17/04/2019. Objetivos das Transformações. Transformações Geométricas 2D. Transformações em 2D. Objetivos das Transformações. Transformações Lineares

Tamanho: px
Começar a partir da página:

Download "17/04/2019. Objetivos das Transformações. Transformações Geométricas 2D. Transformações em 2D. Objetivos das Transformações. Transformações Lineares"

Transcrição

1 Objets das Trasfrmações Trasfrmações Gemétrcas D GC Cmptaçã Gráfca rf. Dr. rer. at. Dael Darte bdala ssbltar a mdfcaçã da frma e psçã de bjets; De fat, trasfrmações afs estã etre as ferrametas matemátcas mas fdametas em cmptaçã gráfca; Um s clar de trasfrmações gemétrcas é smplfcar prcess de mdelagem gemétrca: ts mdels trdmesas sã altamete smétrcs. smetra pde ser eplrada cm aíl de trasfrmações para smplfcar prcess de mdelagem. dela-se ma parte e se prdz a ctra-parte smétrca smplesmete pr trasfrmações gemétrcas; Objets das Trasfrmações Um segd s de trasfrmações é ectrad em amações. ese em ma amaçã smples em qe m carr se mmeta pr ma psta crclar. O mdel carr e psta em s ã mda. peas a psçã d carr a lg d temp. Tal pde ser realzad pela smples traslaçã d carr; Um tercer, ã ób, s de trasfrmações gemétrcas refere-se a rederzaçã. pós m mdel D ter sd crad se faz ecessár qe tal seja traspst para ma sperfíce D. ara tal sã tlzadas trasfrmações de perspecta. Vewprt Uma jaela em ma tela, m qadr de m íde ma ersã em papel mpress. Trasfrmações em D O pla- pla d mdel, detad pr R R R refere-se a pla cartesa sal csstd de pts, :, de, R, é m pt pla- é pt de rgem,, - -, - α α, α, α R DEF: Uma trasfrmaçã em R é m mapeamet : R R qal cada pt R é mapead para m úc pt, também em R. Trasfrmações Leares DEF: eja ma trasfrmaçã. é ma trasfrmaçã lear se as das cdções a segr frem ateddas:. α R R, α α., R Eempls:. :, -,. :,,. :,,. :,, :, -, - Represetaçã atrcal de Trasfrmações Leares cmpsçã de dersas trasfrmações é cmm em aplcações de CG; cmptaçã de tas trasfrmações pde ser prblemátca e efcete; Felzmete, é pssíel epressar tas trasfrmações a Álgebra lear, trad sa cmptaçã mt mas efcete e.g. Usad sprte a múltplcaçã matrcal em hardware - GUs: Os es caôcs, e pdem ser epressads pels etres:, e- j, e- 5

2 Represetaçã atrcal de Trasfrmações Leares Qalqer etr, pde ser epress de maera úca cm ma cmbaçã lear de e j;, j eja ma trasfrmaçã lear. eja, e, j.etã, pr leardade, R,, j, j, 7 Represetaçã atrcal de Trasfrmações Leares eja a matrz. Etã, ed assm, é eqalete a. 8 Trasfrmaçã Iersa Csdere a matrz de trasfrmaçã a segr: O ers de, seja - pde ser cmptad cm: e a c b d d c b a det bc ad det E: 9 Eempl: Csdere a lsta de pts a segr: F {,,,,, -,,,, } Represetad a letra F ; plcad a trasfrmaçã lear btêm-se: Falmete, s pts trasfrmads sã: F {,,,,, -,,,, } Grafcamete... Trasfrmações Rígdas DEF: Trasfrmações rígdas de crp rígd. Nã defrmam s bjets. Âgls e paralelsm sã preserads: dstâcas etre pts; Âgls etre lhas. Três tps: Traslaçã; Rtaçã; Espelhamet.

3 Traslaçã DEF: trasfrmaçã T é dta ma traslaçã prd qe esta m etr R de md qe: T, cmpsçãde das traslações T e T, detada pr T T é eqalete a: T T T T T trasfrmaçã detdade, detada pr Ipde ser defda pr ma traslaçã qe ã mdfca a crdeada rgal: I T,, Traslaçã trasfrmaçã ersa, detada pr - é aqela qe cmpsta cm a trasfrmaçã rgal, prdz a trasfrmaçã detdade - I, I traslaçã é m cas partclar de ma classe mas geérca de trasfrmações gemétrcas chamadas de trasfrmações leares; Traslaçã Lear ' t ' t ' ' ' ' T t T t Em D ma traslaçã tradz-se smplesmete repscalmet, deslcamet de bjets s es e. Rtaçã de se dar a partr da rgem; de se dar a partr de m pt qalqer; Θ âgl de rtaçã r, r pt de rtaçã pt ptal r, r θ R sθ ' sθ ' sθ sθ ' R Âgls psts sã setd ers d relóg! 5 Rtaçã,, rsαθ θ α elas fórmlas de adçã de se e cse rcsα rcsαθ ' r cs α θ rcsα sα sθ sθ ' r s α θ rsα sα sθ 7 Eempl Rtacar trâgl {,,,,, } em π/ radas. csπ R sπ 8 sπ csπ..5..

