Tamanho: px
Começar a partir da página:

Download ""

Transcrição

1 MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 03: CONTINUIDADES Este tópico trata dos conceitos de continuidade de funções num valor e num intervalo, a compreensão de tais conceitos não apresenta nenhuma dificuldade para o estudante que tenha assimilado a noção intuitiva de limite. A parte teórica é finalizada com o teorema do valor intermediário, trata-se de um importante resultado que será usado no tópico da aula 08 e no próximo módulo que dá continuidade a este, seu enunciado neste estágio deve-se ao fato de ser necessário apenas o conceito de continuidade na formulação de suas hipóteses; entretanto, encontram-se nos exercícios 40 a 46 do exercitando deste tópico, algumas aplicações desse teorema. Para um determinado grupo de funções é possível estabelecer o limite em relação a um valor, sem que a função esteja definida no valor; ou ainda, mesmo sendo definida no valor e podendo estabelecer o limite, tal limite não coincida com a imagem da função no valor. Exemplo Se, então sendo então assim Uma função f é contínua num valor c do seu domínio, se o limite de f (x) quando existe e é igual ao valor de f em c, isto é, se Exemplo Resolvido 1 Verificar que a função dada é contínua no valor indicado (a) Como tem-se Logo a função f é contínua em c = 0. (b) Sendo, além disso como

2 obtém-se. Logo g é contínua em c = 1. Exemplo Proposto 1 Mostrar que a função dada é contínua no valor indicado: Exemplo Resolvido 2 Mostrar que as funções seno e co-seno são contínuas em zero. No exemplo resolvido 6 do tópico 2 desta aula, foi provado que logo, pela definição, isto mostra que as funções seno e co-seno são contínuas em zero. Provar que as funções seno e co-seno são contínuas em qualquer número real c. Sugestão. Veja o exemplo proposto 6 - Clique aqui para abrir do tópico 2 desta aula. Exemplo Proposto 6. Provar que: Sugestão: fazer x - c = t; Se uma função f não é contínua num valor c do seu domínio, diz-se que f é descontínua em c. Geometricamente, para que uma função f seja contínua num valor c, o gráfico de f não deve apresentar interrupção em c. Nas figuras seguintes, estão ilustrados os gráficos de algumas funções, que apresentam algum tipo de interrupção relativa a um valor c, por serem descontínuas em c.

3 Decorrente da definição de continuidade num valor e do teorema 2 do tópico 2 desta aula, tem-se o seguinte teorema. TEOREMA 1 Se f e g são funções contínuas num valor c, então: contínuas em c, e é contínua em c se. e fg são Com aplicações sucessivas deste teorema e baseando-se que as funções constante e identidade são contínuas em qualquer valor, tem-se os seguintes corolários. Corolário 1. Uma função polinomial é contínua em qualquer número real. Corolário 2. Uma função racional é contínua em qualquer número real em que ela esteja definida. Por exemplo: a função é contínua em qualquer número real, pois ela é uma função polinomial; já a função é contínua em qualquer número real exceto 1, pois ela é uma função racional e não está definida somente em 1. Quanto à composição de funções, tem-se o teorema seguinte, cuja demonstração será feita no texto complementar deste tópico e que será indicado no final deste tópico. TEOREMA 2 Sejam e f contínua em a, então Do teorema 2, segue-se o seguinte resultado. Corolário. Sejam g contínua em c e f contínua em g(c), então fog é contínua em c. DEMONSTRAÇÃO Como g é contínua em c, em g(c) pelo teorema 2, logo, como f é contínua

