Integrais triplas. Numeramos os paralelepípedos de 1 até n. Em cada um dos pequenos paralelepípedos

Tamanho: px
Começar a partir da página:

Download "Integrais triplas. Numeramos os paralelepípedos de 1 até n. Em cada um dos pequenos paralelepípedos"

Transcrição

1 Seja,,z Itegrais triplas w uma ução cotíua deiida uma região echada e limitada do espaço Podemos associar a um sólido o espaço Subdividimos em pequeos paralelepípedos traçado-se plaos paralelos aos plaos coordeados Cosidere apeas os paralelepípedos o iterior de, como mostra aigura abaio Numeramos os paralelepípedos de até Em cada um dos pequeos paralelepípedos,,,,,, z, escolhemos um poto itero Formamos a soma de iemma,,z V do paralelepípedo, ode V z é o volume Isto é eito de maeira arbitrária, mas de tal modo que a maior aresta dos paralelepípedos teda a zero quado Se eistir lim,,z V, ele é chamado de itegral tripla da ução,,z sobre o sólido e represetamos por,,z dv ou,,z dddz Etão lim,,z V,,z dddz Obs: dv pode assumir qualquer uma das seis ormas abaio dddz, ddzd, dddz, ddzd, dzdd, dzdd

2 Propriedades da itegral tripla As itegrais triplas satisazem as seguites propriedades: a),,z dv,,z dv, sedo uma costate real b),,z g,,z dv,,z dv g,,z dv c),,z dv,,z dv,,z dv mostra a igura abaio, ode como Cálculo da itegral tripla As itegrais triplas podem ser calculadas de orma aáloga ás itegrais duplas, através de itegrações sucessivas Teorema: Seja,,z ieriormete pela superície g, e superiormete pela superície g, w uma ução cotíua deiida sobre um sólido do espaço limitado z z Seja a projeção de o plao Etão:,,z dv g,,,z dz da g, Observe que a primeira itegração é eita em relação a variável z Desta orma, resta uma ução as variáveis e que é etão itegrada a região do plao

3 O sólido pode ser também projetado os plaos z e z Nestes casos, as superícies que limitam ieriormete e superiormete são uções da orma g,z e g,z, respectivamete O cálculo da itegral tripla é etão eito de orma aáloga g,z d da g,z Projeção de o plao z:,,z dv,,z g,z d da g,z Projeção de o plao z:,,z dv,,z Eemplo: Calcule,,z dv, sedo,,z z limitado pelo cilidro z e pelos plaos e e é o sólido o primeiro octate Esboço do sólido : A projeção do sólido o plao é a região triagular descrita por, e ou, e 3

4 O sólido é limitado ieriormete pela superície z e superiormete por Usado a região triagular descrita por, temos: z,,z dv z dz da zdzdd 8 Usado a região triagular descrita por, temos:,,z dv z dz da zdzdd 8 ********** Se a projeção de osse o plao z, obteríamos as seguites ormas: 3, z e ou 4, z z e Neste caso, o sólido é limitado ieriormete pela superície e superiormete por Usado a região triagular descrita por 3, temos:,,z dv z d da zddzd 8 3 Usado a região triagular descrita por 4, temos:,,z dv z d da zdddz 8 4 z ********** Se a projeção de osse o plao z, obteríamos as seguites ormas: 5, z e ou 6, z z e Neste caso, é limitado ieriormete pela superície e superiormete por z Usado a região triagular descrita por 5, temos: 4