4 Cmpsçã de Rtações mlar a cmpsçã de traslações; R R R R α α cs α s s csα cs sα cs csα s sα s csα cs sα sα csα cs sα s csα s sα cs csα Cmpsçã de Rtações Relembrad m pc de trgmetra... Trg Fórmlas de dçã s α sα cs s csα cs α csα cs sα cs cs csα s sα cs sα s csα cs α s csα cs sα s sα cs csα s α Cclsã: Rtaçõesscessas, cmpsçã de rtações se resmem a rtaçã da sma ds âgls! s α cs α 9 Refleã Em D, refleões sã cmptadas em relaçã a ma lha de referêca: Três pções: em relaçã a e-, e- e arbtrár., -,,, - Refleã Refleã em relaçã a e :, -, Refleã em relaçã a e :,, - Refleã em relaçã a ma lha arbtrára últpls passs: E: Rtacar a lha de rtaçã para ccdr cm s es ; plcar a refleã caôca em relaçã a e esclhd; Rtacar de lta -α para repscar a lha de refleã a se lgar rgal; {,,,,, } α 5 π clha... α 5 s cs tg Eempl: Refleã rbtrára ass : Rtacar a lha de refleã: R α α R α Rα R R

5 5 Eempl: Refleã rbtrára 5 Trasfrmações fs DEF: Uma trasfrmaçã é dta afm se ela pder ser epressa cm ma cmpsçã de ma traslaçã e ma trasfrmaçã lear: T, R Cm é ma pssbldade, fca clar qe tda trasfrmaçã lear é também afm. N etat, em tda trasfrmaçã afm é lear. Em partclar, se ã é lear, ps ã mapea. Escalamet Das pssbldades: amet dmçã Z, z t Cmptad em relaçã a cetr d bjet fatr de escalamet 7 Cas> amet z Cas << dmçã z t Também é pssíel escalar em apeas m e, em prções dsttas em cada e: Escalamet - Eempl 8 {,,,,,,, } Ecalamet Cetrad 9. Ectrar barcetr cetr de massa d bjet;. Trasladar bjet para a rgem, ;. Escalar bjet;. Trasladar de lta para cetr de massa; Escalamet Cetrad eempl

6 Escalamet Cetrad eempl {,,,,,,, } { -, -,, -, -,,, } Escalamet Cetrad eempl {, -,, -,,,, } chatamet shear s m m m m Trasfrmações D em OpeGL OpeGL matêm dersas matrzes qe ctrlam cm bjets d md sã desehads, de a câmera/pt de sta é pscad e de a magem é apresetada a tela. delvew matrz tlzada prmaramete para pscar bjets espaç D; Defd a crdeada z cm. a trasfrmaçã especfcada se restrgrá a atar apeas pla,,;

Regressão Linear Simples uma revisão

Regressão Linear Simples uma revisão Regressã Lear mples uma revsã A regressã lear é útl quad a varável de teresse (depedete se relaca e é afetada pr uma u mas varáves (depedetes. Cmecems pel mdel que da frma mas smples pssível pde represetar

Leia mais

13- AÇÕES HORIZONTAIS NAS ESTRUTURAS DE CONTRAVENTAMENTO

13- AÇÕES HORIZONTAIS NAS ESTRUTURAS DE CONTRAVENTAMENTO 13- AÇÕES HORIZONTAIS NAS ESTRUTURAS DE CONTRAVENTAMENTO A determnaçã ds esfrçs slctantes nas estruturas de cntraventament, para um carregament dad, é feta empregand-se s métds cnvencnas da análse estrutural.

Leia mais

Física B Semi-Extensivo V. 2

Física B Semi-Extensivo V. 2 ísca Sem-Extesv V. Exercícs 0) 0. Crreta. º C V 0. Crreta. 5º C V O ra lums, quad passa d me mes refrgete pa me mas refrgete, aprxma-se da rmal e, quat mas refrgete fr me, mas ra lums aprxma-se da rmal.

Leia mais

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados Capítulo : Ajuste de curvas pelo método dos mímos quadrados. agrama de dspersão No capítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas por uma taela de valores. Frequetemete o etato

Leia mais

MATRIZES E VETORES 1) CONCEITOS BÁSICOS

MATRIZES E VETORES 1) CONCEITOS BÁSICOS PARE DO CURSO DE NIVELAMENO 9 - PEQ/COPPE/UFRJ PROF. EVARISO MARIZES E VEORES ÁLGEBRA VEORIAL E MARICIAL ) CONCEIOS BÁSICOS Os cálclos/operações assm como cocetos eoledo matrzes e etores costtem a base

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas Sumáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Sstemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. -

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Proposta de teste de avalação [mao 09] Nome: Ao / Turma: N.º: Data: - - Não é permtdo o uso de corretor. Deves rscar aqulo que pretedes que ão seja classfcado. A prova clu um formuláro. As cotações dos

Leia mais

Se A = ( a ij ) é tal que aij = 0 para todo i e j então a matriz A é dita nula e é

Se A = ( a ij ) é tal que aij = 0 para todo i e j então a matriz A é dita nula e é ARIZES E VEORES PROGRAA DE ENGENHARIA QUÍICA/COPPE/UFRJ NIVELAENO -. Sc. - 6 Álgebra Vetoral e atrcal -)CONCEIOS BÁSICOS Os cálclos/operações assm como cocetos evolvedo matrzes e vetores costtem a base

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Nome: Ao / Trma: N.º: Data: - - Não é permtdo o so de corretor. Deves rscar aqlo qe pretedes qe ão seja classfcado. A prova cl m formláro. As cotações dos tes ecotram-se o fal do ecado da prova. CADERNO

Leia mais

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES Cemátca da Posção de Robôs Mapuladores Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES A cemátca de um robô mapulador é o estudo da posção e da velocdade do seu efetuador e dos seus lgametos. Quado

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

Grupo A. 3. alternativa C. Então: y = alternativa B. = 8 6i. 5. alternativa A = i

Grupo A. 3. alternativa C. Então: y = alternativa B. = 8 6i. 5. alternativa A = i Grup A. alternatva B ( x ) + ( y 5) ( y + ) + ( x + ) x y + x y 7y y 5 x + x + y 8 y x + y 8 x + 8 x 5 Entã: x y 5 5 9. n ( x; y), m ( x; y), q ( x; y), p(x; y) m + n + p + q ( x; y) + (x; y) + (x; y)

Leia mais

Aula de Hoje. Introdução a Sistemas Inteligentes. Redes RBF. Redes RBF. Tópicos em Redes Neurais II: Redes Neurais RBF 1ª Parte

Aula de Hoje. Introdução a Sistemas Inteligentes. Redes RBF. Redes RBF. Tópicos em Redes Neurais II: Redes Neurais RBF 1ª Parte Itrodução a Sstemas Itelgetes ópcos em Redes Neuras II: Redes Neuras RBF ª Parte Prof. Rcardo J. G. B. Campello Aula de Hoje Neurôos de Resposta Radal Modelos Neuras RBF Úca Saída Múltplas Saídas Represetação

Leia mais

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 }

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 } 5. Fções teste Até agora estvemos tratado tesvamete com a tegração. Uma cosa qe temos vsto é qe, cosderado espaços das, podemos pesar as fções como fcoas. Vamos rever brevemete esta déa. osdere a bola

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Programação para a Terceira Prova

Programação para a Terceira Prova PS 3 rduçã à Elerôca Prgramaçã para a Tercera Pra ª ula: O MOSFET cm mplfcadr fal desa aula cê deerá esar ap a: - Explcar prque a regã de sauraçã é mas adequada à amplfcaçã de sas - Esmar cmprame d MOSFET

Leia mais

Física E Extensivo V. 5

Física E Extensivo V. 5 Físca E Extensv V. 5 Exercícs 0) D 0) É mpssível um dspstv perand em ccls cnverter ntegralmente calr em trabalh. A segunda le também se aplca as refrgeradres, ps estes também sã máqunas térmcas. 03) 06

Leia mais

CURSO DE NIVELAMENTO PEQ/COPPE/UFRJ M.Sc ÁLGEBRA MATRICIAL. Dra. Heloísa Lajas Sanches

CURSO DE NIVELAMENTO PEQ/COPPE/UFRJ M.Sc ÁLGEBRA MATRICIAL. Dra. Heloísa Lajas Sanches CURSO DE NIVELAMENO PEQ/COPPE/UFRJ M.Sc. 9 ÁLGEBRA MARICIAL Dra. Heloísa Laas Saches Arthr Cayley Nascmeto: 6 de Agosto de 8 em Rchmod, Srrey, Iglaterra Falecmeto: 6 de Jaero de 895 em Cambrdge, Cambrdgeshre,

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6

UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6 MATEMÁTICA 0) Respsta: A Cx, Ax, = 0x + 0 x! x! = 0x + 0!( x )! ( x )! xx ( )( x )( x )! xx ( )( x )( x )! =0( x ) ( x )! ( x )! xx ( )( x ) x( x )( x ) =0( x ) Cm x, dividims ambs s lads pr (x ) e btems:

Leia mais

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS COMÉRCIO EXTERIOR - REGULAR TERCEIRA SÉRIE NOME: EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS TESTES 1) Cnjunt sluçã da equaçã z z 0, n cnjunt ds númers cmplexs, é: a), 0, - c) d) e) 0 5 ) O cnjugad d númer

Leia mais

Números Complexos Sumário

Números Complexos Sumário Números Complexos Sumáro. FORMA ALGÉBRICA DOS NÚMEROS COMPLEXOS.. Adção de úmeros complexos... Propredades da operação de adção.. Multplcação de úmeros complexos... Propredades da operação de multplcação..

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Física E Extensivo V. 5

Física E Extensivo V. 5 GAARITO Físca E Extensv V. 5 Exercícs 0) D É mpssível um dspstv perand em ccls cnverter ntegralmente calr em trabalh. 0) A segunda le também se aplca as refrgeradres, ps estes também sã máqunas térmcas.

Leia mais

Matemática B Semi-Extensivo V. 1. Exercícios

Matemática B Semi-Extensivo V. 1. Exercícios Matemática B Semi-Etensiv V. Eercícis 0) E Cm DBC é isósceles, tems DC 8. Em ADC sen 60º AC DC 0) B sen 60º 6 cs 60º y y y 6 Perímetr + 6 + 6 8 + 6 6( + ) 0) AC 8 AC 6 tg y y y tg 0) D 8. h 8 h 6 d 8 +

Leia mais

Matemática B Extensivo v. 3

Matemática B Extensivo v. 3 Etensiv v. Eercícis 0) B Períd é dad pr: P π Cm m 8, tems: P π 8 π 8 rad 0) C Dmíni: π 6 kπ kπ + π 6. k. π + π. 6 0) C 0) E I. Incrreta. Dmíni: π + kπ π 6 + k π 6 D (f) { R / π 6 + k π, k z} II. Crreta.

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos s undaments da ísca 2 Undade E Capítul 4 Lentes esércas delgadas esluções ds testes prpsts T.37 T.36 espsta: b As lentes devem ser cnvergentes. Send de vdr e mersas n ar, tems: n lente n me Assm, estudante

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se.

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se. + 8...... Sdo Arg( ) θ, tm-s sja, taθ θ.º quadrat, tão Portato,. Pág. 8 taθ θ.º Q, ou θ. + + b ( + ) + b( + ) + c b c + + + + c + + + b b c b+ b+ c ( b ) b+ c+ b+ c b c + b b c b Portato, b c.. + S Arg(

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NM ÉRICOS PARA E QAÇÕES DIFEREN CIAIS PARCIAIS 4- Método de Dfereças Ftas Aplcado às Eqações Dferecas Parcas. 4.- Apromação de Fções. 4..- Apromação por Polômos. 4..- Aste de Dados: M ímos Qadrados.

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

cos. sen = ; tg 2x

cos. sen = ; tg 2x Resluções das atividades adicinais Capítul Grup A. alternativa E Sabems que: tg 0 tg 0 sen 0 sen 0 cs 0 cs 0 Dessa frma: + +. alternativa E Tems: sen + cs + cs cs Cm ;, cs < 0. Lg cs. Entã: sen sen cs

Leia mais

FEUP - ENGENHARIA CIVIL Folha 1/10. RESISTÊNCIA DE MATERIAIS 1 Ano lectivo 2000/2001 GEOMETRIA DE MASSAS

FEUP - ENGENHARIA CIVIL Folha 1/10. RESISTÊNCIA DE MATERIAIS 1 Ano lectivo 2000/2001 GEOMETRIA DE MASSAS FEUP - ENENHR CVL Folha / RESSTÊNC DE MTERS o lectvo / EOMETR DE MSSS NTRODUÇÃO Secções trasversas de estruturas reas Tabulero de uma pote Secção Trasversal Lajes, Vgas e Plares Teora das Peças Leares

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

PROPRIEDADES DE ÓLEO E GÁS. Pseudo-Componente GÁS: mistura de hidrocarbonetos que se encontra na fase gasosa nas condições padrão;

PROPRIEDADES DE ÓLEO E GÁS. Pseudo-Componente GÁS: mistura de hidrocarbonetos que se encontra na fase gasosa nas condições padrão; RORIEDADES DE ÓLEO E GÁS ÓLEOS DE BAIXO ENCOLHIMENO (BLACK OIL) DEFINIÇÕES: seud-cmpnente ÓLEO: mstura de hdrcarbnets que se encntra na fase líquda nas cndções padrã; seud-cmpnente GÁS: mstura de hdrcarbnets

Leia mais

Modelação Geométrica (Cap 10.10)

Modelação Geométrica (Cap 10.10) Modelação Geométrca (ap 0.0) Modelação Geométrca (ap 0.0) Isttuto Superor Técco, 00/007 Sumáro Modelação Modelos de arame Modelos de malhas polgoas Represetação de sóldos e volumes ostructve Sold Geometr

Leia mais

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole Teora da Correlação: Probleas relatvos à correlação são aqueles que procura estabelecer quão be ua relação lear ou de outra espéce descreve ou eplca a relação etre duas varáves. Se todos os valores as

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

Matemática 1ª série Ensino Médio v. 3

Matemática 1ª série Ensino Médio v. 3 Matemática ª série Ensin Médi v. Eercícis 0) a),76 0 tg 7 tg 0,57 9,7 0 0) 6, cm e 9, cm tg 0 0,89,7670 6 5 cm b) 9,06 8 cm 6 sen 6 8 tg 6 a 5 0,889 8 9,060 cm c) 6,88 5 6,050 a 5 a 0,55 cm tg a 0,69 0,

Leia mais

Complexidade Computacional da Determinação da Correspondência entre Imagens

Complexidade Computacional da Determinação da Correspondência entre Imagens Complexdade Computacoal da Determação da Correspodêca etre Images Adraa Karlstroem Laboratóro de Sstemas Embarcados Departameto de Egehara Mecatrôca Escola Poltécca da Uversdade de São Paulo adraa.karlstroem@pol.usp.br

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NM ÉRICOS PARA E QAÇÕES DIFEREN CIAIS PARCIAIS - Método de Dfereças Ftas Aplcado às Eqações Dferecas Parcas..- Apromação de Fções...- Apromação por Polômos...- Aste de Dados: M ímos Qadrados..-

Leia mais

Capítulo V - Interpolação Polinomial

Capítulo V - Interpolação Polinomial Métodos Numércos C Balsa & A Satos Capítulo V - Iterpolação Polomal Iterpolação Cosdere o segute couto de dados: x : x0 x x y : y y y 0 m m Estes podem resultar de uma sequêca de meddas expermetas, ode

Leia mais

II. Propriedades Termodinâmicas de Soluções

II. Propriedades Termodinâmicas de Soluções II. Propredades Termodâmcas de Soluções 1 I. Propredades Termodâmcas de Fludos OBJETIVOS Eteder a dfereça etre propredade molar parcal e propredade de uma espéce pura Saber utlzar a equação de Gbbs-Duhem

Leia mais

2. INTRODUÇÃO AOS MÉTODOS FACTORIAIS

2. INTRODUÇÃO AOS MÉTODOS FACTORIAIS . NRODUÇÃO AOS MÉODOS FACORAS CONCEOS GEOMÉRCOS. NÉRCA. Os métodos factoras de Aálse de Dados permtem descreer matrzes (segdo o modelo do Qadro Q da Fg..) de dmesão (, p) qe represetam os alores tomados

Leia mais

Obtenção da Transformação de Corpo Rígido em Registro de Imagens com Deformação Usando Thin Plate Splines

Obtenção da Transformação de Corpo Rígido em Registro de Imagens com Deformação Usando Thin Plate Splines Obteção da Trasformação de Corpo Rígdo em Regstro de Images com Deformação Usado Th Plate Sples JOSÉ EDUARDO C CASTANHO CLÉSIO L TOZZI UNESP - FET - DEE C P 473, Bauru, CEP 7-97, SP, Brasl castaho@azulbauruuespbr

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

AULA Os 4 espaços fundamentais Complemento ortogonal.

AULA Os 4 espaços fundamentais Complemento ortogonal. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resoledo os problemas

Leia mais

5 REVISÃO: SISTEMA DE EQUAÇÕES LINEARES

5 REVISÃO: SISTEMA DE EQUAÇÕES LINEARES Prf. Vlr Wlhel UFPR TP5 Pesus Oercl 5 REVISÃO: SISTEM DE EQUÇÕES LIERES Sste de Euções Leres 5 8 8 c (sete udrd) e tl ue T ' 5 T T 5 I sluçã gerl T T 5 8 T 8 T é ded de sluçã ásc Sej u sste c euções e

Leia mais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais Exstêca e Ucdade de Soluções de Equações Dferecas Ordáras Regaldo J Satos Departameto de Matemátca-ICEx Uversdade Federal de Mas Geras http://wwwmatufmgbr/ reg 10 de ulho de 2010 2 1 INTRODUÇÃO Sumáro

Leia mais

Questão 2. Questão 3

Questão 2. Questão 3 NOTAÇÕES N : cjut ds úmers aturais R : cjut ds úmers reais R + : cjut ds úmers reais ã egativs i : uidade imagiária; i = arg z : argumet d úmer cmple z [a, b] = { R : a b} A\ B = { : Ae B} A C : cmplemetar

Leia mais

Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2010 Duração da prova: 150 minutos. Tolerância: 30 minutos.

Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2010 Duração da prova: 150 minutos. Tolerância: 30 minutos. Versão A Acesso de Maiores de 3 aos Prova escrita de Matemática 7 de Jho de 010 Dração da prova: 150 mitos. Tolerâcia: 30 mitos. Primeira Parte As oito qestões desta primeira parte são de escolha múltipla.

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 3 (1ª ou 2ª Séries EM)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 3 (1ª ou 2ª Séries EM) . Cnsidere a PG:, 9, 7, 8, 4,... A partir dela vams cnstruir a seqüência:, 6, 8, 4, 6,..., nde primeir term cincide cm primeir term da PG, e a partir d segund, n-ésim é a diferença entre n-ésim e (n-)-ésim

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

2 - Derivadas parciais

2 - Derivadas parciais 8 - ervadas parcas Sea por eemplo: Estma-se qe a prodção semanal de ma ábrca sea dada pela nção Q 00 500 ndades onde representa o número de operáros qalcados e representa o número dos não-qalcados. Atalmente

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resolvedo os problemas

Leia mais

6.1 - PROCEDIMENTO DE AVALIAÇÃO DE INCERTEZA EM MEDIÇÕES DIRETAS

6.1 - PROCEDIMENTO DE AVALIAÇÃO DE INCERTEZA EM MEDIÇÕES DIRETAS 7 6 - PROCEDIMENTO DE AVALIAÇÃO DE INCERTEZA EM MEDIÇÕES DIRETAS A medção dreta é aquela cuja dcação resulta aturalmete da aplcação do sstema de medção sobre o mesurado Há apeas uma gradeza de etrada evolvda

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [março 2019] Novo Espaço Matemática A.º ao Proposta de teste de avaliação [março 09] Nome: Ao / Trma: N.º: Data: - - Não é permitido o so de corretor. Deves riscar aqilo qe pretedes qe ão seja classificado. A prova

Leia mais

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga PRODUTOS DE VETORES Álgebra Linear e Geometria Analítica Prof. Aline Paliga 3.1 PRODUTO ESCALAR Chama-se prodto escalar (o prodto interno sal) de dois vetores =x 1 i + y 1 j+z 1 k e v= x 2 i + y 2 j+z

Leia mais

Atividades relacionadas à ManjarBrancoG

Atividades relacionadas à ManjarBrancoG Atdades relacoadas à MajarBracoG Neste cojto de atdades está oblzado o estdo da ção ajar braco, sto é, a ção qe o doío é o teralo echado [0,] e asse alores o cojto dos úeros reas. Essa ção é deda coo o

Leia mais

Construir indicadores para as mudanças nas dimensões e formas durante o processo de deformação sofrido por um sólido. Eduardo Nobre Lages CTEC/UFAL

Construir indicadores para as mudanças nas dimensões e formas durante o processo de deformação sofrido por um sólido. Eduardo Nobre Lages CTEC/UFAL Uiersidade Federal de Alagoas Cetro de Tecologia Crso de Egeharia Ciil Disciplia: Mecâica dos Sólidos Código: ECIV3 Professor: Edardo Nobre Lages Aálise de Deformações Maceió/AL Motiação Costrir idicadores

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 O gráfic mstra, aprimadamente, a prcentagem de dmicílis n Brasil que pssuem certs bens de cnsum. Sabe-se que Brasil pssui aprimadamente 50 milhões de dmicílis, send 85% na zna urbana e 15% na

Leia mais

Matemática B Extensivo V. 1

Matemática B Extensivo V. 1 Matemática Etensiv V. Eercícis 0 5 60 0) m 0) E sen cs tan Seja a medida entre prédi mair e a base da escada que está apiada. Também, seja y a medida da entre a base d prédi menr e a base da escada nele

Leia mais

Universidade Federal de Santa Catarina. Curso de Pós-Graduação em Matemática e. Computação Científica. Minimização de Quadráticas Convexas em

Universidade Federal de Santa Catarina. Curso de Pós-Graduação em Matemática e. Computação Científica. Minimização de Quadráticas Convexas em Uversdade Federal de Sata Catara Curs de Pós-Graduaçã em Matemátca e Cmputaçã Cetífca Mmzaçã de Quadrátcas Cveas em Caas sbre Varedades Afs, um sub-prblema de PQS Rger Behlg Oretadr: Clóvs Caesar Gzaga

Leia mais

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC CCI-6 Cmputaçã Gráica Transrmações D e Prjeções Institut Tecnlógic de Aernáutica Pr. Carls Henriue Q. Frster Sala IEC Tópics da aula Gemetria Prjetiva Tridimensinal Transrmações em D Representaçã de Rtações

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escla Básica Scdária Dr. Âgl Agst da Silva Tst d MATEMÁTIA A º A Draçã: 9 mits Març/ 3 Nm Nº T: lassificaçã O Prf. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d sclha múltipla, slci a rspsta crrta d

Leia mais

5/21/2015. Prof. Marcio R. Loos. Revisão: Campo Magnético. Revisão: Campo Magnético. Ímãs existem apenas em pares de polos N e S (não há monopolos*).

5/21/2015. Prof. Marcio R. Loos. Revisão: Campo Magnético. Revisão: Campo Magnético. Ímãs existem apenas em pares de polos N e S (não há monopolos*). 5/1/15 Físca Geal III Aula Teóca 16 (Cap. 1 pate 1/): 1) evsã: Camp Magnétc ) Le de t-savat ) devd a um f etlíne lng ) Lnhas de camp pduzds p um f 5) n cent de cuvatua de um ac de f 6) Fça ente centes

Leia mais

PROPOSTAS DE RESOLUÇÃO. Capítulo 8

PROPOSTAS DE RESOLUÇÃO. Capítulo 8 MATEMÁTICA,.ª CLASSE Actvdades de vestgação PROPOSTAS DE RESOLUÇÃO Pág. Não, porque a descoberta do tesouro ão depede do poto ode se ca a marcha. Localação: da palmera: P = a + b do sâdalo: S = c + d do

Leia mais

GABARITO. Física E. 04) E i F q = 45 PQ. F = B. i. L. sen 45 o F = 0, F = 2N Perpendicular à folha e para dentro dela.

GABARITO. Física E. 04) E i F q = 45 PQ. F = B. i. L. sen 45 o F = 0, F = 2N Perpendicular à folha e para dentro dela. ísca E Extensv V. 7 Exercícs 01) E I frça (vertcal, para cma) II frça (perpendcular à flha, sand dela) III (hrzntal, para a dreta) 0) 34 03) 68 S N S N frça (perpendcular à flha, entrand nela) 01. alsa.

Leia mais

Relatório 2ª Atividade Formativa UC ECS

Relatório 2ª Atividade Formativa UC ECS Relatóro 2ª Atvdade Formatva Eercíco I. Quado a dstrbução de dados é smétrca ou apromadamete smétrca, as meddas de localzação méda e medaa, cocdem ou são muto semelhates. O mesmo ão acotece quado a dstrbução

Leia mais

INTRODUÇÃO A TEORIA FRACTAL DE MEDIDA

INTRODUÇÃO A TEORIA FRACTAL DE MEDIDA INTRODUÇÃO A TEORIA FRACTA DE MEDIDA FRACTA - sã bjets gemétrics cuja a dimensã de Haussdrf-Besicvitch excede estritamente a dimensã tplógica e pssuem estruturas em tdas as suas escalas de ampliaçã, cmumente

Leia mais

, que chamaremos de origem, e atribuímos a este ponto o símbolo O. Com este ponto podemos associar um vetor (1.7.1)

, que chamaremos de origem, e atribuímos a este ponto o símbolo O. Com este ponto podemos associar um vetor (1.7.1) 17 Coordeadas e dferecas Fg 171 Coordeadas defdas com dstâcas dos potos aos paredes do laboratóro, Mutos objetos podem ser caracterados com a ajuda de gradeas físcas a pesar de ão serem gradeas Um eemplo

Leia mais

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA REGRESSÃO LINEAR CUIABÁ, MT 6/ INTRODUÇÃO Relação dos valores da varável depedete (varável resposta) aos valores de regressoras ou exógeas). SIMPLES MÚLTIPLA (varáves depedetes,... =,,, K=,,, k em que:

Leia mais

5 Aplicação do GFMM no BEM

5 Aplicação do GFMM no BEM 38 5 Apação do GFMM o BEM esse apítuo os desevovmetos apresetados o apítuo 4 são apados ao BEM pea expasão das souções fudametas utzadas as tegrações sobre os segmetos do otoro. É apresetada a formuação

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos s fundaments da físca 2 Undade E aítul 2 Eselhs esfércs Resluções ds testes rsts T.253 T.252 Ressta: c O esquema que melhr reresenta a stuaçã descrta é da alternatva c: s ras de luz rvenentes d Sl ncdem

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Acesso de Maiores de 23 anos Prova escrita de Matemática 28 de Junho de 2012 Duração da prova: 150 minutos. Tolerância: 30 minutos.

Acesso de Maiores de 23 anos Prova escrita de Matemática 28 de Junho de 2012 Duração da prova: 150 minutos. Tolerância: 30 minutos. Versão A Acesso de Maiores de 3 aos Prova escrita de Matemática 8 de Jho de 0 Dração da prova: 50 mitos. Tolerâcia: 30 mitos. Primeira Parte As oito qestões desta primeira parte são de escolha múltipla.

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escl Básic e Secdári Dr. Âgel Agst d Silv Teste de MATEMÁTICA A 1.º A Drçã: 9 mits Fevereir/ 1 Nme Nº T: Clssificçã O Prf. (Lís Abre) 1ª PARTE Pr cd m ds segites qestões de esclh múltipl, selecie respst

Leia mais

4 Métodos Sem Malha Princípio Básico dos Métodos Sem Malha

4 Métodos Sem Malha Princípio Básico dos Métodos Sem Malha 4 Métodos Sem Malha Segudo Lu (9), os métodos sem malha trabalham com um cojuto de ós dstrbuídos detro de um domío, assm como com cojutos de ós dstrbuídos sobre suas froteras para represetar, sem dscretzar,

Leia mais

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A.

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A. MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS M. Z. Nascmeto, A. F. Frère e L. A. Neves INTRODUÇÃO O cotraste as radografas vara ao logo do campo de

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

Problema geral de interpolação

Problema geral de interpolação Problema geral de terpolação Ecotrar p() que verfque as codções: f j ( ) y,,,,,, j,,, m ( j) ( ) dervada de ordem j ós valores odas Eemplo: ecotrar p() que verfque:, f () 4 3, f( 3) 3, f'(3) 4 3 p() 3

Leia mais

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares J. A. M. Felippe de Sza 3 Sinais Singlares 3 Sinais Singlares 3. Intrdçã as sinais singlares 3 3. Sinais singlares discrets 4 O sinal impls nitári discret ( nit-implse ) 4 Prpriedades d impls nitári discret

Leia mais

Derivada Direcional e gradiente no plano

Derivada Direcional e gradiente no plano Dervada Dreconal e gradente no plano Sea m campo escalar no plano descrto por ma nção derencável a das varáves. Assm se =(,, então é o valor do campo escalar no ponto P=(,.Sea L ma reta no plano. Qando

Leia mais

2 OPERAÇÕES E REPRESENTAÇÃO BÁSICAS EM 2D

2 OPERAÇÕES E REPRESENTAÇÃO BÁSICAS EM 2D 2 OPERAÇÕES E REPRESENTAÇÃO BÁSICAS EM 2D Neste capítulo abordaremos os aspectos pricipais em um sistema gráfico 2D: Trasformações 2D e o Sistema de Coordeadas Homogêeo Como Modelamos as Traformações de

Leia mais

Álgebra Linear e Geometria Analítica. Rectas no plano, no espaço e em IR n Planos no espaço e em IR n

Álgebra Linear e Geometria Analítica. Rectas no plano, no espaço e em IR n Planos no espaço e em IR n Álgebra Linear e Geometria Analítica Rectas no plano, no espaço e em IR n Planos no espaço e em IR n Em geometria eclidiana: pontos definem ma recta o ponto e a direcção da recta o seja: ponto vector (

Leia mais

04 a) A substância mais volátil é a que possui maior pressão. 05 Sendo a ureia uma substância molecular, aplica-se a equação.

04 a) A substância mais volátil é a que possui maior pressão. 05 Sendo a ureia uma substância molecular, aplica-se a equação. Resluções Prpriedades cligativas 0 B 02 C 03 D Capítul 7 N mment em que a água e aliment sã clcads n interir da panela de pressã e esta é fechada, uma quantidade de ar (pressã atmsférica ambiente) fica

Leia mais

3. Osciladores não senoidais e geradores de pulso

3. Osciladores não senoidais e geradores de pulso 3. Oscladres nã sendas e geradres de puls Sã crcuts que utlzam elements nã lneares e elements reats (C, L) para btençã de snas alternads a partr de fntes de tensã DC. 3.. Cncets geras A grande mara ds

Leia mais

Exercícios propostos Menu Resumo do capítulo. Testes propostos. T.252 Resposta: c I) Correta II) Correta III) Incorreta. r i

Exercícios propostos Menu Resumo do capítulo. Testes propostos. T.252 Resposta: c I) Correta II) Correta III) Incorreta. r i Os fundaments da ísca lume 2 Exercícs rsts Menu Resum d caítul aítul 2 Testes rsts Eselhs esfércs T.252 Ressta: c I) rreta II) rreta III) Incrreta r r 0 r O ra refletd assa el fc rncal T.253 Ressta: a

Leia mais

Deformações na Notação Indicial

Deformações na Notação Indicial SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Pós-gradação em Engenhara de Transportes Deformações na Notação Indcal MAJ MONIZ DE ARAGÃO Campo de deslocamentos; Componentes de deformação;

Leia mais

Modelos de Regressão Linear Simples e Múltipla. Fabio Antonio Avilla (Matemática) Profª Dra. Carine Savalli Redígolo (Orientadora)

Modelos de Regressão Linear Simples e Múltipla. Fabio Antonio Avilla (Matemática) Profª Dra. Carine Savalli Redígolo (Orientadora) Modelos de Regressão Lear Smples e Múltpla Fabo Atoo Avlla (Matemátca) Profª Dra. Care Savall Redígolo (Oretadora) Resumo Dversas áreas do cohecmeto cetífco procuram valdar suas hpóteses por meo de pesqusas

Leia mais

Aula 03 Sinais singulares

Aula 03 Sinais singulares Ala 03 Sinais singlares Intrdçã as Sinais Singlares Os sinais singlares, também chamads sinais de excitaçã frmam ma família [n], 1 [n], 2 [n],..., n cas discret;, (t), 1 (t), 2 (t),..., n cas cntín; Eles

Leia mais