4 Sejam f uma função e c um valor no domínio de f, diz-se que f é: (a) contínua à esquerda de c, se (b) contínua à direita de c, se Uma função f é dita: (a) contínua num intervalo aberto I, se f é contínua em todos os valores de I; (b) contínua num intervalo semifechado à esquerda [a,b) (ou [a, + ) ), se f é contínua à direita de a e no intervalo aberto (a,b) (ou (a, + ) ); (c) contínua num intervalo semifechado à direita (a,b] (ou(-, b) ), se f é contínua à esquerda de b e no intervalo aberto (a, b) (ou (-, b) ); (d) contínua num intervalo fechado [a, b], se f é contínua em (a, b), além disso, é contínua à direita de a e à esquerda de b. Exemplo Resolvido 3 Determinar os maiores intervalos em que é contínua a função Para que f seja contínua num valor c, é necessário que c esteja no domínio de f, daí c 2-1 > 0 ou seja, c < -1 ou c > 1 Por outro lado, se c < -1 ou c > 1 tem-se Logo f é contínua em todo valor c menor do que -1 ou maior do que 1, isto é, f é contínua nos intervalos Exemplo Proposto 3 Mostrar que [-1,1] é o maior intervalo em que é contínua a função O gráfico de uma função contínua num intervalo não apresenta interrupção em sua extensão, essa noção geométrica sobre continuidade pode ser justificada pelo teorema seguinte. Teorema (Sejam f uma função contínua num intervalo I, a e b valores em I. Então, dado qualquer valor r entre f(a) e f(b), existe pelo menos um valor c em (a,b) tal que f(c)= r.) (do Valor Intermediário) 3. Sejam f uma função contínua num intervalo I, a e b valores em I. Então, dado qualquer valor r entre f(a) e f(b), existe pelo menos um valor c em (a,b) tal que f(c)= r. LEITURA COMPLEMENTAR

5 O texto "Continuidades com e, trata da segunda etapa do estudo de continuidades, fazendo uma abordagem rigorosa do tema. Não exigiremos nenhum conhecimento deste assunto neste módulo, mas é sugestivo uma leitura atenciosa. Para acessar o conteúdo, consulte a seção Material de Apoio do ambiente SOLAR e baixe o arquivo ContinuidadesComEpsilonEDelta.doc ou clique aqui para abrir (Visite a aula online para realizar download deste arquivo.). ATIVIDADE DE PORTFÓLIO Vá à seção Material de Apoio do ambiente SOLAR e baixe o arquivo "Exercitando(Aula03_Top3).doc" para baixar o exercitando ou clique aqui para abrir (Visite a aula online para realizar download deste arquivo.). Resolva a quantidade máxima de exercícios que puder, individualmente ou em grupo. O exercício 32 é a quinta questão do trabalho desta aula que deverá postado no Portifólio Individual do ambiente Solar. É exigido que o trabalho desta aula seja postado no Portfólio, no período indicado na Agenda do ambiente Solar, num único documento de texto (doc ou docx) ou manuscrito e escaneado. FONTES DAS IMAGENS Responsável:Prof. José Othon Dantas Lopes Universidade Federal do Ceará - Instituto UFC Virtual

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit

(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 02: CÁLCULO DE LIMITES Neste tópico serão estudadas as técnicas de cálculo de limites de funções algébricas, usando alguns

Leia mais

D x x 2 =2x, (pelo teorema 4 ( -- ) colocando y no lugar de f(x)) encontrados,, substituindo os resultados obtém-se

D x x 2 =2x, (pelo teorema 4 ( -- <img src='imagens/02/img_nova2gif'>) colocando y no lugar de f(x)) encontrados,, substituindo os resultados obtém-se MATEMÁTICA I AULA 05: FÓRMULAS DE DERIVAÇÃO E DERIVAÇÃO IMPLÍCITA TÓPICO 02: DERIVAÇÃO IMPLÍCITA Esta aula é finalizada, vendo o processo para encontrar a derivada de uma função definida por uma equação

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

MATEMÁTICA FINANCEIRA E ANÁLISE DE INVESTIMENTO AULA 02: CAPITALIZAÇÃO, DESCONTO E FLUXO DE CAIXA TÓPICO 02: OPERAÇÕES DE DESCONTO Desconto é a denominação dada a um abatimento que se faz quando um título

Leia mais

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0.