5 z z,,z dv z d da zddzd 8 5 Usado a região triagular descrita por 6, temos: z,,z dv z d da zdddz 8 6 z z Como você pode otar, podemos calcular uma itegral tripla de seis ormas possíveis A escolha da projeção do sólido deve ser eita de orma que as itegrais sejam as mais simples de serem resolvidas, miimizado assim os cálculos Calculado volumes com itegrais triplas Se izermos,,z, etão lim,,z V = lim V dv Poderemos calcular o volume de um sólido como Eercícios: Vol () = dv Usado itegral tripla, mostre que o volume de um cilidro circular reto de raio de base a e altura h é dado por V a h Usado itegral tripla, mostre que o volume de uma esera de raio a é dado por V 4a 3 3 Usado itegral tripla, mostre que o volume de um coe circular reto de raio de base a e altura h é dado por V a h 3 Veja a equação e o gráico do coe abaio 3 Equação do coe: z h a 4 Calcule o volume da região do espaço itera ao cilidro 9, acima do plao e abaio do hemisério z 5 Esboce o sólido /3 5

6 Mudaça de variáveis as itegrais triplas Vimos que algumas itegrais duplas são mais áceis de calcular em coordeadas polares do que em coordeadas retagulares De maeira semelhate, algumas itegrais triplas são mais áceis de calcular em coordeadas cilídricas ou coordeadas eséricas do que em coordeadas retagulares Vamos estudar etão as itegrais triplas esses sistemas de coordeadas Sistema de coordeadas cilídricas Um poto o sistema retagular P,,z é represetado em coordeadas cilídricas por r,,z ode r ( r ) e ( ) são as mesmas variáveis das coordeadas polares P, Observe que a coordeada z é comum aos dois sistemas As equações que relacioam os dois sistemas são: Sistema cilídrico para retagular r cos rse z z Sistema retagular para cilídrico r arctg z z Eemplo: O poto o sistema retagular,,3 cilídricas P tem represetação P,, 3 em coordeadas 4 6

7 Equações de algumas superícies em coordeadas cilídricas Coe Cilidro Esera Parabolóide Coordeadas retagulares Coordeadas cilídricas z, a z a z, z r, r a z a r z r, Cálculo de uma itegral tripla em coordeadas cilídricas Seja um sólido cuja superície superior tem equação g r, equação g r, w,,z or cotíua em, etão z e cuja superície ierior tem z em coordeadas cilídricas Se or a projeção do sólido o plao e se,,z dv g r, r cos,rse,z dz gr, da, a qual a itegral dupla é calculada em coordeadas polares Em particular, se a projeção or como mostrado a igura abaio, etão a itegral tripla pode ser calculada como,,z dv r cos,rse r r g r, g r,,z dz rdrd Eercícios: Calcule z dv, ode é o sólido acima do plao e iterior simultaeamete ao cilidro e a esera z 4 Esboce o sólido esp: 7 4 Calcule o volume do sólido acima do plao, eterior ao parabolóide cilidro 6 Esboce o sólido esp:8 uv z e iterior ao 7

8 Sistema de coordeadas eséricas Um poto o sistema retagular P,,z é represetado em coordeadas eséricas por,, ode: P, é a distâcia de P até a origem; é o mesmo âgulo é o âgulo zop de coordeadas cilídricas; Observe que o âgulo é medido a partir do eio OZ As equações que relacioam os dois sistemas são: Sistema esérico para retagular Sistema retagular para esérico se se z cos cos se z arctg arccos z z Eemplo: O poto o sistema retagular,, coordeadas eséricas Q tem represetação Q 8,, em 4 8

9 Equações de algumas superícies em coordeadas eséricas Coe Cilidro Esera Parabolóide Coordeadas retagulares z, Coordeadas arctg / a cossec eséricas a a z a z, cotg cossec Cálculo de uma itegral tripla em coordeadas eséricas Se é um sólido o espaço tridimesioal, etão a itegral tripla em de uma ução cotíua w,,z é calculada similarmete à itegral tripla em coordeadas cilídricas Obtedo os limites de itegração apropriados a descrição de em coordeadas eséricas, pode-se mostrar que,,z dv secos, sese, cosρ seφddd Obs: No processo de partição do sólido em coordeadas eséricas o ator etra itegrado aparece de orma semelhate ao ator r em coordeadas cilídricas se o Eercícios: 4 Use coordeadas eséricas para calcular z z dzdd 4 4 Obs: Esboce o sólido para retirar de orma apropriada os limites de itegração em coordeadas eséricas esp: 64 9 Use coordeadas eséricas para calcular o volume do sólido limitado superiormete pela esera z 6 e ieriormete pelo coe z, como mostra a igura abaio 64 esp: 3 Bibliograia utilizada: Cálculo B, Diva Flemmig, e Cálculo Vol, Howard Ato 9

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla.

