Aula 5. Limites laterais. Para cada x real, de ne-se o valor absoluto ou m odulo de x como sendo ( jxj = x se x<0

Tamanho: px
Começar a partir da página:

Download "Aula 5. Limites laterais. Para cada x real, de ne-se o valor absoluto ou m odulo de x como sendo ( jxj = x se x<0"

Transcrição

1 Aula 5 Limites laterais Para cada x real, de ne-se o valor absoluto ou m odulo de x como sendo ( x se x jxj = x se x< Por exemplo, j p 2j = p 2, j+3j =+3, j 4j =4, jj =, j p 2j = p 2 (pois p 2 < ). Para apresentar o conceito de ites laterais, consideraremos a fun»c~ao f(x) =x + x jxj cujo campo de de ni»c~ao (dom ³nio) e o conjunto R fg. Se x>, jxj = x eportantof(x) =x +. Se x<, jxj = x eportanto f(x) =x. O gr a co de f e esbo»cado na gura x - -2 Figura 5.. Esbo»co do gr a co de f(x) =x + x jxj. 39

2 Limites laterais 4 Se x tende a, mantendo-se >, f(x) tende a. Se tende a, mantendo-se <, f(x) tende a. Dizemos ent~ao que o ite de f(x), quando x tende a pela direita, e igual a, e denotamos f(x) = x! + Dizemos tamb em que o ite de f(x), quando x tende a pela esquerda, e igual a, edenotamos f(x) = x! De um modo geral, sendo f(x) uma fun»c~ao, se x est a nointeriorou eextremo inferior de um intervalo contido em D(f), f(x) signi ca x!x x>x f(x) Se x est a nointeriorou e extremo superior de um intervalo contido em D(f), Exemplo 5. x!x f(x) signi ca x!x x<x f(x) Consideremos agora a fun»c~ao f(x) ==x. Conforme j a observado no exemplo 4.7, aula 4 (reveja-o), esta fun»c~ao n~ao tem ite quando x!. Temos D(f) =R fg =] ; [ [ ]; +[. Assim, e extremo superior do intervalo ] ; [ ½ D(f), e tamb em e extremo inferior do intervalo ]; +[ ½ D(f). 3 2 =/x x - -2 Figura 5.2. x! + x =+, x! x = No esbo»co do gr a co de f, gura 5.2, ilustramos a ocorr^encia dos ites laterais x! + x = x! x> x =+ x! x = x! x< x =

3 Limites laterais 4 (Tamb em ilustramos que = =.) x!+ x x! x Neste caso, e conveniente denotar, introduzindo novos s ³mbolos em nossa algebra de ites, x! + x = =+ + x! x = = Observa»c~ao 5. Em geral, dizemos que f(x) = + se x!x (i) x!x f(x) =,e (ii) f(x) mant em-se > quando x! x,ouseja,f(x) > para todo x su cientemente pr oximo de x. Dizemos que x!x f(x) = se (i) x!x f(x) =,e (ii) f(x) mant em-se < quando x! x,ouseja,f(x) < para todo x su cientemente pr oximo de x. Escrevemos ainda f(x) = + para indicar que (i) f(x) =, e (ii) f(x) > quando x! x e x>x. Analogamente, podemos tamb em conceituar os casos f(x) =, x!x f(x) =,e f(x) = +. x!x Nossa algebra de ites passa a contar agora com os seguintes novos resultados: ( c = + + se c> se c< ( c = se c> + se c< Tamb em e f acil intuir que Exemplo =+ + = + = =+ x! (x )2 = +,portanto x! (x ) 2 = + =+.

4 Limites laterais 42 2x 3 x! + x x!+ = 3 = + 5 x 3 = 5 + =+ Exemplo 5.3 Calcular x! 2 + jj e x! 2 jj Solu»c~ao. Observe que > se e somente se x> 2. Assim sendo, se x> 2, temos> eent~ao jj =. Por outro lado, se x< 2, temos< eent~ao jj = (). Assim sendo, temos x! 2 + jj = x! 2 x> 2 x! 2 jj = x! 2 x< 2 jj = x! 2 x> 2 jj = x! 2 x< 2 Observa»c~ao 5.2 A a rma»c~ao f(x) =a x!x e equivalente µa a rma»c~ao, simult^anea, de que = x! 2 = () = x! 2 = f(x) =a e x!x f(x) =a Se no entanto f(x) e de nida para x>x,masn~ao e de nida para x<x,ent~ao x!x f(x) =a signi ca x!x + f(x) =a p p Por exemplo, x! x =,muitoembora p x n~ao esteja p de nida para x<. Neste caso, a rmar que x! x =signi ca que x! + p x =,j a que n~ao se de ne o ite x! x Observa»c~ao 5.3 (O gr a co de uma fun»c~ao cont ³nua em [a; b]) No exemplo ao in ³cio da aula, vimos que a fun»c~ao f(x) =x + x=jxj tem ites laterais diferentes no ponto x =, sendo f(x) =e f(x) =. Assim, conforme x! + x! podemos vizualizar na gura 5., o gr a co de f apresenta um salto no ponto. Tamb em a fun»c~ao f(x) ==x tem um salto no ponto. Agorapor em o salto e in nito, sendo f(x) =+ e f(x) =. x! + x!

5 Limites laterais 43 f(b) f(a) a b x Figura 5.3. f e cont ³nua e diferenci avel no intervalo [a; b]. f(b) f(a) a c d b x Figura 5.4. f e cont ³nua no intervalo [a; b], masn~ao tem derivadas nos pontos c e d. Na aula 4, estivemos observando que a fun»c~ao f(x) ==x 2 tem ite in nito no ponto : f(x) =+. Aqui, nas proximidades de, o gr a co \salta" para cima dos x! dois lados, apresentando uma quebra na curva do gr a co. Quando uma fun»c~ao f(x) e cont ³nuanospontosdeumintervalo[a; b], acurva = f(x), a x b, gr a co de f no intervalo [a; b], n~ao apresenta quebras ou saltos. Intuitivamente falando, podemos desenhar o gr a co ligando o ponto inicial A = (a; f(a)) ao ponto nal B =(b; f(b)) sem tirarmos o l apis do papel, tal como na gura 5.3. Observa»c~ao 5.4 (Uma fun»c~ao cont ³nua pode n~ao ter derivada sempre) J a na gura 5.4 temos uma ilustra»c~ao de uma fun»c~ao cont ³nua no intervalo [a; b] que, no entanto, n~ao tem derivada em dois pontos desse intervalo. Note que nos pontos correspondentes a c e d n~ao e poss ³vel tra»car retas tangentes ao gr a co de f. Observa»c~ao 5.5 (Continuidade signi ca f =) Na observa»c~ao 2., aula 2, vimos que, sendo x 2 D(f), seexistef (x ) ent~ao f =. Na verdade, n~ao e necess ario termos f diferenci avel x para que tenhamos f =.

6 Limites laterais 44 A condi»c~ao necess aria e su ciente para que tenhamos f = e que f seja cont ³nua no ponto x. Vejamos: f = f(x + x) f(x ). Fazendo x = x + x, temos f = f(x) f(x ). Temos que x! se e somente se x! x. Se f =,ent~ao (f(x) f(x )) =, logo x!x f(x) = [(f(x) f(x )) + f(x )] = + f(x )=f(x ). Assim, f e cont ³nua x!x x!x em x. Se f e cont ³nua em x, f(x) =f(x ). Logo, (f(x) f(x )) =, e x!x x!x ent~ao f =. Assim, f =, f(x) =f(x ). x!x Quando existe f (x ),temos f =eent~ao f(x) =f(x ),ouseja x!x Se f tem derivada em x ent~ao f e cont ³nua em x. No entanto, podemos ter f cont ³nua em x, sem ter derivada em x. Veja problemas5e6abaixo. 5. Problemas 2 x - -/2 Figura 5.5.

7 Limites laterais 45. Na gura 5.5 est a esbo»cadoogr a co de uma fun»c~ao = f(x). Complete as igualdades: (a) x! (d) x!2 (g) f(x) = (b) f(x) = x! + (c) x!2 f(x) = + (e) f(x) = x! (f) x! + f(x) = (h) x! x!+ 2. Em que pontos a fun»c~ao f do problema anterior e de nida? Em quais pontos e cont ³nua? 3. Calcule os ites laterais (a) (d) j¼ xj x!¼ x ¼ x!8 + x 8 (b) (e) j¼ xj x!¼ + x ¼ x 2 5x +4 x!2 + 2 x (c) (f) x!8 x 8 p x 2 x! Calcule os ites f(x), f(x) e diga se existe o ite + Diga tamb em se f e cont ³nua no ponto 3. 8 < 8 se x< 3 < (a) f(x) = 2 3x (b) f(x) = : 3p : se x 3 f(x). 9 se x 3 x 3p 2 4+x se x> 3 5. Veri que que a fun»c~ao f(x) =jxj e cont ³nua em x =,masn~ao existe f () f(+ x) f() (mostre que n~ao existe o ite ). Mostre que existem os ites x laterais e, chamados respectivamente de x x f(+ x) f() + f(+ x) f() derivada direita de f no ponto (f ( + ))ederivada esquerda de f no ponto (f ( )). Esboce o gr a co de f e interprete geometricamente os fatos deduzidos acima. 6. Veri que que a fun»c~ao f(x) = 3p f(+ x) f() x econt ³nua em x =,mas = x +. Neste caso, por abuso de linguagem, dizemos que f () = +. Esboce o gr a co de f, tra»cando-o cuidadosamente atrav es dos pontos de abcissas, =8,, 8, e interprete geometricamente o fato de que f () = Respostas e sugest~oes. (a) (b) =2 (c) + (d) (e) (f) (g) =2 (h) 2. A fun»c~ao f e de nida em R fg. Econt ³nua em R f; 2g. 3. (a) (b) (c) (d) + (e) + (f)

8 Limites laterais (a) 3. (b) f(x) =, f(x) = =. + f(x). f( 3) =, mascomon~ao existe f(x) =, + f(x) =f( 3). N~ao se de ne (n~ao existe) o ite f(x), f n~ao e cont ³nua no ponto f(x) =, f(x) =. f e cont ³nua no ponto 3 pois 5. Ao esbo»car o gr a co de f, notamos que f(x) =x, sex, ef(x) =x, sex. Assim, f ( + )=indica a presen»ca de uma reta tangente ao gr a co de f, \µadireitado ponto (; )", como sendo a reta tangente ao gr a co de = x, x, noponto(; ) (a reta tangente a uma reta e apr opria reta). Analogamente, interpreta-se f ( )=. 6. f () = + signi ca que a reta tangente µa curva = 3p x,noponto(; ), e vertical.

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que Aula 5 Integrais inde nidas 5. Antiderivadas Sendo f() e F () de nidas em um intervalo I ½, dizemos que F e umaantiderivada ou uma rimitiva de f, emi, sef 0 () =f() ara todo I. Ou seja, F e antiderivada

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

Taxas relacionadas. Diferenciais

Taxas relacionadas. Diferenciais Aula 14 Taas relacionadas. Diferenciais 14.1 Taas relacionadas Na linguagem do c alculo diferencial, se uma vari avel u e fun»c~ao da vari avel v, a taa de varia»c~ao (instant^anea) de u, emrela»c~ao a

Leia mais

FUNC» ~OES E ALGUMA HIST ORIA

FUNC» ~OES E ALGUMA HIST ORIA Um pouquinho da hist oria das func»~oes 1 UNIVERSIDADE FEDERAL DE S ~AO CARLOS CENTRO DE CI^ENCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE MATEM ATICA OENSINODA ALGEBRA ELEMENTAR ATRAV ES DE SUA HIST ORIA

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites EXERCÍCIOS & COMPLEMENTOS 3. FORMAS INDETERMINADAS 0 0 0 0 OPERAÇÕES COM OS SÍMBOLOS + = = ( ) = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k =

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 4 Expansão linear e geradores Se u ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u ; u ; :::;

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

Limites e continuidade

Limites e continuidade Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Limites indeterminados e as regras de L'Hopital

Limites indeterminados e as regras de L'Hopital Aula 3 Limites indeterminados e as regras de L'Hopital Nesta aula, estaremos apresentando as regras de L'Hopital, regras para calcular ites indeterminados, da forma 0=0 ou =, usando derivadas. Estaremos

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

x 1 f(x) f(a) f (a) = lim x a

x 1 f(x) f(a) f (a) = lim x a Capítulo 27 Regras de L Hôpital 27. Formas indeterminadas Suponha que desejamos traçar o gráfico da função F () = 2. Embora F não esteja definida em =, para traçar o seu gráfico precisamos conhecer o comportamento

Leia mais

Seqüências, Limite e Continuidade

Seqüências, Limite e Continuidade Módulo Seqüências, Limite e Continuidade A partir deste momento, passaremos a estudar seqüência, ites e continuidade de uma função real. Leia com atenção, caso tenha dúvidas busque indicadas e também junto

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

6 SINGULARIDADES E RESÍDUOS

6 SINGULARIDADES E RESÍDUOS 6 SINGULARIDADES E RESÍDUOS Quando uma função f (z) não é diferenciável num complexo z 0 ; diremos que z 0 é uma singularidade de f (z) ; z 0 dir-se-á uma singularidade isolada de f (z) se, contudo, f

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,

Leia mais

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS 1 MATEMÁTICA PROF. ILYDIO PEREIRA DE SÁ ESTUDO DAS DERIVADAS (CONCEITO E APLICAÇÕES) No presente capítulo, estudaremos as

Leia mais

Cálculo Algébrico Simbólico nas nossas escolas: alguns axiomas e exemplos

Cálculo Algébrico Simbólico nas nossas escolas: alguns axiomas e exemplos Cálculo Algébrico Simbólico nas nossas escolas: alguns axiomas e exemplos John F. Mahoney A crescente divulgação dos sistemas de computação algébrica, que actualmente já se encontram disponíveis em alguns

Leia mais

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é:

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é: Integral Origem: Wikipédia, a enciclopédia livre. No cálculo, a integral de uma função foi criada para originalmente determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

Aula 16. Integra»c~ao por partes

Aula 16. Integra»c~ao por partes Aula 16 Integra»c~ao or artes H a essencialmente dois m etodos emregados no c alculo de integrais inde nidas (rimitivas) de fun»c~oes elementares. Um deles e a integra»c~ao or substitui»c~ao, elorada na

Leia mais

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados Capítulo 3 Cálculo Vetorial O objetivo deste capítulo é o estudo de vetores de um ponto de vista geométrico e analítico. De acordo com a necessidade, a abordagem do assunto será formal ou informal. O estudo

Leia mais

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis.

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis. www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) Funções de duas ou mais variáveis; Limites; Continuidade. (I) Funções de duas ou mais variáveis. No Cálculo I

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II z t t C C α y β y Colaboradores para elaboração da apostila: Elisandra Bär de Figueiredo, Enori Carelli, Ivanete Zuchi Siple, Marnei Luis Mandler, Rogério

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

CálculoDiferencialem R n Limites

CálculoDiferencialem R n Limites ROSÁRIO LAUREANO 1 CálculoDiferencialem R n Limites [Elaborado por Rosário Laureano] [2012/13] Esteficheirocontém: 1. Tópicosdeteoria-ites(p. 1) 2. Exercícios resolvidos(p. 5) 1 Tópicosdeteoria-ites DistânciaEuclidiana

Leia mais

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Funções e Aplicações Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Maio de 2011 Índice 1 - Conjuntos Numéricos... 4 Intervalos... 5 Intervalos finitos... 5 Intervalos

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Capítulo 7 APLICAÇÕES DA DERIVADA 7. Variação de Funções Definição 7.. Seja f umafunçãoex 0 Dom(f).. f possui um ponto de máximo relativo ou de máximo local noponto x 0, se existe umpequeno intervalo aberto

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

Lista de Exercícios - Integrais

Lista de Exercícios - Integrais Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Esboço de Curvas. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Esboço de Curvas Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para esboçar uma curva A. Verifique o domínio da função Exemplo: f(x) = 1 x {x x = 0} Roteiro para esboçar

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários:

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1 1.1 Função Real de Variável Real A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1. Um conjunto não vazio para ser o domínio;

Leia mais

Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por

Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por Força conservativa Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por U 12 = Gm 1m 2 r 2 r 1. Vimos também que

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Esbo»cando gr a cos: zeros no denominador e retas ass ³ntotas

Esbo»cando gr a cos: zeros no denominador e retas ass ³ntotas Aula 7 Esbo»cando gr a cos: zeros no denominador e retas ass ³ntotas Na aula 6, estivemos concentrados no estudo de fun»c~oes cont ³nuas em R, com derivadas primeira e segunda tamb em cont ³nuas. Nesta

Leia mais

MINICURSO DE GEOGEBRA PARA INICIANTES NO ESTUDO DE CÁLCULO I

MINICURSO DE GEOGEBRA PARA INICIANTES NO ESTUDO DE CÁLCULO I Universidade dos Vales do Jequitinhonha e Mucuri UFVJM Instituto de Ciência, Engenharia e Tecnologia ICET Grupo de Estudos em Software Livre no Ensino GESE MINICURSO DE GEOGEBRA PARA INICIANTES NO ESTUDO

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3 1 Lista 2 de Cálculo Diferencial e Integral II Funções de Várias Variáveis e Diferenciação Parcial 1. Determine, descreva e represente geometricamente o domínio das funções abaixo: (a) f(x, y) = xy 5 x

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

ECONOMIA INTERNACIONAL: NOTAS DE AULA

ECONOMIA INTERNACIONAL: NOTAS DE AULA CONOMIA INTRNACIONAL: NOTAS D AULA ste documento consiste em notas de aula para o capítulo 13 de Krugman & Obstfeld (conomia Internacional. 8 ā edição. São Paulo: Pearson Prentice Hall, 2010). laboração:

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição 90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

Carlos José Braga Barros e Josiney Alves de Souza Departamento de Matemática, Universidade Estadual de Maringá cjbbarros@uem.br jasouza@uem.

Carlos José Braga Barros e Josiney Alves de Souza Departamento de Matemática, Universidade Estadual de Maringá cjbbarros@uem.br jasouza@uem. Minicurso sobre transitividade e transitividade por cadeias para ações de semigrupos em espaços topológicos Apresentado na Escola e Workshop de Teoria de Lie, Unicamp, 2010 Carlos José Braga Barros e Josiney

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS

MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS I. Simplesmente Funções Considera: a função f, de domínio IR \ 4, definida por 2 f x ; 4 x a função g, de domínio IR, definida por 1 3 3 2 g x x x 4x 5 6 2 1. Determina

Leia mais

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS.

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. 1 CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS

Leia mais

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática Introdução ao GeoGebra software livre 0 CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS Curso de Matemática Primeiros Passos Com o Software Livre GeoGebra Março de 2010 Prof. Ilydio Pereira de Sá Introdução ao

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html 4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 00/ SUMÁRIO. LIMITES E CONTINUIDADE..... NOÇÃO INTUITIVA DE LIMITE..... FUNÇÃO CONTÍNUA NUM

Leia mais

Cálculo Numérico Computacional Exercícios lista 04 Raizes aproximadas

Cálculo Numérico Computacional Exercícios lista 04 Raizes aproximadas 1 Cálculo Numérico Computacional Exercícios lista 04 Raizes aproximadas Varredura, método da tangente Prof. Tarcisio Praciano-Pereira Dep. de Matemática tarcisio@member.ams.org aluno: Univ. Estadual Vale

Leia mais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais PARTE 3 FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS REAIS 3. Funções Reais de Várias Variáveis Reais Vamos agora tratar do segundo caso particular de funções vetoriais de várias variáveis reais, F : Dom(F) R n R

Leia mais

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície: Capítulo 3 Integrais de superfícies 3.1 Superfícies no espaço Definição 3.1 Uma superfície S no espaço é definida como sendo a imagem de uma aplicação contínua r : K R R 3, (u, v) K 7 r (u, v) =(x (u,

Leia mais

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita)

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita) O ampo Magnético Os primeiros registros de campos magnéticos foram feitos pelos gregos quando descobriram a quase 6 anos A.. uma pedra que tinha a propriedade de atrair metais Esta pedra, mais precisamente

Leia mais

6. Aplicações da Derivada

6. Aplicações da Derivada 6 Aplicações da Derivada 6 Retas tangentes e normais - eemplos Encontre a equação da reta tangente e da normal ao gráfico de f () e, em 0 Represente geometricamente Solução: Sabemos que a equação da reta

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos Funções Funções Um dos conceitos mais importantes da matemática é o conceito de função. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda. A procura de carne

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1 Prof. William Mascia Resende Engenharia Elétrica ITAJUBÁ 2013 CENTRO UNIVERSITÁRIO DE ITAJUBÁ Curso: Engenharia

Leia mais

Aulas Teóricas e de Problemas de Álgebra Linear

Aulas Teóricas e de Problemas de Álgebra Linear Aulas Teóricas e de Problemas de Álgebra Linear Nuno Martins Departamento de Matemática Instituto Superior Técnico Maio de Índice Parte I (Aulas teóricas e chas de exercícios) Matrizes e sistemas de equações

Leia mais

Estudo do Sinal de uma Função

Estudo do Sinal de uma Função Capítulo 1 Estudo do Sinal de uma Função 11 Introdução Neste Capítulo discutimos o problema do estudo do sinal de uma função, assunto muitas vezes tratado de forma rápida e supercial nos ensinos básico

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

Notas para um curso de Cálculo 1 Duilio T. da Conceição

Notas para um curso de Cálculo 1 Duilio T. da Conceição Notas para um curso de Cálculo 1 Duilio T. da Conceição 1 2 Sumário 1 WOLFRAM ALPHA 5 1.1 Digitando Fórmulas e Expressões Matemáticas......... 6 1.1.1 Expoentes......................... 6 1.1.2 Multiplicação.......................

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

² Servomecanismo: Sistema de controle realimentado para controle automático de posição, velocidade ou aceleração. Muito empregado na indústria.

² Servomecanismo: Sistema de controle realimentado para controle automático de posição, velocidade ou aceleração. Muito empregado na indústria. 1. Introdução 1.1. De nições Básicas ² Sistema: Interconexão de dispositivos e elementos para cumprir um objetivo desejado. ² Processo: Um sistema ou dispositivo a ser controlado. ² Sistema de controle:

Leia mais