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0. 4. Em cada caso use a definição para calcular f 0 (). (a) f () = 3, R (b) f () =/, 6= 0 (c) f () =/, > 0. 4.2 Mostre que a função f () = /3, R, não é diferenciável em =0. 4.3 Considere a função f : R R

Leia mais

Consequências Interessantes da Continuidade

Consequências Interessantes da Continuidade Consequências Interessantes da Continuidade Frederico Reis Marques de Brito Resumo Trataremos aqui de um dos conceitos basilares da Matemática, o da continuidade no âmbito de funções f : R R, mostrando

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Seqüências, Limite e Continuidade

Seqüências, Limite e Continuidade Módulo Seqüências, Limite e Continuidade A partir deste momento, passaremos a estudar seqüência, ites e continuidade de uma função real. Leia com atenção, caso tenha dúvidas busque indicadas e também junto

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x)

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x) . Limites Ao trabalhar com uma função nossa primeira preocupação deve ser o seu domínio (condição de eistência) afinal só faz sentido utilizá-la nos pontos onde esteja definida e sua epressão matemática

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é:

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é: Integral Origem: Wikipédia, a enciclopédia livre. No cálculo, a integral de uma função foi criada para originalmente determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas

Leia mais

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html 4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,

Leia mais

O tutorial do ambiente virtual tem o intuito de abordar e solucionar problemas que venham a existir sobre os seguintes pontos:

O tutorial do ambiente virtual tem o intuito de abordar e solucionar problemas que venham a existir sobre os seguintes pontos: 1.Tutorial Ambiente Virtual EAD Núcleo EAD Tutorial EAD O tutorial do ambiente virtual tem o intuito de abordar e solucionar problemas que venham a existir sobre os seguintes pontos: 1.1. Acesso ao Sistema.

Leia mais

todo meu apoio e também com o apoio da equipe de tutores especialmente escolhida para acompanhar você ao longo dessa jornada. Boa sorte a todos. Neste

todo meu apoio e também com o apoio da equipe de tutores especialmente escolhida para acompanhar você ao longo dessa jornada. Boa sorte a todos. Neste CÁLCULO DIFERENCIAL I AULA 01: FUNÇÃO E OPERAÇÕES COM FUNÇÕES TÓPICO 01: CONCEITO DE FUNÇÃO MULTIMÍDIA Ligue o som do seu computador! Obs.: Alguns recursos de multimídia utilizados em nossas aulas, como

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

x 1 f(x) f(a) f (a) = lim x a

x 1 f(x) f(a) f (a) = lim x a Capítulo 27 Regras de L Hôpital 27. Formas indeterminadas Suponha que desejamos traçar o gráfico da função F () = 2. Embora F não esteja definida em =, para traçar o seu gráfico precisamos conhecer o comportamento

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

CONCEITUANDO RECEITA TOTAL, RECEITA MÉDIA E RECEITA MARGINAL

CONCEITUANDO RECEITA TOTAL, RECEITA MÉDIA E RECEITA MARGINAL ECONOMIA MICRO E MACRO AULA 03: A ELASTICIDADE E SUAS APLICAÇÕES TÓPICO 03: APLICAÇÕES DOS CONCEITOS DE ELASTICIDADE CONCEITUANDO RECEITA TOTAL, RECEITA MÉDIA E RECEITA MARGINAL A receita total ( ) é obtida

Leia mais

Estudo do Sinal de uma Função

Estudo do Sinal de uma Função Capítulo 4 Estudo do Sinal de uma Função 4.1 Introdução Neste Capítulo discutimos o problema do estudo do sinal de uma função, assunto muitas vezes tratado de forma rápida e supercial nos ensinos básico

Leia mais

Unisanta - Mecânica Geral - Prof. Damin - Aula n.º - Data / / SISTEMA DE FORÇAS

Unisanta - Mecânica Geral - Prof. Damin - Aula n.º - Data / / SISTEMA DE FORÇAS Força (F ) e (Beer and Johnston,1991) SISTEMA DE FRÇAS Força não tem definição, é um conceito primitivo ou intuitivo. Matematicamente a força é o vetor aplicado (P,F ), caracterizado por módulo, direção

Leia mais

Estudo do Sinal de uma Função

Estudo do Sinal de uma Função Capítulo 1 Estudo do Sinal de uma Função 11 Introdução Neste Capítulo discutimos o problema do estudo do sinal de uma função, assunto muitas vezes tratado de forma rápida e supercial nos ensinos básico

Leia mais

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos Funções Funções Um dos conceitos mais importantes da matemática é o conceito de função. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda. A procura de carne

Leia mais

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

Função Logarítmica Função Exponencial

Função Logarítmica Função Exponencial ROTEIRO DE ESTUDO MATEMÁTICA 2014 Aluno (a): nº 1ª Série Turma: Data: /10/2014. 3ª Etapa Professor: WELLINGTON SCHÜHLI DE CARVALHO Caro aluno, O objetivo desse roteiro é orientá-lo em relação aos conteúdos

Leia mais

MANUAL DE OPERAÇÃO EDOutlet (Online e Offline):

MANUAL DE OPERAÇÃO EDOutlet (Online e Offline): MANUAL DE OPERAÇÃO EDOutlet (Online e Offline): Sumário 1 - EDOutletOffline (sem internet):... 1 2 EDOutlet (com internet)... 7 2.1 DIGITANDO AS REFERÊNCIAS:... 9 2.2 IMPORTAÇÃO DE PEDIDOS:... 11 3 ENVIANDO

Leia mais

que o aluno consiga construir uma base sólida de conhecimento, o que o ajudará de forma decisiva no decorrer do seu curso e de toda sua vida acadêmica

que o aluno consiga construir uma base sólida de conhecimento, o que o ajudará de forma decisiva no decorrer do seu curso e de toda sua vida acadêmica MATEMÁTICA I AULA 01: FUNÇÃO E OPERAÇÕES COM FUNÇÕES TÓPICO 01: CONCEITO DE FUNÇÃO MULTIMÍDIA Ligue o som do seu computador! OBS.: Alguns recursos de multimídia utilizados em nossas aulas, como vídeos

Leia mais

ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS

ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS Ano Letivo 201/201 PLANIFICAÇÃO ANUAL Disciplina de MATEMÁTICA - 11º Ano Turma J A PROFESSORA: Paula Cristina Gomes 1 1. OBJECTIVOS GERAIS São finalidades da disciplina no ensino secundário: desenvolver

Leia mais

PLANEJAMENTO ANUAL 2014

PLANEJAMENTO ANUAL 2014 PLANEJAMENTO ANUAL 2014 Disciplina: MATEMÁTICA Período: Anual Professor: AMPARO MAGUILLA RODRIGUEZ Série e segmento: 1º ENSINO MÉDIO 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE Objetivo Geral * Desenvolver

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

Qual é Mesmo a Definição de Polígono Convexo?

Qual é Mesmo a Definição de Polígono Convexo? Qual é Mesmo a Definição de Polígono Convexo? Elon Lages Lima IMPA, Rio de Janeiro Quando pensamos num polígono convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui

Leia mais

Русский Tipo Data Cor Semana Classifi cado conforme o tipo de arquivo (por exemplo, imagem, vídeo ou voz) Classifi cado conforme a seqüência de datas registradas. Classifi cado conforme a cor

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

S U M Á R I O APRESENTAÇÃO...2. 1 Instalando os programas...3 2 Introdução à lousa...19 3 Calibrando a caneta...20 4 Abrindo o programa...

S U M Á R I O APRESENTAÇÃO...2. 1 Instalando os programas...3 2 Introdução à lousa...19 3 Calibrando a caneta...20 4 Abrindo o programa... S U M Á R I O APRESENTAÇÃO...2 1 Instalando os programas...3 2 Introdução à lousa......19 3 Calibrando a caneta......20 4 Abrindo o programa...22 1 A c t i v B o a r d 1 0 0 Uma nova ferramenta didática

Leia mais

PROCEDIMENTOS PARA UTILIZAÇÃO DO SICC

PROCEDIMENTOS PARA UTILIZAÇÃO DO SICC PROCEDIMENTOS PARA UTILIZAÇÃO DO SICC Para ter acesso ao sistema, e realizar a abertura de chamados, o usuário deve efetuar o auto cadastramento, clicando no link Clique aqui! disponível na página inicial

Leia mais

Prefeitura Municipal de Sete Lagoas Secretaria de Planejamento Orçamento e Tecnologia Subsecretaria de Tecnologia da Informação

Prefeitura Municipal de Sete Lagoas Secretaria de Planejamento Orçamento e Tecnologia Subsecretaria de Tecnologia da Informação Tutorial para abertura de chamado Este sistema foi personalizado, instalado e configurado pela equipe da. O objetivo desta implantação é informatizar os registros de atendimento de suporte técnico para

Leia mais

Núcleo de Tecnologias Interativas de Aprendizagem.

Núcleo de Tecnologias Interativas de Aprendizagem. Núcleo de Tecnologias Interativas de Aprendizagem. TUTORIAL MOODLE Titulo: Primeiro Acesso a Plataforma MOODLE. Autor: NUTEIA Data de Criação: 03 / 02 / 2008. Atualizado em: 16 / 03 / 2012. 1ª Etapa 01

Leia mais

PROJETO SALA DE AULA

PROJETO SALA DE AULA PROJETO SALA DE AULA 1. Identificação: Título: APRENDENDO FUNÇÕES BRINCANDO Série: 1º série do Ensino Fundamental Softwares Necessários: Cabri-Géomètre, Jogos de Funções e Graphmatica Tempo previsto: Seis

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

Tutorial: Como fazer o backup (cópia) e a restauração de conteúdos no Moodle?

Tutorial: Como fazer o backup (cópia) e a restauração de conteúdos no Moodle? Tutorial: Como fazer o backup (cópia) e a restauração de conteúdos no Moodle? Olá, professor(a), Este tutorial tem o objetivo de lhe auxiliar na realização de backup do conteúdo de uma disciplina já oferecida,

Leia mais

Manual de uso do RM Portal Acessando o portal

Manual de uso do RM Portal Acessando o portal Manual de uso do RM Portal Acessando o portal 1º) Deve-se abrir um browser de internet (Utilizar o Internet Explorer para uma melhor visualização do portal). Após o browser aberto, deve-se digitar o endereço

Leia mais

PLANILHA PARA GERENCIAR NOTAS DAS TURMAS

PLANILHA PARA GERENCIAR NOTAS DAS TURMAS PLANILHA PARA GERENCIAR NOTAS DAS TURMAS INTRODUÇÃO Faça download de um dos arquivos de acordo com o software de planilha eletrônica disponível em sua máquina: Excel 97-03 https://dl.dropboxusercontent.com/u/5308498/rem_planilhaexemplo.xls

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

Tutorial Sistema Professor Online. 1) Menu Cadernetas

Tutorial Sistema Professor Online. 1) Menu Cadernetas 1) Menu Cadernetas Ao selecionar a opção de Cadernetas o usuário deverá selecionar o calendário de referência. Ao selecionar o calendário irá aparecer uma tabela com as turmas criadas no calendário selecionado,

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

COORDENAÇÃO DE ENSINO A DISTÂNCIA - EaD

COORDENAÇÃO DE ENSINO A DISTÂNCIA - EaD COORDENAÇÃO DE ENSINO A DISTÂNCIA - EaD TUTORIAL MOODLE VERSÃO ALUNO Machado/MG 2013 SUMÁRIO 1. INTRODUÇÃO... 4 2. EDITANDO O PERFIL... 5 2.1 Como editar o perfil?... 5 2.2 Como mudar a senha?... 5 2.3

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 07 ATIVIDADE 01 Na aula anterior, vimos como rastrear pontos. Abra o arquivo

Leia mais

Exemplo: Na figura 1, abaixo, temos: Clique aqui para continuar, que é a primeira atividade que você precisa realizar para iniciar seus estudos.

Exemplo: Na figura 1, abaixo, temos: Clique aqui para continuar, que é a primeira atividade que você precisa realizar para iniciar seus estudos. Visão Geral VISÃO GERAL Esse material abordará o acesso ao AVA (Ambiente Virtual de Aprendizagem) da Proativa do Pará, com intenção de ilustrar os aspectos na visão do Aprendiz. Essa abordagem dedica-se

Leia mais

VISTORIA DO SISTEMA REGIN PREFEITURAS

VISTORIA DO SISTEMA REGIN PREFEITURAS Página 1 / 29 ÍNDICE ÍNDICE... 2 APRESENTAÇÃO... 3 MÓDULO DE ACESSO... 3 CONFIGURAÇÃO MÓDULO VISTORIA... 4 ANÁLISE DOS PROTOCOLOS... 5 CONTROLE DE EXPORTAÇÃO MÓDULO VISTORIA... 8 DISPOSITIVO REGIN PREFEITURA...

Leia mais

PORTAL EDUCACIONAL CLICKIDEIA. Ensino Fundamental (séries finais)

PORTAL EDUCACIONAL CLICKIDEIA. Ensino Fundamental (séries finais) PORTAL EDUCACIONAL CLICKIDEIA Ensino Fundamental (séries finais) O Clickideia é um portal educacional (www.clickideia.com.br), desenvolvido com o apoio do CNPq e da UNICAMP, que apresenta conteúdos didáticos

Leia mais

MANUAL DO GERENCIADOR ESCOLAR WEB

MANUAL DO GERENCIADOR ESCOLAR WEB CNS LEARNING MANUAL DO GERENCIADOR ESCOLAR WEB Versão Online 13 Índice ÍNDICE... 1 VISÃO GERAL... 2 CONCEITO E APRESENTAÇÃO VISUAL... 2 PRINCIPAIS MÓDULOS... 3 ESTRUTURAÇÃO... 3 CURSOS... 4 TURMAS... 4

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA ENSINO MÉDIO ÁREA CURRICULAR: CIÊNCIA DA NATUREZA, MATEMÁTICA E SUAS TECNOLOGIAS DISCIPLINA: MATEMÁTICA I SÉRIE 1.ª CH 68 ANO 2012 COMPETÊNCIAS:.

Leia mais

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL AMBIENTE VIRTUAL INSTITUCIONAL MOODLE/UFFS

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL AMBIENTE VIRTUAL INSTITUCIONAL MOODLE/UFFS UNIVERSIDADE FEDERAL DA FRONTEIRA SUL AMBIENTE VIRTUAL INSTITUCIONAL MOODLE/UFFS Guia Inicial de Acesso e Utilização Para Docentes Versão 1.0b Outubro/2010 Acesso e utilização do Ambiente Virtual de Ensino

Leia mais

CENTRO UNIVERSITÁRIO CATÓLICA DE SANTA CATARINA PRÓ-REITORIA ACADÊMICA NÚCLEO DE EDUCAÇÃO EM AMBIENTES DIGITAIS NEAD

CENTRO UNIVERSITÁRIO CATÓLICA DE SANTA CATARINA PRÓ-REITORIA ACADÊMICA NÚCLEO DE EDUCAÇÃO EM AMBIENTES DIGITAIS NEAD 0 CENTRO UNIVERSITÁRIO CATÓLICA DE SANTA CATARINA PRÓ-REITORIA ACADÊMICA NÚCLEO DE EDUCAÇÃO EM AMBIENTES DIGITAIS NEAD ORIENTAÇÕES SOBRE USO DO AMBIENTE VIRTUAL DE APRENDIZAGEM (MOODLE) PARA DISPONIBILIZAÇÃO

Leia mais

Miguel Abreu. Encontro Nacional do Programa Gulbenkian Novos Talentos em Matemática, Fundação Calouste Gulbenkian, 7-8.Setembro.

Miguel Abreu. Encontro Nacional do Programa Gulbenkian Novos Talentos em Matemática, Fundação Calouste Gulbenkian, 7-8.Setembro. Centro de Análise Matemática, Geometria e Sistemas Dinâmicos Instituto Superior Técnico Encontro Nacional do Programa Gulbenkian Novos Talentos em Matemática, Fundação Calouste Gulbenkian, 7-8.Setembro.27

Leia mais

Documentação Alub Virtual

Documentação Alub Virtual Esse manual tem como objetivo auxiliar todos os alunos do Grupo ALUB de Educação que tem acesso ao Ambiente Virtual de Aprendizagem, a participarem das resoluções das listas de exercícios online e questionários.

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Ambiente de Aprendizagem Moodle FPD Manual do Aluno

Ambiente de Aprendizagem Moodle FPD Manual do Aluno Ambiente de Aprendizagem Moodle FPD Manual do Aluno Maio 2008 Conteúdo 1 Primeiros passos...4 1.1 Tornando-se um usuário...4 1.2 Acessando o ambiente Moodle...4 1.3 O ambiente Moodle...4 1.4 Cadastrando-se

Leia mais

Prof. Flávio Henrique de Lima Araújo 19

Prof. Flávio Henrique de Lima Araújo 19 Um pouco mais sobre as funções matemáticas Em primeiro lugar precisamos ter em mente que o EXCEL é uma ferramenta poderosa que nos dá condição de trabalhar com planilhas eletrônicas, ou seja, com funções,

Leia mais

Matemática Financeira II

Matemática Financeira II Módulo 3 Unidade 28 Matemática Financeira II Para início de conversa... Notícias como essas são encontradas em jornais com bastante frequência atualmente. Essas situações de aumentos e outras como financiamentos

Leia mais

Aula 17 Continuidade Uniforme

Aula 17 Continuidade Uniforme Continuidade Uniforme Aula 17 Continuidade Uniforme MÓDULO 2 - AULA 17 Metas da aula: Discutir o conceito de função uniformemente contínua, estabelecer o Teorema da Continuidade Uniforme e o Teorema da

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

OTIMIZAÇÃO VETORIAL. Formulação do Problema

OTIMIZAÇÃO VETORIAL. Formulação do Problema OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis

Leia mais

José Álvaro Tadeu Ferreira

José Álvaro Tadeu Ferreira UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Departamento de Computação José Álvaro Tadeu Ferreira Cálculo Numérico Notas de aulas Resolução de Equações Não Lineares Ouro

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de TIC Módulos 1,2,3-10.ºD CURSO PROFISSIONAL DE TÉCNICO DE APOIO À GESTÃO DESPORTIVA Ano Letivo 2015-2016 Manual adotado:

Leia mais

Portal Contador Parceiro

Portal Contador Parceiro Portal Contador Parceiro Manual do Usuário Produzido por: Informática Educativa 1. Portal Contador Parceiro... 03 2. Acesso ao Portal... 04 3. Profissionais...11 4. Restrito...16 4.1 Perfil... 18 4.2 Artigos...

Leia mais

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido

Leia mais

SUMÁRIO. Faculdade Católica do Tocantins www.catolica-to.edu.br

SUMÁRIO. Faculdade Católica do Tocantins www.catolica-to.edu.br MANUAL DO PORTAL ACADÊMICO Passo a passo do Portal Acadêmico www.catolica-to.edu.br - suporterm@catolica-to.edu.br SUMÁRIO Objetivo Manual do Portal Acadêmico... 03 Navegadores... 03 Endereço Eletrônico

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ PRÓ REITORIA DE ADMINISTRAÇÃO E PLANEJAMENTO DEPARTAMENTO DE INFORMÁTICA. Manual do Moodle- Sala virtual

UNIVERSIDADE FEDERAL DO AMAPÁ PRÓ REITORIA DE ADMINISTRAÇÃO E PLANEJAMENTO DEPARTAMENTO DE INFORMÁTICA. Manual do Moodle- Sala virtual UNIVERSIDADE FEDERAL DO AMAPÁ PRÓ REITORIA DE ADMINISTRAÇÃO E PLANEJAMENTO DEPARTAMENTO DE INFORMÁTICA Manual do Moodle- Sala virtual UNIFAP MACAPÁ-AP 2012 S U M Á R I O 1 Tela de Login...3 2 Tela Meus

Leia mais

PROVA BRASIL NO VISUAL CLASS

PROVA BRASIL NO VISUAL CLASS PROVA BRASIL NO VISUAL CLASS A Caltech Informática desenvolveu 2 soluções alternativas para simulação da Prova Brasil utilizando o Software de Autoria Visual Class: A) Utilizando o pacote Visual Class

Leia mais

Desta propriedade, caminhando no sentido inverso, retira-se a regra de primitivação por partes, que se apresenta no seguinte. f g = fg fg.

Desta propriedade, caminhando no sentido inverso, retira-se a regra de primitivação por partes, que se apresenta no seguinte. f g = fg fg. HÉLIO BERNARDO LOPES Resumo. Epõem-se neste teto os fundamentos do método de primitivação por partes, que se estuda nas disciplinas de Análise Matemática de muitos dos cursos de licenciatura de natureza

Leia mais

Manual de Solicitante

Manual de Solicitante Conteúdo 1. OBJETIVO DESTE DOCUMENTO... 3 2. CONHECENDO O MAXIMO... 4 3. CRIANDO UMA SOLICITAÇÃO DE SERVIÇO.... 6 4. CONSULTAR CHAMADOS ABERTOS... 8 5. ACEITAR SOLUÇÃO DA SOLICITAÇÃO E REABERTURA DA SOLICITAÇÃO....

Leia mais

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES Olá, pessoal! Tudo bem? Vou neste artigo resolver a prova de Fïsica para a Polícia Rodoviária Federal, organizada pelo CESPE-UnB. Antes de resolver cada questão, comentarei sobre alguns trechos das minhas

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

A figura abaixo, à direita, mostra uma apresentação gerada no MS PowerPoint. Uma apresentação desse tipo é útil para:

A figura abaixo, à direita, mostra uma apresentação gerada no MS PowerPoint. Uma apresentação desse tipo é útil para: INTRODUÇÃO AO POWERPOINT 16.1 Objetivo Apresentar o PowerPoint, o software para montar apresentações na forma de slides da Microsoft. Isso será feito obedecendo-se a uma seqüência que demonstre como montar

Leia mais

X.0 Sucessões de números reais 1

X.0 Sucessões de números reais 1 «Tal como a tecnologia requer as tøcnicas da matemætica aplicada, tambøm a matemætica aplicada requer as teorias do nœcleo central da matemætica pura. Da l gica matemætica topologia algøbrica, da teoria

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

TÓPICOS DE AULAS. Prof. Rafael Murakami

TÓPICOS DE AULAS. Prof. Rafael Murakami Definição: No Power Point, podemos fazer apresentação de slides com efeitos em cada slide e na transição de slide, com isso dando um toque de agrado pessoal na apresentação. No Power Point, podemos inserir

Leia mais

Cadastro de Corretores

Cadastro de Corretores 2012 Cadastro de Corretores SUSEP - CGETI - COSIM Fevereiro/2012 Conteúdo Apresentação... 3 Mapa do Sistema de Cadastro de Corretores... 3 Padrões... 4 Acesso ao Sistema... 5 Menu Principal... 5 Informações

Leia mais

MANUAL DO PRESTADOR FATURAMENTO WEB

MANUAL DO PRESTADOR FATURAMENTO WEB MANUAL DO PRESTADOR FATURAMENTO WEB 0 Sumário Introdução... 2 Funcionalidades... 2 Requisitos Necessários... 2 Faturamento Web... 3 Faturamento Simplificado... 4 Faturamento Detalhado... 9 Faturamento

Leia mais

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários:

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1 1.1 Função Real de Variável Real A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1. Um conjunto não vazio para ser o domínio;

Leia mais

Guia de Acesso para os Cursos Online

Guia de Acesso para os Cursos Online Sumário Apresentação... 3 1. Como saber qual disciplina faz parte do meu Módulo?... 4 2. Como saber a ordem das aulas que devo assistir?... 6 3. Como faço para assistir aos vídeos e visualizar os materiais

Leia mais

NOVO MODULO DMS-e. A Prefeitura de Palmas por meio da SEFIN - Secretaria Municipal de Finanças, está disponibilizando o Novo

NOVO MODULO DMS-e. A Prefeitura de Palmas por meio da SEFIN - Secretaria Municipal de Finanças, está disponibilizando o Novo NOVO MODULO DMS-e E NF-e A Prefeitura de Palmas por meio da SEFIN - Secretaria Municipal de Finanças, está disponibilizando o Novo Sistemas de Gestão Eletrônica ISSQN, DMS-e e NF-e neste portal, no menu

Leia mais