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP4 Aula 7 Integrais Triplas Objetivo

Leia mais

Cálculo III-A Módulo 4

Cálculo III-A Módulo 4 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.

Leia mais

INTEGRAÇÃO NUMÉRICA. b a

INTEGRAÇÃO NUMÉRICA. b a INTEGRAÇÃO NUMÉRICA No cálculo, a itegral de uma ução oi criada origialmete para determiar a área sob uma curva o plao cartesiao. Ela também surge aturalmete em dezeas de problemas de Física, como por

Leia mais

Aula 16. Integração Numérica

Aula 16. Integração Numérica CÁLCULO NUMÉRICO Aula 6 Itegração Numérica Itegração Numérica Aula 6 Itegração Numérica Cálculo Numérico 3/4 Itegração Numérica Em determiadas situações, itegrais são diíceis, ou mesmo impossíveis de se

Leia mais

a) n tem raio de convergência 1=L.

a) n tem raio de convergência 1=L. 3. SÉRIES DE OTÊNCIAS SÉRIES & EDO - 7. 3.. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS. Falso (F) ou Verdadeiro (V)? Justi que. (a) Se a série c diverge em = ; etão ela diverge em = 3. (b) Se

Leia mais

ISCTEM Análise Matemática II Curso de Engenharia Informática

ISCTEM Análise Matemática II Curso de Engenharia Informática ISCTEM Aálise Matemática II Curso de Egeharia Iormática Fuções reais de várias variáveis reais: ites e cotiuidade.. FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS REAIS Até agora oram estudadas uções reais de uma só

Leia mais

( ) ( ) ( ) { } Questões tipo exame. π kπ. π 5. kπ 2π kπ. Pág a) O perímetro do triângulo [ACE] é igual a

( ) ( ) ( ) { } Questões tipo exame. π kπ. π 5. kπ 2π kπ. Pág a) O perímetro do triângulo [ACE] é igual a Questões tipo eame a) O perímetro do triâgulo [ACE] é igual a CE AE AC AC (raio da circuerêcia) DC cos, ou seja, DC cos AC Assim, CE DC DE, isto é, CE cos AD si, ou seja, AD si AC Pág 0 O triâgulo [ADE]

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

Integrais Múltiplas. Integrais duplas sobre retângulos

Integrais Múltiplas. Integrais duplas sobre retângulos Integrais Múltiplas Integrais duplas sobre retângulos Vamos estender a noção de integral definida para funções de duas, ou mais, variáveis. Da mesma maneira que a integral definida para uma variável, nos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.3 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolaridade Versão Nome: Nº Turma: Proessor: José Tioco /4/8 Apresete o seu raciocíio de orma clara, idicado todos os cálculos que tiver de eetuar e

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

TE231 Capitulo 4 Interpolação Polinomial. Prof. Mateus Duarte Teixeira

TE231 Capitulo 4 Interpolação Polinomial. Prof. Mateus Duarte Teixeira TE3 Capitulo 4 Iterpolação Poliomial Pro. Mateus Duarte Teieira . Itrodução A tabela abaio relacioa calor especíico da água com a temperatura: Deseja-se por eemplo saber: a o calor especíico da água a

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

EME 311 Mecânica dos Sólidos

EME 311 Mecânica dos Sólidos EE 311 ecâica dos Sólidos - CPÍTULO 4 - Profa. Patricia Email: patt_lauer@uifei.edu.br IE Istituto de Egeharia ecâica UNIFEI Uiversidade Federal de Itajubá 4 CENTRO DE GRIDDE E OENTO ESTÁTICO DE ÁRE 4.1

Leia mais

CAP. I - ESTUDO DE FUNÇÕES COM VÁRIAS VARIÁVEIS INDEPENDENTES.

CAP. I - ESTUDO DE FUNÇÕES COM VÁRIAS VARIÁVEIS INDEPENDENTES. Aálise Matemática II- ao lectivo 6/7 CAP. I - ESTUDO DE FUNÇÕES COM VÁRIAS VARIÁVEIS INDEPENDENTES. 1. Breves oções topológicas em 1.1 Distâcia etre dois potos R Dados dois potos x e y R, x = ( x1, x,...

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-44 Cálculo Diferecial e Itegral II (Escola Politécica) Terceira Lista de Exercícios - Professor: Equipe de Professores 0.1. Vide Lista,

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais

Mecânica dos Sólidos II

Mecânica dos Sólidos II Curso de Egeharia Civil Uiversidade Estadual de Marigá Cetro de Tecologia Departameto de Egeharia Civil Mecâica dos Sólidos II Bibliografia: Beer, F. P.; Johsto, Jr. E. R.; DEWolf, J. T. Resistêcia dos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Funções de varias variáveis

Funções de varias variáveis F : R n R (1,,..., n ) w Funções de varias variáveis F( 1,,.., 3 ) Dom n ( F) S R S é um subconjunto de R n Eemplo 1: Seja F tal que F : R R (, ) w 1 Identiique o domínio e a imagem de F Eemplos Eemplos

Leia mais

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador.

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador. 44- Forma de Newto-Gregory para o poliômio iterpolador No caso em que os ós da iterpolação x 0, x,, x são igualmete espaçados, podemos usar a orma de Newto-Gregory para obter p (x Estudaremos iicialmete

Leia mais

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS 145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo

Leia mais

Exercícios orientados para a Prova Escrita de Fundamentos de Matemática Aplicada C Prof. Germán Suazo

Exercícios orientados para a Prova Escrita de Fundamentos de Matemática Aplicada C Prof. Germán Suazo Ministério da Educação Universidade Federal de Pelotas Centro de Educação a Distância Curso de Licenciatura em Matemática a Distância Eercícios orientados para a Prova Escrita de Fundamentos de Matemática

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA CAP. VI DIFRNCIAÇÃO INGRAÇÃO NUÉRICA 6. DIFRNCIAÇÃO NUÉRICA m muitas circustâcias tora-se diícil obter valores de derivadas de uma ução: derivadas que ão são de ácil obteção; emplo (calcular a ª derivada:

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw.

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP5 Aula 9 Mudança de Variáveis na

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Um úmero atural é primo quado ele

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Cosidere as retas perpediculares

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

( α ) tan. Máximo do Aluno: Rumo ao Exame! θ <, portanto, 24 x e tan52º = h x. Teste de avaliação 1. tan 36º h. Págs. 3 e 4. Assim, resulta que: = = <

( α ) tan. Máximo do Aluno: Rumo ao Exame! θ <, portanto, 24 x e tan52º = h x. Teste de avaliação 1. tan 36º h. Págs. 3 e 4. Assim, resulta que: = = < Máimo do Aluo: Rumo ao Eame! Teste de avaliação A { R : ( ) } < A R : ta < A R : ta < Págs e A R : k, < A R : k, < A R : k, < A R : k, < A, 7 7 cos θ cos θ cos θ 6 cos θ cosθ cosθ No etato, θ,, pelo que

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Números Complexos. David zavaleta Villanueva 1

Números Complexos. David zavaleta Villanueva 1 Material do miicurso a ser lecioado o III EREM-Mossoró-UERN UFRN - Uiversidade Federal do Rio Grade do Norte Edição N 0 outubro 011 Números Complexos David zavaleta Villaueva 1 1 CCET-UFRN, Natal, RN,

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição;

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição; CÁLCULO I Prof Edilso Neri Júior Prof Adré Almeida Aula o 9: A Itegral de Riema Objetivos da Aula Deir a itegral de Riema; Exibir o cálculo de algumas itegrais utilizado a deição; Apresetar fuções que

Leia mais

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010 GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

CAPÍTULO VI MOMENTOS ESTÁTICOS, BARICENTROS E MOMENTOS DE INÉRCIA

CAPÍTULO VI MOMENTOS ESTÁTICOS, BARICENTROS E MOMENTOS DE INÉRCIA 52 CPÍTULO VI MOMENTOS ESTÁTICOS, BRICENTROS E MOMENTOS DE INÉRCI I.MOMENTOS ESTÁTICOS Mometo Estático de um elemeto de superfície, em relação a um eio, situado o mesmo plao que a superfície cosiderada,

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [março ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [março ] Proposta de Teste [março - 08] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferetes Para Números Complexos Capítulo I Cometário Iicial O artigo que aqui apresetamos ão tem como objetivo itroduzir ao leitor o assuto

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de - a Lista de eercícios: Séries de Potêcias e Séries de Fourier Usado derivação e itegração termo a termo, calcular as somas das séries

Leia mais

Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de

Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES

Leia mais

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto] [Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier MAT46 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de - a Lista de eercícios: Séries de Potêcias e Séries de Fourier Usado derivação e itegração termo a termo, calcular as somas das séries

Leia mais

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências Abuso Seual as escolas Não dá para aceitar Por uma escola livre do SIDA República de Moçambique Miistério da Educação Coselho Nacioal de Eames, Certificação e Equivalêcias ESG / 04 Eame de Matemática Etraordiário

Leia mais

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta CAPÍTULO 8 Eercícios 8 Iicialmete, observamos que 0 ão é série de otêcias, logo o teorema desta seção ão se alica Como, ara todo 0, a série é geométrica e de razão, 0, etão a série coverge absolutamete

Leia mais

Integral Triplo. Seja M um subconjunto limitado de 3.

Integral Triplo. Seja M um subconjunto limitado de 3. Integral Triplo Seja M um subconjunto limitado de 3. Considere-se um paralelepípedo, de faces paralelas aos planos coordenados, que contenha M, e subdivida-se esse paralelepípedo por meio de planos paralelos

Leia mais

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016 1 Roteiro Atividades Mat146 Semana4: /08/16 a 6/08/016 1. Matéria dessa semana de acordo com o Plano de ensino oicial: Assíntotas Horizontais e Verticais. Continuidade. Material para estudar: Assíntotas

Leia mais

Proposta de Exame de Matemática A 12.º ano

Proposta de Exame de Matemática A 12.º ano Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Em um paralelepípedo retâgulo,

Leia mais

Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb)

Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb) Soluções da prova. Cálculo Diferecial e Itegral I o Eame - MEMec; MEEC; MEAmb de Juho de 00-9 horas I val.. i!! u!! do teorema das sucessões equadradas vem u 0 dado que ±!! 0. v / + l + / + l + /6 l Para

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 4

Análise Complexa Resolução de alguns exercícios do capítulo 4 Aálise Complexa Resolução de algus exercícios do capítulo 4. Caso de C0, 0, : Caso de C0,, + : Exercício º z z i i z + iz iz iz porque iz < i + z i +3 z. z z i i z + iz iz porque iz > iz i z 3 i 3 z..

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIAE O ALGARVE ESCOLA SUPERIOR E TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime iuro/nocturo isciplia de COMPLEMENTOS E MATEMÁTICA Ao lectivo de 7/8 - º Semestre Cosidere a ução :

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, o

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, ABCD

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +

Leia mais

INTEGRAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis.

INTEGRAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis. INTEGAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis INTEGAIS DUPLAS Consideremos o problema de determinar o volume V do sólido compreendido entre

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

TRANSFORMAÇÕES LINEARES

TRANSFORMAÇÕES LINEARES rasformação Liear NSFOMÇÕES LINEES Sejam e espaços vetoriais reais Dizemos que uma fução : é uma trasformação liear se a fução preserva as operações de adição e de multiplicação por escalar isto é se os

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos I 2 a Lista de Exercícios

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos I 2 a Lista de Exercícios PME- - Mecâica dos Sólidos I a Lista de Eercícios ) Determie o tesor das tesões, escrito em relação à base b = e, e, e ), para cada um dos ( casos idicados (as tesões estão em MPa). Utilie a coveção de

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ao Versão /4 Nome: Nº Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias Quado, para

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Lista de Exercícios 2 1

Lista de Exercícios 2 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor

Leia mais

Operadores diferenciais em coordenadas curvilíneas ortogonais

Operadores diferenciais em coordenadas curvilíneas ortogonais 1 Operadores difereciais em coordeadas curvilíeas ortogoais Qualquer poto P do espaço R pode ser descrito de forma uívoca por um sistema de coordeadas q,..., 1 q. Esse poto está a extremidade do respectivo

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

ELECTROMAGNETISMO E ÓPTICA

ELECTROMAGNETISMO E ÓPTICA ELECTROMAGNETISMO E ÓPTICA NOTAS DE CURSO Prof. Resposável: Mário J. Piheiro Istituto Superior Técico 008 1 O electromagetismo estuda o efeito das cargas eléctricas em repouso ou em movimeto. Eistem dois

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Preparar o Eame 0 Matemática A E X A M E 0 4 ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O GRUPO I ITENS DE ESOLHA MÚLTIPLA Tem-se que A e B são idepedetes, portato, P A B P A PB Assim: 0,48

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,

Leia mais

( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica)

( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica) Proposta de Teste [abril 08] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Uiversidade Federal do Rio de Jaeiro Istituto de Matemática Departameto de Matemática Disciplia: Cálculo Diferecial e Itegral IV Uidades: Escola Politécica e Escola de Quimica Código: MAC 248 Turmas: Egeharias

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Interpolação

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Interpolação INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Iterpolação Itrodução A tabela abaio relacioa calor especíico da água e temperatura: temperatura C calor especíico 5 3 35 4 45 5.9997.9985.9986.9988.9988.99849.99878 o

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de Lista 3. Limites

Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de Lista 3. Limites Departameto de Computação é Matemática Cálculo I USP- FFCLRP Prof Rafael A Rosales 5 de março de 04 Limites Lista 3 Limites Eercício Verifique se as seguites afirmações são verdadeiras ou falsas, justificado

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Cálculo III-A Lista 1

Cálculo III-A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,].

Leia mais

UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DAS ENGENHARIAS Disciplina: Vetores e Álgebra linear. Lista 01

UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DAS ENGENHARIAS Disciplina: Vetores e Álgebra linear. Lista 01 UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DAS ENGENHARIAS Disciplia: Vetores e Álgebra liear Lista Prof: Germá Suazo Desehe os seguites vetores com o poto iicial a origem de coordeadas (posição padrão) em

Leia mais

Proposta de prova-modelo

Proposta de prova-modelo Proposta de prova-modelo Matemática A. AN DE ESCLARIDADE Duração: (Cadero + Cadero ): 0 miutos. Tolerâcia: 0 miutos Cadero : 7 miutos. Tolerâcia: miutos (é permitido o uso de calculadora) Na resposta aos

Leia mais

Cálculo III-A Módulo 1

Cálculo III-A Módulo 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Prezado aluno, Cálculo III-A Módulo Seja bem-vindo à nossa disciplina. Este teto possui - salvo

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tioco //8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes.

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes. ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis depedetes. - DISTRIBUIÇÃO DE FREQUÊNCIA a) Dados Brutos É um cojuto resultate

Leia mais