável 2.3.3 - Limite de uma função de n variáveis 2.3.2 -

Leia mais

Capítulo Aplicações do produto interno

Capítulo Aplicações do produto interno Cálculo - Capítulo 1.4 - Aplicações do produto interno - versão 0/009 1 Capítulo 1.4 - Aplicações do produto interno 1.4.1 - Ortogonalidade entre vetores 1.3.3 - Ângulo entre vetores 1.4. - Projeção ortogonal

Leia mais

Capítulo Derivadas parciais

Capítulo Derivadas parciais Cálculo 2 - Capítulo 24 - Derivadas parciais 1 Capítulo 24 - Derivadas parciais 241 - Introdução 243 - Significado geométrico das derivadas parciais 242 - Derivadas parciais Veremos agora como aplicar

Leia mais

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia PARTE 5 LIMITE 5.1 Um Pouco de Topologia Vamos agora nos preparar para definir ite de funções reais de várias variáveis reais. Para isto, precisamos de alguns conceitos importantes. Em primeiro lugar,

Leia mais

CÁLCULO LIMITE S ENGENHARIA

CÁLCULO LIMITE S ENGENHARIA CÁLCULO LIMITE S ENGENHARIA Confira as aulas em vídeo e eercícios 1 DEFINIÇÃO DE Imagine o seguinte eemplo: uma formiga está tentando chegar no ponto em = 3 andando pela curva definida pela função f()=²,

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Capítulo Diferenciabilidade e continuidade das derivadas parciais

Capítulo Diferenciabilidade e continuidade das derivadas parciais Cálculo 2 - Capítulo 27 - Diferenciabilidade e continuidade das derivadas parciais Capítulo 27 - Diferenciabilidade e continuidade das derivadas parciais 27 - Teorema do Valor Médio 272 - Diferenciabilidade

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 3 Limites Considere a função f definida por: Qual o domínio dessa função? Se 1, então f () é dada por: (2 + 3)( 1). 1 2 +

Leia mais

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 06 Universidade Federal do Rio

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

Limites: Noção intuitiva e geométrica

Limites: Noção intuitiva e geométrica Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:

Leia mais

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D A Prática Leva à Perfeição Cálculo William D. Clark, P.D e Sandra Luna McCune, P.D Rio de Janeiro, 01 Para Sirley e Donice. Vocês estão sempre em nossos corações. Sumário Prefácio i I Limites 1 1 O conceito

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT5 - Cálculo Diferencial e Integral para Engenharia II a lista de eercícios - 0 I - Polinômio de Talor. Utilizando o polinômio de Talor de ordem, calcule um valor aproimado e avalie o erro: (a) 8, (b)

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

LIMITE E CONTINUIDADE DE

LIMITE E CONTINUIDADE DE CAPÍTULO 4 LIMITE E CONTINUIDADE DE FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS 4.1 Um Pouco de Topologia Vamos agora nos preparar para definir ite de funções reais de várias variáveis reais. Para isto, precisamos

Leia mais

Itens para resolver (CONTINUAÇÃO)

Itens para resolver (CONTINUAÇÃO) PREPARAR EXAME NACINAL Itens para resolver (CNTINUAÇÃ) e. Seja g a função, de domínio IR\{}, definida por g(). Sem usar a calculadora, determine, se eistirem, as equações das assíntotas do gráfico de g.

Leia mais

Capítulo Regra da cadeia

Capítulo Regra da cadeia Cálculo 2 - Capítulo 28 - Regra da cadeia 1 Capítulo 28 - Regra da cadeia 281 - Introdução 283 - Generalização 282 - Regra da cadeia Este capítulo trata da chamada regra da cadeia para funções de duas

Leia mais

FUNÇÕES DE MAIS DE UMA VARIÁVEL REAL

FUNÇÕES DE MAIS DE UMA VARIÁVEL REAL Universidade Federal Tecnológica do Paraná Francisco Beltrão Tereza Rachel Mafioleti CÁLCULO DIFERENCIAL INTEGRAL FUNÇÕES DE MAIS DE UMA VARIÁVEL REAL A maioria dos fenômenos da natureza depende de mais

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico

Leia mais

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE Teorema 0.. Dadas f,g, : A R funções e 0 ponto de acumulação de A. (i) Supona eiste ǫ >

Leia mais

Cálculo - James Stewart - 7 Edição - Volume 1

Cálculo - James Stewart - 7 Edição - Volume 1 Cálculo - James Stewart - 7 Edição - Volume. Eercícios. Eplique com suas palavras o significado da equação É possível que a equação anterior seja verdadeira, mas que f? Eplique.. Eplique o que significa

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções trigonométricas, eponenciais e logarítmicas Aula 0 Projeto GAMA

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

Limite e continuidade

Limite e continuidade Limite e continuidade Noção intuitiva de ite Considere a função f qualquer que seja o número real o Eemplo Se f ( ) Esta função está definida para todo R, isto é, f está bem definido, o valor ( ) o então

Leia mais

Aula 4. Zeros reais de funções Parte 1

Aula 4. Zeros reais de funções Parte 1 CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO

Leia mais

Regra de l Hôpital. 1.Formas e limites indeterminados 2.Regra de l Hôpital

Regra de l Hôpital. 1.Formas e limites indeterminados 2.Regra de l Hôpital UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regra de l Hôpital

Leia mais

Capítulo 2. Funções. 2.1 Funções

Capítulo 2. Funções. 2.1 Funções Capítulo Funções Ao final deste capítulo você deverá: Recordar o conceito de função, domínio e imagem; Enunciar e praticar as operações com funções; Identificar as funções elementares, calcular função

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Fundamentos de Matem[atica I LIMITES. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matem[atica I LIMITES. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques LIMITES Gil da Costa Marques. O cálculo. Definição de limite. Funções contínuas e descontínuas.4 Limites quando a variável independente cresce indefinidamente em valor absoluto.5 Limites infinitos.6 Limites

Leia mais

Aula 26 A regra de L Hôpital.

Aula 26 A regra de L Hôpital. MÓDULO - AULA 6 Aula 6 A regra de L Hôpital Objetivo Usar a derivada para determinar certos ites onde as propriedades básicas de ites, vistas nas aulas 3, 4, e 5, não se aplicam Referência: Aulas 3, 4,

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Professor Dr. Jair Silvério dos Santos 1 LIMITES INFINITOS NO INFINITO Figura 1

Professor Dr. Jair Silvério dos Santos 1 LIMITES INFINITOS NO INFINITO Figura 1 CONTNUIDADE E DERIVADAS 1 Professor Dr Jair Silvério dos Santos 1 LIMITES INFINITOS NO INFINITO Definition 01 Dada f : (a, ) R, dizemos que f o ite de f quando aproima-se do infinito é infinito se dado

Leia mais

Estudar tendências no comportamento de funções.

Estudar tendências no comportamento de funções. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 2007-2 Proessor:

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

Introdução Generalização

Introdução Generalização Cálculo 2 - Capítulo 2.9 - Derivação implícita 1 Capítulo 2.9 - Derivação implícita 2.9.1 - Introdução 2.9.3 - Generalização 2.9.2 - Derivação implícita Veremos agora uma importante aplicação da regra

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

LISTA DE PRÉ-CÁLCULO

LISTA DE PRÉ-CÁLCULO LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas

Leia mais

Capítulo Gradiente e hessiana

Capítulo Gradiente e hessiana Cálculo - Capítulo - Gradiente e hessiana Capítulo - Gradiente e hessiana - Nova notação 4 - O gradiente e as curvas de nível - Gradiente e hessiana 5 - Interpretação econômica do gradiente - Significado

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

SMA333 8a. Lista - séries de Taylor 07/06/2013

SMA333 8a. Lista - séries de Taylor 07/06/2013 SMA333 8a Lista - séries de Taylor 7/6/213 Definição Para qualquer n = 1, 2, 3,, se uma função f tiver todas as derivadas até ordem n em algum intervalo contendo a como ponto interior, então o polinômio

Leia mais

Unidade F. Limites. Débora Bastos IFRS CAMPUS RIO GRANDE

Unidade F. Limites. Débora Bastos IFRS CAMPUS RIO GRANDE 9 Unidade F Limites Débora Bastos IFRS CAMPUS RIO GRANDE 9. Noção de ites Quando queremos saber a ordenada do ponto em uma função, cuja lei é y= f(), em que = a, basta calcularmos f(a). O ponto (a,f(a))

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Eercícios de eames e testes intermédios. Determinando o valor de a e de b, temos: a + 3n + n 3 n n + n n 3 e 3 b ln 2e n ln

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8 Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 05/6 - LEAN, LEMat, MEQ FICHA 8 Regra de Cauchy. Estudo de funções. a. a) b 0 é uma indeterminação do tipo

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

Capítulo O espaço R n

Capítulo O espaço R n Cálculo - Capítulo 1. - O espaço R n - versão 0/009 1 Capítulo 1. - O espaço R n 1..1 - Espaço R 3 1.. - Espaço R n Vamos, agora, generaliar o conceito de um espaço R primeiro para R 3 e depois para R

Leia mais

10. Funções de várias Variáveis: Derivadas Parciais

10. Funções de várias Variáveis: Derivadas Parciais 10.1. Derivadas Parciais 10.. Diferencial de Funções 10.. Derivação de Funções Compostas 10.4. Derivação de Integrais em Ordem a um Parâmetro 10.5. Derivação de Funções Implícitas 10.6. Máimos e Mínimos

Leia mais

Método de Newton. 1.Introdução 2.Exemplos

Método de Newton. 1.Introdução 2.Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:

Leia mais

Integrais Múltiplas. Integrais duplas sobre retângulos

Integrais Múltiplas. Integrais duplas sobre retângulos Integrais Múltiplas Integrais duplas sobre retângulos Vamos estender a noção de integral definida para funções de duas, ou mais, variáveis. Da mesma maneira que a integral definida para uma variável, nos

Leia mais

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2.

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I R A = + i ( i ) n

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

Cálculo I - Lista 7: Integrais II

Cálculo I - Lista 7: Integrais II Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo - Prof. Responsável: Andrés Vercik. Use o teorema fundamental do calculo para achar a derivada da função. g( ) = + tdt g ( ) =

Leia mais

Capítulo 1 Funções reais de uma variável 1.3 Derivadas de funções definidas implicitamente

Capítulo 1 Funções reais de uma variável 1.3 Derivadas de funções definidas implicitamente 11-1-13 1.3 Derivadas de funções definidas implicitamente Uma equação do tipo f(,y) = nem sempre permite obter eplicitamente y como função de. Por eemplo, y 1 y 1 não é uma função y 1 y 1 y 1 y 1 3 1.3

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano aratadano@utfpr.edu.br Aula 2 08/2014 Noções Básicas sobre Erros A resolução de problemas numericamente envolve várias fases que podem ser assim estruturadas:

Leia mais

Derivadas e suas Aplicações

Derivadas e suas Aplicações Capítulo 4 Derivadas e suas Aplicações Ao final deste capítulo você deverá: Compreender taa média de variação; Enunciar a definição de derivada de uma função interpretar seu significado geométrico; Calcular

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios. Para um certo número real k, é contínua em R a função f definida por 2 + e +k se 0 2 + ln( + ) Qual é o valor

Leia mais

Exercícios Resolvidos Variedades

Exercícios Resolvidos Variedades Instituto Superior Técnico Departamento de atemática Secção de Álgebra e Análise Eercícios Resolvidos Variedades Eercício 1 Considere o conjunto = {(,, ) R : + = 1 ; 0 < < 1}. ostre que é uma variedade,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.2 Limites e Continuidade Copyright Cengage Learning. Todos os direitos reservados. Limites e Continuidade Vamos comparar

Leia mais

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares Notas de Aulas - Retas e Circunferências Prof Carlos A S Soares Preliminares O Plano Cartesiano e o Ponto Você certamente está familiarizado com o plano cartesiano desde o término do seu ensino fundamental

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pedreira Cattai apcattai@ahoo.com.br Universidade Federal da Bahia UFBA, MAT A01, 006. 1. Discussão da equação de uma superfície. Construção de uma superfície 1.1 Introdução Definição de Superfície

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 2) lim. k f(x k) = f(a)

CDI-II. Resumo das Aulas Teóricas (Semana 2) lim. k f(x k) = f(a) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 2) 1 Funções Contínuas. Classificação de Conjuntos Seja f

Leia mais

2.1 O problema das áreas - método de exaustão

2.1 O problema das áreas - método de exaustão Capítulo 2 Limite de uma função Podemos afirmar que o conceito de ite é uma das ideias fundamentais do Cálculo Diferencial. Seu processo de construção surge historicamente a partir de problemas geométricos

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

Capítulo 3 Limite de uma função

Capítulo 3 Limite de uma função Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 3 Limite de uma função Podemos afirmar que o conceito de ite é uma das ideias fundamentais do Cálculo Diferencial. Seu processo

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL (CDI) PROF. APARECIDO E. MORCELLI

CÁLCULO DIFERENCIAL E INTEGRAL (CDI) PROF. APARECIDO E. MORCELLI CÁLCULO DIFERENCIAL E INTEGRAL (CDI) PROF. APARECIDO E. MORCELLI LIMITE O símbolo de limite para apresentarmos matematicamente a operação solicitada só foi utilizado pela primeira vez por Cauchy, no século

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

Concentração de medicamento no sangue

Concentração de medicamento no sangue Universidade de Brasília Departamento de Matemática Cálculo Concentração de medicamento no sangue função Suponha que a concentração de medicamento no sangue de um paciente seja dada pela C(t) = 3t 2t 2

Leia mais

Notas de Aulas 5 - Funções Elementares e Cálculo de Limites - Parte II Prof Carlos A S Soares

Notas de Aulas 5 - Funções Elementares e Cálculo de Limites - Parte II Prof Carlos A S Soares Notas de Aulas 5 - Funções Elementares e Cálculo de Limites - Parte II Prof Carlos A S Soares Noção Intuitiva de ites. O Conceito de Limites Através de Gráficos Nesta subseção estaremos apresentando o

Leia mais

7 Derivadas e Diferenciabilidade.

7 Derivadas e Diferenciabilidade. Eercícios de Cálculo p. Informática, 006-07 1 7 Derivadas e Diferenciabilidade. E 7-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 6 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE UMA

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... 5 GRÁFICO DA FUNÇÃO DO º GRAU... 5 IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 7 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais