Intervalos Estatísticos para uma única Amostra - parte II

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Intervalos Estatísticos para uma única Amostra - parte II"

Transcrição

1 Itervalos Estatísticos para uma úica Amostra - parte II Itervalo de cofiaça para proporção 2012/02

2 1 Itrodução 2 3

3 Objetivos Ao fial deste capítulo você deve ser capaz de: Costruir itervalos de cofiaça para proporção de uma população. Esses itervalos serão costruídos usado a distribuição ormal e o Teorema Cetral do Limite.

4 Muitas vezes queremos estimar a proporção de uma determiada população. Exemplo: proporção de cosumidores que preferem determiada marca de refrigerate. Uma amostra de tamaho é retirada de uma população grade. X (X ) dessas observações pertecem a uma determiada classe. Etão ˆP = X é um estimador da proporção p que pertece a essa classe. Observe que X Bi(, p) e queremos estimar p.

5 Seja X i uma variável biária { 1 se a i-ésima observação pertece à classe de iteress X i = 0 caso cotrário. Temos que X = X i. Etão X é uma média de variáveis i.i.d. com distribuição Beroulli(p). Pelo Teorema Cetral do Limite Z = ou seja i X i E( i X i) Var( i X = i) i=1 i X i E(X) N(0, 1) Var(Xi ) Z = X p p(1 p) N(0, 1).

6 Aproximação Normal para uma Proporção Biomial Se for grade, a distribuição de Z = X p = ˆP p p(1 p) p(1 p) será aproximadamete uma ormal padrão. Observação: Essa aproximação é boa desde que p > 5 e (1 p) > 5.

7 Para costruírmos um itervalo para p com 100(1 α)% de cofiaça precisamos que P( z 1 α 2 Z z 1 α 2 ) = 1 α ou seja P z 1 α ˆP p 2 p(1 p) z 1 α = 1 α. 2 Isolado p ficamos com ( p(1 p) P ˆP z 1 α 2 p ˆP + z 1 α 2 ) p(1 p) = 1 α.

8 Porém ão sabemos o valor de p para costruir o itervalo. Etão precisamos estimar esse valor por ˆP. O itervalo fica ˆP(1 P ˆP ˆP) z1 α 2 p ˆP + z 1 α 2 ˆP(1 ˆP) = 1 α.

9 Itervalo de Cofiaça para uma Proporção Biomial Cosidere uma amostra aleatória de tamaho. Uma proporção ˆp dessa amostra pertece a uma classe de iteresse. Queremos costruir um itervalo aproximado para a proporção p da população que pertece à classe. O itervalo com 100(1 α)% de cofiaça é dado por ˆP(1 ˆP z ˆP) 1 α p 2 ˆP ˆP(1 + z ˆP) 1 α 2 ode z 1 α 2 é tal que P(Z z 1 α 2 ) = 1 α 2.

10 Observações: Esse procedimeto depede da adequação da aproximação da biomial pela ormal. Quado a aproximação ão é apropriada outros métodos devem ser usados.

11 Exemplo: Uma amostra de 85 macais é selecioada. 10 deles tem acabameto de superfície mais rugoso do que as especificações permitidas. Uma estimativa potual para proporção de macais que excedem a rugosidade especificada é ˆP = x = 10 = 0, Um itervalo com 95% de cofiaça para p é dado por ˆP(1 ˆP z ˆP) 0,975 p ˆP ˆP(1 + z ˆP) 0,975.

12 Exemplo: (cotiuação) Temos que α = 0, 05 e P(Z 1, 96) = 0, 975 z 0,975 = 1, 96. Os dados são ˆp = 0, 12 z 0,975 = 1, 96 = 85 logo o itervalo fica (0, 12)(1 0, 12) (0, 12)(1 0, 12) 0, 12 1, 96 p 0, 12+1, ou seja 0, 05 p 0, 19.

13 ˆP é estimador de p, logo o erro de estimação é E = p ˆP. Para um itervalor com 100(1 α)% de cofiaça o erro é o máximo é p(1 p) z 1 α. 2 No exemplo aterior o erro máximo era 1, 96 (0, 12)(1 0, 12) = 0, 07.

14 Podemos escolher : fixado o ível de cofiaça 100(1 α)%; e o erro máximo permitido E. Isolado a expressão temos que E = z 1 α 2 = p(1 p). ( ) z1 α 2 2 p(1 p). E

15 Tamaho da amostra em uma Distribuição Biomial Fixado um ível de cofiaça 100(1 α)% e um erro E temos que ( ) z1 α 2 2 = p(1 p). E Uma estimativa de p é ecessária para calcular o valor de. Existem algumas possibilidades.

16 Como estimar p para calcular? Podemos usar uma estimativa ˆp de uma amostra aterior. Uma amostra prelimiar (amostra piloto) pode ser retirada e o valor ˆp é calculado. Podemo ecotrar p tal que p(1 p) é máximo: esse valor é p = 0, 5; etão p(1 p) = 0, 25 e = ( ) z1 α 2 2 (0, 25). E

17 Exemplo: Itrodução Cosidere o exemplo dos macais. Queremos costruir um itervalo com 95% de cofiaça. O erro máximo cometido é 0,05. Se usarmos ˆp = 0, 12 como estimativa de p temos que = ( z0,975 E ) 2 ( ) 1, 96 2 ˆP(1 ˆP) = (0, 12)(0, 88) , 05 Se ão quisermos usar ˆp como estimativa de p temos que ( z0,975 ) 2(0, ( ) 1, 96 2 = 25) = (0, 25) 385. E 0, 05 Se tivermos uma iformação sobre p (de uma amostra passada ou de uma amsotra piloto) podemos usar uma amostra de tamaho meor.

18 Limites uilaterais para proporção biomial Os limites aproximados iferior e superior de cofiaça 100(1 α)% são ˆP(1 ˆP z ˆP) 1 α p p ˆP ˆP(1 + z ˆP) 1 α.

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc.

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Capítulo 8 Estimativa do Itervalo de Cofiaça Statistics for Maagers Usig Microsoft Excel, 5e 2008 Pearso Pretice-Hall, Ic. Chap 8-1 Objetivos: Neste capítulo, você aprederá: Costruir e iterpretar estimativas

Leia mais

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir Objetivo Estimar uma roorção (descohecida) de elemetos em uma oulação, aresetado certa característica de iteresse, a artir da iformação forecida or uma amostra. Exemlos: : roorção de aluos da USP que foram

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

Estatística II Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 3. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 3 Prof.: Patricia Maria Bortolo, D. Sc. Estimação por Itervalo Objetivos Nesta semaa, veremos: Como costruir e iterpretar estimativas por itervalos de cofiaça para a média e a proporção

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hipóteses Neste capítulo será estudado o segudo problema da iferêcia estatística: o teste de hipóteses. Um teste de hipóteses cosiste em verificar, a partir das observações de uma amostra,

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA 1. (2,5) Um provedor de acesso à iteret está moitorado a duração do tempo das coexões

Leia mais

Intervalo de Confiança para uma Média Populacional

Intervalo de Confiança para uma Média Populacional Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra

Leia mais

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail. Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha professorfmp@hotmail.com Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste 7 o SEMESTRE 5/6 Data: Sábado, 7 de Jaeiro de 6 Duração: 9:3 às :3 Tópicos de Resolução. O úmero

Leia mais

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD Teste de ióteses VÍCTOR UGO LACOS DÁVILAD Teste De ióteses. Exemlo. Cosidere que uma idustria comra de um certo fabricate, ios cuja resistêcia média à rutura é esecificada em 6 kgf (valor omial da esecificação).

Leia mais

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.)

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.) Testes χ 2 de ajustameto, homogeeidade e idepedêcia Testes χ 2 (cot.) Os testes χ 2 cosiderados este último poto do programa surgem associados a dados de cotagem. Mais cocretamete, dados que cotam o úmero

Leia mais

IND 1115 Inferência Estatística Aula 13

IND 1115 Inferência Estatística Aula 13 mbarros.com 3 mbarros.com 4 Coteúdo IND 5 Iferêcia Estatística Aula 3 Novembro 005 Môica Barros Itervalos de Cofiaça para Difereças etre Médias (Variâcias supostas iguais) Itervalo de Cofiaça para a variâcia

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) gustavo_epr@yahoo.com.br José Ivo Ribeiro Júior (UFV) jivo@dpi.ufv.br RESUMO: Para comparar

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

AULA: Inferência Estatística

AULA: Inferência Estatística AULA: Iferêcia Estatística stica Prof. Víctor Hugo Lachos Dávila Iferêcia Estatística Iferêcia Estatística é um cojuto de técicas que objetiva estudar uma oulação através de evidêcias forecidas or uma

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

Estatística II. Aula 6. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 6. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 6 Prof.: Patricia Maria Bortolo, D. Sc. Testes ara duas amostras Objetivos Nesta aula você arederá a usar o teste de hióteses ara comarar as difereças etre: As médias de duas oulações

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

s =, sendo n= n Uma amostra de 60 indivíduos onde a massa corpórea, em kg, tiver média 42kg e um desvio padrão de 3,5 o Erro Padrão da Média será:

s =, sendo n= n Uma amostra de 60 indivíduos onde a massa corpórea, em kg, tiver média 42kg e um desvio padrão de 3,5 o Erro Padrão da Média será: statística Aplicada Prof. Atoio Sales/ 013 DSVIO PADRÃO RRO PADRÃO DA MÉDIA As iferêcias sobre uma população podem ser baseadas em observações a partir de amostras de populações. Como a amostra, a maior

Leia mais

4. Inferência Estatística Estimadores Pontuais

4. Inferência Estatística Estimadores Pontuais 4. Iferêcia Estatística Estimadores Potuais 4.1. Itrodução Em lihas gerais, a Iferêcia Estatística objetiva estudar a população através de evidêcias forecidas pela amostra. É a amostra que cotém os elemetos

Leia mais

4 HIDROLOGIA ESTATÍSTICA: conceitos e aplicações

4 HIDROLOGIA ESTATÍSTICA: conceitos e aplicações 4 HIDROLOGIA ESTATÍSTICA: coceitos e aplicações 4. Coceitos básicos de Probabilidades Um cojuto de dados hidrológicos ecessita ser previamete aalisado com base em algus idicadores estatísticos básicos

Leia mais

CAPÍTULO 7 - Intervalos de confiança

CAPÍTULO 7 - Intervalos de confiança INF 16 CAPÍTULO 7 - Itervalo de cofiaça É uma maeira de calcularmo uma etimativa de um parâmetro decohecido. Muita veze também fucioa como um tete de hipótee. A idéia é cotruir um itervalo de cofiaça para

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

Métodos Estatísticos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO. Regressão Linear. Bernardo Almada-Lobo

Métodos Estatísticos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO. Regressão Linear. Bernardo Almada-Lobo MÉTODO ETATÍTICO DE PREVIÃO 8 6 4 98 96 94 9 9 5 5 Regressão Liear Berardo Almada-Lobo Regressão A regressão é uma das técicas estatísticas mais potetes e de utilização mais frequete. É um método matemático

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS

ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS WWWCONVIBRAORG ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS ANDRÉA F RODRIGUES 1, WILTON P SILVA 2, JOSIVANDA P GOMES 3, CLEIDE M D P S SILVA 4, ÍCARO CARVALHO RAMOS

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

Aulas de Estatística / Prof. Jones Garcia da Mata / www.professorjones.hpg.com.br

Aulas de Estatística / Prof. Jones Garcia da Mata / www.professorjones.hpg.com.br # Variável aleatória Quado uma variável tem resultados ou valores que tedem a variar de uma observação ara outra em razão de fatores relacioados com a chace, ós chamamos de variável aleatória Defiimos

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Sumário: 6.3.3. Intervalo de confiança para a diferença entre duas médias de. populações independentes com variâncias conhecidas...

Sumário: 6.3.3. Intervalo de confiança para a diferença entre duas médias de. populações independentes com variâncias conhecidas... 0 Sumário: 6. Itervalo de Cofiaça...0 6.. etimação por itervalo...0 6.. Itervalo de cofiaça para a média...0 6... Itervalo de cofiaça para a média com variâcia cohecida...0 6... Itervalo de cofiaça para

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing Profa. Regia Maria Sigolo Berardielli Estatística Gestão Fiaceira / Gestão de Recursos Humaos / Logística / Marketig REGINA MARIA SIGOLO BERNARDINELLI ESTATÍSTICA Esio a Distâcia E a D Revisão 09/008 LISTA

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

5n 3. 1 nsen(n + 327) e)

5n 3. 1 nsen(n + 327) e) Exercícios 1 Mostre, utilizado a defiição, que as seguites sucessões são limitadas: 2 4 50 a) b) 3 +16 1 5 3 2 c) 1 4( 1) 8 5 d) 100 5 3 2 + 2( 1) 1 4( 1) 8 1 se( + 327) e) f) 5 3 2 4 4 2 2 Mostre, utilizado

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quatitativos Aplicados Aula 3 http://www.iseg.ulisboa.pt/~vescaria/mqa/ Tópicos apresetação Itrodução aos packages estatísticos: SPSS Aálise Uivariada: Redução de dados e caracterização de distribuições

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2 SUMÁRIO 1. CORRELAÇÃO... 1.1. Itrodução... 1.. Padrões de associação... 3 1.3. Idicadores de associação... 3 1.4. O coeficiete de correlação... 5 1.5. Hipóteses básicas... 5 1.6. Defiição... 6 1.7. Distribuição

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA Resumo Itervalos de Cofiaça ara médias e roorções com alicações a Egeharia. Ferado Mori Prof.fmori@gmail.com Itervallos de Cofiiaça ara Médiias e Proorções

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros

9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros INE 7 - Iferêcia Estatística Estimação de Parâmetros 1 9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros 9.1 - Itrodução Estatística é a ciêcia que se ocupa de orgaizar, descrever, aalisar e iterpretar

Leia mais

Analisando o Risco de uma Carteira de Crédito via Simulações de Monte Carlo Resumo

Analisando o Risco de uma Carteira de Crédito via Simulações de Monte Carlo Resumo Aalisado o Risco de uma Carteira de Crédito via Simulações de Mote Carlo Resumo Neste trabalho, aalisamos a utiliação da metodologia CreditRis+ do Credit Suisse e sua adequação ao mercado brasileiro, com

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

Precificação de opções flexíveis com barreiras por meio de árvores binomiais

Precificação de opções flexíveis com barreiras por meio de árvores binomiais Artigo técico Precificação de opções flexíveis com barreiras por meio de árvores biomiais Rudii Meezes Sampaio Edso Costa Bigotto Neste artigo, apreseta-se metodologia de precificação para diversos tipos

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

Notas de Aula do Curso PGE950: Probabilidade

Notas de Aula do Curso PGE950: Probabilidade Notas de Aula do Curso PGE950: Probabilidade Leadro Chaves Rêgo, Ph.D. 2013.1 Prefácio Estas otas de aula foram feitas para compilar o coteúdo de várias referêcias bibliográficas tedo em vista o coteúdo

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Comissão Eleitoral 2016-2020

Comissão Eleitoral 2016-2020 Comissão Eleitoral 2016-2020 Orietações para Sub-Comissões e Mesários RELAÇÃO DO MATERIAL QUE ACOMPANHA A URNA ELEITORAL 01 Evelope Kraft grade 02 Evelope Kraft médio 01 Tubo de cola 02 Caetas esferográficas

Leia mais

Exemplos de I.C. (1 ) 100% para a mådia (e para diferença entre mådias)

Exemplos de I.C. (1 ) 100% para a mådia (e para diferença entre mådias) Exemplo de I.C. ( )% para a mådia (e para difereça etre mådia) Exemplo : Tete de compreão foram aplicado em dua marca de cimeto para avaliar a reitêcia em cocreto. Foram produzido 5 corpo de prova de cada

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

Custo de Oportunidade do Capital

Custo de Oportunidade do Capital Custo de Oportunidade do Capital É o custo de oportunidade de uso do fator de produção capital ajustado ao risco do empreendimento. Pode ser definido também como a taxa esperada de rentabilidade oferecida

Leia mais

Métricas de Software

Métricas de Software Métricas de Software Plácido Antônio de Souza Neto 1 1 Gerência Educacional de Tecnologia da Informação Centro Federal de Educação Tecnologia do Rio Grande do Norte 2006.1 - Planejamento e Gerência de

Leia mais

IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla

IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla Significância Estatística Existe uma estatítica, o t-estatístico,associado a cada estimativa O t-estatístico mede

Leia mais

Unidade V - Desempenho de Sistemas de Controle com Retroação

Unidade V - Desempenho de Sistemas de Controle com Retroação Uidade V - Desempeho de Sistemas de Cotrole com Retroação Itrodução; Siais de etrada para Teste; Desempeho de um Sistemas de Seguda Ordem; Efeitos de um Terceiro Pólo e de um Zero a Resposta Sistemas de

Leia mais

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição Avaliação da Cofiabilidade de Ites com Testes Destrutivos - Alicação da Estimação da roorção em uma oulação Fiita Amostrada sem Reosição F. A. A. Coelho e Y.. Tavares Diretoria de Sistemas de Armas da

Leia mais

Pós-Graduação em Computação Distribuída e Ubíqua

Pós-Graduação em Computação Distribuída e Ubíqua Pós-Graduação em Computação Distribuída e Ubíqua INF612 - Aspectos Avançados em Engenharia de Software Engenharia de Software Experimental [Head First Statistics] Capítulos 10, 11, 12 e 13 [Experimentation

Leia mais

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica Cálculo das Probabilidades e Estatística I Departameto de Estatistica Versão - 2013 Sumário 1 Itrodução à Estatística 1 1.1 Coceitos básicos de amostragem..................................... 2 1.1.1

Leia mais

COMENTÁRIO DA PROVA DO BANCO DO BRASIL

COMENTÁRIO DA PROVA DO BANCO DO BRASIL COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil

Leia mais

Aula 8 Intervalos de confiança para proporções amostras grandes

Aula 8 Intervalos de confiança para proporções amostras grandes Aula 8 Intervalos de confiança para proporções amostras grandes Objetivos Na aula anterior, foram apresentadas as idéias básicas da estimação por intervalos de confiança. Para ilustrar o princípio utilizado

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

Configuração para Uso do Tablet no GigaChef e Outros Dispositivos

Configuração para Uso do Tablet no GigaChef e Outros Dispositivos Configuração para Uso do Tablet no GigaChef e Outros Dispositivos Birigui SP Setembro - 2013 1. Configurando o Ambiente. Este documento mostra como configurar o ambiente do GigaChef para usar o Tablet

Leia mais

MATEMÁTICA APLICADA À GESTÃO I

MATEMÁTICA APLICADA À GESTÃO I 00 MATEMÁTICA APLICADA À GESTÃO I TEXTO DE APOIO MARIA ALICE FILIPE ÍNDICE NOTAS PRÉVIAS ALGUNS CONCEITOS SOBRE SÉRIES6 NOTAS PRÉVIAS As otas seguites referem-se ao maual adoptado: Cálculo, Vol I James

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Capítulo 1. Teoria da Amostragem

Capítulo 1. Teoria da Amostragem Capítulo 1 Teoria da Amostragem 1.1 Itrodução A amostragem e em particular os processos de amostragem aplicam-se em variadíssimas áreas do cohecimeto e costituem, muitas vezes, a úica forma de obter iformações

Leia mais

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios www/campossalles.br Cursos de: dmiistração, Ciêcias Cotábeis, Ecoomia, Comércio Exterior, e Sistemas de Iformação - telefoe (11) 3649-70-00 Matemática Fiaceira I 3º semestre 013 Professor Dorival Boora

Leia mais

Nota prévia. Notas de Apoio de Complementos de Probabilidades e Estatística. Manuel Cabral Morais. Secção de Probabilidades e Estatística

Nota prévia. Notas de Apoio de Complementos de Probabilidades e Estatística. Manuel Cabral Morais. Secção de Probabilidades e Estatística Nota prévia Notas de Apoio de Complemetos de Probabilidades e Estatística Mauel Cabral Morais Atrevo-me a dizer que a leccioação e o desempeho d@s alu@s da disciplia de Complemetos de Probabilidades e

Leia mais

MINISTÉRIO DAS CIDADES, ORDENAMENTO DO TERRITÓRIO E AMBIENTE Instituto do Ambiente PROCEDIMENTOS ESPECÍFICOS DE MEDIÇÃO DE RUÍDO AMBIENTE

MINISTÉRIO DAS CIDADES, ORDENAMENTO DO TERRITÓRIO E AMBIENTE Instituto do Ambiente PROCEDIMENTOS ESPECÍFICOS DE MEDIÇÃO DE RUÍDO AMBIENTE MINISÉRIO DAS CIDADES, ORDENAMENO DO ERRIÓRIO E AMBIENE Istituto do Ambiete PROCEDIMENOS ESPECÍFICOS DE MEDIÇÃO DE RUÍDO AMBIENE Abril 2003 . Equadrameto O presete documeto descreve a metodologia a seguir

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais