Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste"

Transcrição

1 Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014

2 Erro Puro

3 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta ajustada: o modelo não descreve bem os dados (falta de ajuste); existe uma variação aleatória em torno da reta (erro puro). Se grande parte do erro é devido a falta de ajuste: devemos reformular o modelo.

4 As análises apresentadas aqui só podem ser feitas se tivermos mais de um valor da variável resposta para cada valor da explicativa. Essas repetições devem ser medidas em unidades amostrais diferentes. Não pode ser a mesma unidade medida várias vezes

5 5 Considere que uma variável resposta Y. Seja X uma variável explicativa. Coletamos uma amostra de tamanho n. Dentro dessa amostra, alguns valores de X são repetidos. Temos m valores de X distintos, com m < n X 1, X 2,...,X m. Vamos chamar de n i o número de vezes que i-ésimo X i aparece X 1 n 1 observações X 2 n 2 observações onde m i=1 n i = m.

6 6 Veja um exemplo a seguir. X i Y i Temos que n 1 = 2 n 2 = 1 n 3 = 3

7 Erro Puro Variabilidade que permanece no Y mesmo quando o valor de X é fixado. Variabilidade nos valores de Y entre indivíduos com o mesmo valor de X. Para cada valor de X i, podemos associar uma média dos Y s Y 1, Y 2,...,Y n1 n 1 observações de X 1 média Y 1 Y 1, Y 2,...,Y n2 n 2 observações de X 2 média Y 2. Y 1, Y 2,...,Y nm n m observações de X m média Y m

8 8 Decomposição da Soma de Quadrados dos Resíduos Quando ajustamos o modelo e obtemos a reta ajustada Y = β 0 + β 1 X + ɛ Ŷ = ˆβ 0 + ˆβ 1 X todos indivíduos com o mesmo valor X = X j tem o mesmo valor estimado Ŷj = ˆβ 0 + ˆβ 1 X j. Só teremos Ŷk Ŷl se X k X l.

9 9 A soma dos quadrados dos erros podem ser agrupadas pelos valores repetidos de X n n 1 ei 2 = (e i s de X n 2 1) 2 + (e i s de X 2) i=1 i=1 i=1 n m i=1 (e i s de X m) 2 = n m j (Y ij Ŷj) 2 j=1 i=1 = m n j (Ŷj Y j ) 2 j=1 } {{ } soma de quadrados da falta de ajuste + n m j (Y ij Y j ) 2 j=1 i=1 } {{ } soma de quadrados do erro puro

10 10 Vejamos porque essa decomposição é veradeira. Temos que Y ij Ŷj =(Y ij Y j ) (Ŷj Y j ). Elevando ao quadrado (Y ij Ŷj) 2 =(Y ij Y j ) 2 2(Ŷj Y j )(Y ij Y j )+(Ŷj Y j ) 2 Somando em j e em i ficamos com n m j (Y ij Ŷj) 2 = j=1 i=1 n m j (Y ij Y j ) 2 j=1 i=1 n m j n m j 2 (Ŷj Y j )(Y ij Y j )+ (Ŷj Y j ) 2 j=1 i=1 j=1 i=1

11 Observe que o termo (Ŷj Y j ) é constante em i logo n j (Ŷj Y j ) 2 = n j (Ŷj Y j ) 2. i=1 Então a decomposição fica n m j (Y ij Ŷj) 2 = j=1 i=1 n m j (Y ij Y j ) 2 j=1 i=1 n m j m 2 n j (Ŷj Y j ) (Y ij Y j )+ n j (Ŷj Y j ) 2 j=1 i=1 j=1

12 Vamos mostrar agora que n m j (Y ij Y j )n j (Ŷj Y j )=0 Temos que j=1 i=1 n m j (Y ij Y j )n j (Ŷj Y j )= j=1 i=1 masy j = n j i=1 Y ij n j e portanto n j n m j n j (Ŷj Y j ) (Y ij Y j ) j=1 (Y ij Y j )=0 i=1 isso implica que n m j (Y ij Y j )n j (Ŷj Y j )=0. j=1 i=1 i=1

13 13 Vamos usar a seguinte notação. SQFA soma de quadrados da falta de ajuste. SQEP soma de quadrados do erro puro. Vimos que o Coeficiente de Determinação é dado por R 2 = SQR SQT mas max R 2 = SQT SQEP SQT ou seja, na verdade, só poderá ser 1 se SQEP = 0. Portanto o verdadeiro valor do coeficiente de determinação é R 2 real = R2 max R 2.

14 Vejamos quantos graus de liberade têm cada uma das componentes. O termo n m j (Y ij Ŷj) 2 j=1 i=1 tem n 2 graus de liberbade pois precisamos estimar ˆβ 0 e ˆβ 1 Cada termo da soma n m j (Y ij Y j ) 2 j=1 i=1 tem n j 1 graus de liberdade pois n j i=1 (Y ij Y j )=0. Então o total de graus de liberdade é m m m (n j 1) = n j 1 = n m j=1 j=1 j=1

15 15 O número de graus de liberade do termo m n j (Ŷj Y j ) 2 j=1 é dado pela subtração dos outros dois (n 2) (n m) =m 2. Então os graus de liberdade de cada uma das parcelas ficam n m j (Y ij Ŷj) 2 = j=1 i=1 n m m j n j (Ŷj Y j ) 2 + (Y ij Y j ) 2 j=1 j=1 i=1 (n 1) =(m 2)+(n m)

16 16 A Tabela ANOVA fica da seguinte maneira Fonte Graus de Soma de Quadrado Estatística de Variação Liberdade Quadrados Médio F QMR Regressão 1 SQR QMR = SQR/1 S 2 Residual n 2 SQE QME = SQE (n 2) (Falta de Ajuste) (m-2) (SQFA) QMFA = SQFA m 2 (Erro Puro) (n-m) (SQEP) S 2 e = SQEP n m Total n 1 SQT Tabela: Tabela ANOVA QMFA S 2 e

17 Exemplo: Vamos considerar duas variáveis. A figura abaixo apresenta o gráfico de dipersão e a reta ajustada.

18 18 Exemplo: (continuação) Se o modelo está bem ajustado: a média de Y para um valor fixo de X deve ficar próxima do valor predito. Essa distância é dada pela soma da falta de ajuste: m n j (Ŷj Y j ) 2 j=1 } {{ } soma de quadrados da falta de ajuste Para esses dados, a soma é igual a m n j (Ŷj Y j ) 2 = j=1

19 19 Exemplo: (continuação) O restante da variação de Y é causada por erro aleatório n m j (Y ij Y j ) 2 j=1 i=1 } {{ } soma de quadrados do erro puro Para esses dados, a soma é igual a n m j (Y ij Y j ) 2 = 1148 j=1 i=1

20 20 Exemplo: (continuação) A decomposição da soma de quadrados fica n m j (Y ij Ŷj) 2 = j=1 i=1 Qual a conclusão? m n j (Ŷj Y j ) 2 j=1 } {{ } soma de quadrados da falta de ajuste = n m j (Y ij Y j ) 2 j=1 i=1 } {{ } soma de quadrados do erro puro A maior parte da variabilidade é devido a falta de ajuste. O modelo não está bem ajustado. Obsevamos isso pelo gráfico, a relação parece não ser linear.

21

22 Vejamos como usar essas informaçõe para testar se o modelo está bem ajustado. Queremos testar as seguintes hipóteses: H 0 : o modelo linear é adequado (não há falta de ajuste) H 1 : o modelo linear não é adequado (há falta de ajuste) A estatística de teste é dada por F = QMFA S 2 e que sob H 0 tem distribuição F m 2,n m.

23 23 Devemos rejeitar H 0 para valores altos ou baixos de F? Altos. Se F é grande, QMFA é grande, há falta de ajuste.

24 Exemplo: Considere os dados apresentados na tabela a seguir. O modelo ajustado é dado por onde ɛ i iid N(0,σ 2 ). Y i = 1, , 316X i + ɛ i

25 25 Exemplo: (continuação) A tabela ANOVA é apresentada a seguir. Fonte Graus de Soma de Quadrado Estatística de Variação Liberdade Quadrados Médio F QMR Regressão 1 SQR = QMR = 5499 = 7, 56 S 2 Residual 21 SQE = QME = Total 22 SQT = Tabela: Tabela ANOVA O valor crítico da Tabela F com α = 0, 05 é F 1,21 = 4, 325 (lembre que esse teste é unilateral!) Conlusão: Rejeitamos a hipótese de β 1 = 0.

26 26 Exemplo: (continuação) Vamos agora encontrar o valor do erro puro e falta de ajuste. Por exemplo para X = 1.3 temos que Y 1 = ( )2 2 = Logo 2 (Y i1 Y 1 )=( ) 2 +( ) 2 = 0, 125 i=1

27 Exemplo: (continuação) Repetindo essa conta para todos valores distintos de X obtemos os seguintes resultados:

28 28 Exemplo: (continuação) A Tabela ANOVA fica na forma: Fonte Graus de Soma de Quadrado Estatística de Variação Liberdade Quadrados Médio F QMR Regressão QMR = 5499 = 7, 56 S 2 Residual QME = (Falta de Ajuste) QMFA = (Erro Puro) Se 2 = Total Tabela: Tabela ANOVA com cálculo da Falta de Ajuste. QMFA S 2 e = 1.061

29 29 Exemplo: (continuação) Vamos testar as hipóteses: H 0 : o modelo linear é adequado (não há falta de ajuste) H 1 : o modelo linear não é adequado (há falta de ajuste) O valor observado para estatística de teste é F = QMFA S 2 e = sob H 0, F F 11,10. Usando α = 5% da tabela temos que F 11,10 = 2, 854. A região crítica é dada por F > 2, 854.

30 30 Exemplo: (continuação) Rejeitamos ou não H 0? Como 1.061< 2.854, não rejeitamos H 0. Conclusão: com 5% de significância temos evidência de que o modelo linear é adequado nesse caso, ou seja, não há falta de ajuste. Vamos agora calcular o Coeficiente de Determinação Real. Temos que R 2 = SQR SQT = = 0, max R 2 = SQT SQEP SQT = =

31 31 Exemplo: (continuação) O Coeficiente de Determinação Real é dado por: R 2 real = R2 0, 2674 = = 0, 4049 max R Conclusão:40,49% da variabilidade total dos dados pode ser explicada pelo modelo de regressão. Esse valor da uma idéia melhor do que foi alcançado pelo modelo dentro do que era possível.

32 32 Exemplo: (continuação) A figura a seguir mostra os dados coletados e a reta ajustada. Observe que: variação em torno da reta variação do Y para cada valor fixo de X

33 33 Exemplo: (continuação) Isso foi comprovado pelo teste de falta de ajuste. A variabilidade em torno da reta reflete a variabilidade intrínseca aos dados.

34 34 Exemplo: Foram analisados dados de 15 árvores. As variáveis observadas foram: altura e diâmetro da árvore. Vamos considerar Y = {altura da árvore} X = {diâmetro da árvore} Foram considerados 5 diâmetros distintos. Paraca cada valor de diâmetro foram registradas as alturas de 3 árvores. Qual valor de m?5 Qual valore de n 1, n 2, n 3?3 Qual valor de n? 15

35 35 Exemplo: (continuação) A figura a seguir apresenta os dados coletados.

36 36 Exemplo: (continuação) A figura a seguir mostra o gráfico de dispersão dos dados.

37 37 Exemplo: (continuação) O modelo ajustado foi o seguinte Y i = β 0 + β 1 X i + ɛ i A Tabela ANOVA é apresentada a seguir Analysis of Variance Table Response: Y Df Sum Sq Mean Sq F value Pr(>F) X e-07 *** Residuals Lack of fit * Pure Error

38 38 Exemplo: (continuação) Quais conclusões podem ser retiradas a partir dessa tabela? Para testar as hipóteses devemos rejeitar H 0. H 0 : β 1 = 0 H 1 : β = 0 Conclusão: com 5% de significância há evidências de que o diâmetro da árvore é significativo para explicar sua altura.

39 39 Exemplo: (continuação) Vamos testar agora falta de ajuste. As hipóteses a serem testadas são H 0 : o modelo não possui falta de ajuste H 1 : o modelo não possui falta de ajuste Rejeitamos ou não H 0? Rejeitamos. Conclusão: O modelo linear não parece ser adequado nesse caso.

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 21 de Junho de 2013 3 Uma outra medida usada para verificar o ajuste do modelo. Essa estatística é dada por X

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

Teste de hipótese em modelos normais lineares: ANOVA

Teste de hipótese em modelos normais lineares: ANOVA Teste de hipótese em modelos normais lineares: ANOVA Prof Caio Azevedo Prof Caio Azevedo Exemplo 1 No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar

Leia mais

REGRESSÃO LINEAR Parte I. Flávia F. Feitosa

REGRESSÃO LINEAR Parte I. Flávia F. Feitosa REGRESSÃO LINEAR Parte I Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2015 Onde Estamos Para onde vamos Inferência Esta5s6ca se resumindo a uma equação

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Teste F-parcial 1 / 16

Teste F-parcial 1 / 16 Teste F-parcial Ingredientes A hipótese nula, H 0, define o modelo restrito. A hipótese alternativa, H a : H 0 é falsa, define o modelo irrestrito. SQR r : soma de quadrado dos resíduos associada à estimação

Leia mais

Teste F-parcial 1 / 16

Teste F-parcial 1 / 16 Teste F-parcial A hipótese nula, H 0, define o modelo restrito. Ingredientes SQR r : soma de quadrado dos resíduos sob H 0. R 2 r: coeficiente de determinação sob H 0. g: número de restrições a serem testadas

Leia mais

Disciplina de Modelos Lineares

Disciplina de Modelos Lineares Disciplina de Modelos Lineares 2012-2 Seleção de Variáveis Professora Ariane Ferreira Em modelos de regressão múltipla é necessário determinar um subconjunto de variáveis independentes que melhor explique

Leia mais

EXPERIMENTOS COM INTERAÇÕES

EXPERIMENTOS COM INTERAÇÕES EXPERIMENTOS COM INTERAÇÕES Na maioria dos experimentos, os tratamentos são de efeitos fixos. Mas também são realizados experimentos em que os efeitos dos tratamentos são aleatórios. 1 Para saber se, em

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto Introdução 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2.

Leia mais

Análise da Regressão. Prof. Dr. Alberto Franke (48)

Análise da Regressão. Prof. Dr. Alberto Franke (48) Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas

Leia mais

Investigação Aplicada I

Investigação Aplicada I Investigação Aplicada I Aula 7 1º Semestre 2016/17 Licenciatura em Ciências Biomédicas Laboratoriais igrodrigues@ualg.pt; ESSUAlg: gabinete 2.06 Prof. Inês Rodrigues Inferência esta-s.ca Inferir dados

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

Gabarito Trabalho 1. onde 1 refere-se ao salário quando a variável branco = 1. Teremos, então:

Gabarito Trabalho 1. onde 1 refere-se ao salário quando a variável branco = 1. Teremos, então: Professor: Eduardo Pontual Monitor: Tiago Souza Econometria MFEE Gabarito Trabalho 1 Exercício 1 Queremos estimar a diferença salarial entre trabalhadores brancos e não brancos. Assim, calcularemos a diferença

Leia mais

ANOVA - parte I Conceitos Básicos

ANOVA - parte I Conceitos Básicos ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução

Leia mais

DELINEAMENTO EM BLOCOS AO ACASO

DELINEAMENTO EM BLOCOS AO ACASO DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

Planejamento de Experimentos

Planejamento de Experimentos Planejamento de Experimentos Analise de Variância (ANOVA) com um Fator Planejamento de Experimentos Muitas vezes é necessário obter informações sobre produtos e processos empiricamente. Trabalho assemelha-se

Leia mais

Ajuste por mínimos quadrados no Scilab

Ajuste por mínimos quadrados no Scilab Ajuste por mínimos quadrados no Scilab O ajuste por mínimos quadrados é uma regressão linear nos parâmetros (eles podem ser arranjados na equação de regressão na forma de um único vetor) que tem sua eficiância

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

AULAS 14 E 15 Modelo de regressão simples

AULAS 14 E 15 Modelo de regressão simples 1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem

Leia mais

EXPERIMENTAÇÃO AGRÁRIA

EXPERIMENTAÇÃO AGRÁRIA EXPERIMENTAÇÃO AGRÁRIA Tema : Delineamentos experimentais básicos (DCC/DBCC/DQL) Delineamento de Blocos Completos Casualizados (DBCC) Quando usar? Quando as unidades experimentais não apresentam características

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 2 de Agosto de 2013 3 Modelos de Poisson podem ser usados para analisar tabelas de contingência.

Leia mais

REGRESSÃO LINEAR SIMPLES PARTE III

REGRESSÃO LINEAR SIMPLES PARTE III REGRESSÃO LINEAR SIMPLES PARTE III Instalando e usando a opção Regressão do Excel. Francisco Cavalcante(f_c_a@uol.com.br) Administrador de Empresas graduado pela EAESP/FGV. É Sócio-Diretor da Cavalcante

Leia mais

Modelos de Regressão Múltipla - Parte VIII

Modelos de Regressão Múltipla - Parte VIII 1 Modelos de Regressão Múltipla - Parte VIII Erica Castilho Rodrigues 15 de Fevereiro de 2017 2 3 Observações não usuais 4 As observações não usuais podem ser: Outliers: não se ajustam bem ao modelo (resíduo

Leia mais

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Contexto Já vimos como analisar um experimento em blocos na presença de um único fator de interesse. Podemos ter experimentos

Leia mais

Testes de Hipóteses sobre a média: Várias Amostras

Testes de Hipóteses sobre a média: Várias Amostras Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

Introdução ao modelo de Regressão Linear

Introdução ao modelo de Regressão Linear Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Local: Sala dos professores (junto ao administrativo)

Leia mais

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno ANOVA FACTORIAL Quando a variável dependente é influenciada por mais do que uma variável independente (Factor) estamos interessados em estudar o efeito não só de cada um dos factores mas e também a possível

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

EXCEL NA ANÁLISE DE REGRESSÃO

EXCEL NA ANÁLISE DE REGRESSÃO EXCEL NA ANÁLISE DE REGRESSÃO _2010_03_Exercicio _Regressão_exemplo O gerente de uma loja de artigos escolares, cada semana, deve decidir quanto gastar com propaganda e que atrativo (por exemplo preços

Leia mais

Inferência para várias populações normais análise de variância (ANOVA)

Inferência para várias populações normais análise de variância (ANOVA) Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues

Leia mais

CAPÍTULO IV Análise de variância

CAPÍTULO IV Análise de variância CAPÍTULO IV Análise de variância O objectivo principal da análise de variância (analysis of variance - ANOVA) é a comparação de mais do que dois grupos no que diz respeito à localização. Para exemplificar,

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER 202 - ANO 2016. Análise de Variância (ANOVA)

Estatística: Aplicação ao Sensoriamento Remoto SER 202 - ANO 2016. Análise de Variância (ANOVA) Estatística: Aplicação ao Sensoiamento Remoto SER 0 - ANO 016 Análise de Vaiância (ANOVA) Camilo Daleles Rennó camilo@dpi.inpe.b http://www.dpi.inpe.b/~camilo/estatistica/ Compaando-se médias de duas populações

Leia mais

Relatório do Experimento 1 Sistema Massa - Mola. Fernando Henrique Ferraz Pereira da Rosa

Relatório do Experimento 1 Sistema Massa - Mola. Fernando Henrique Ferraz Pereira da Rosa FEP0111 - Física I Relatório do Experimento 1 Sistema Massa - Mola Fernando Henrique Ferraz Pereira da Rosa 4 de novembro de 2005 Sumário 1 Introdução 2 2 Objetivos 2 3 Procedimento experimental 2 3.1

Leia mais

- Testes Qui-quadrado. - Aderência e Independência

- Testes Qui-quadrado. - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: 1 Genética Equilíbrio

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Instituto Federal Goiano

Instituto Federal Goiano e simples e Instituto Federal Goiano e Conteúdo simples 1 2 3 4 5 simples 6 e simples Associação entre duas variáveis resposta Exemplos: altura de planta e altura da espiga, teor de fósforo no solo e na

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Regressão linear simples

Regressão linear simples Regressão liear simples Maria Virgiia P Dutra Eloae G Ramos Vaia Matos Foseca Pós Graduação em Saúde da Mulher e da Criaça IFF FIOCRUZ Baseado as aulas de M. Pagao e Gravreau e Geraldo Marcelo da Cuha

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Planejamento de Experimentos

Planejamento de Experimentos Planejamento de Experimentos 6. Os Modelos fatoriais 2 k Trataremos agora de um caso especial de experimentos fatoriais no qual todos os fatores têm apenas dois níveis. Tais níveis podem ser quantitativos

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB DISCIPLINA BIOEXPERIMENTAÇÃO Exercício de experimento fatorial resolução passo-à-passo Os dados apresentados abaixo são uma adaptação do exemplo apresentado por Banzato e Kronka (199) Os dados são valores

Leia mais

Análise de Variância (ANOVA)

Análise de Variância (ANOVA) Análise de Variância (ANOVA) A Regressão Linear visa modelar uma variável resposta numérica (quantitativa), à custa de uma ou mais variáveis preditoras, igualmente numéricas. Mas uma variável resposta

Leia mais

Testes de Aderência Testes de Independência Testes de Homogeneidade

Testes de Aderência Testes de Independência Testes de Homogeneidade Testes de Aderência Testes de Independência Testes de Homogeneidade 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Genética

Leia mais

AULA 05 Análise de regressão múltipla: inferência

AULA 05 Análise de regressão múltipla: inferência 1 AULA 05 Análise de regressão múltipla: inferência Ernesto F. L. Amaral 19 de julho de 2013 Análise de Regressão Linear (MQ 2013) www.ernestoamaral.com/mq13reg.html Fonte: Wooldridge, Jeffrey M. Introdução

Leia mais

Teste de Cochran (Homogeneidade de Variância)

Teste de Cochran (Homogeneidade de Variância) ara o modelo heterocedástico, vamos inicialmente testar as hipóteses Os métodos mais utilizados são os testes de Cochran, Bartlett e de Levene. Teste de Cochran (Homogeneidade de Variância) O teste de

Leia mais

Testes de hipóteses Paramétricos

Testes de hipóteses Paramétricos Testes de hipóteses Paramétricos Modelos de análise de variância com um factor Teste de Bartlett Teste de comparações múltiplas de Scheffé Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 1

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples. Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty

Leia mais

Especialização em Engenharia de Processos e de Sistemas de Produção

Especialização em Engenharia de Processos e de Sistemas de Produção Especialização em Engenharia de Processos e de Sistemas de Produção Projetos de Experimento e Confiabilidade de Sistemas da Produção Prof. Claudio Luis C. Frankenberg 2ª parte Experimentos inteiramente

Leia mais

9 Regressão linear simples

9 Regressão linear simples 9 Regressão linear simples José Luis Duarte Ribeiro Carla ten Caten COMENTÁRIOS INICIAIS Em muitos problemas há duas ou mais variáveis que são relacionadas e pode ser importante modelar essa relação. Por

Leia mais

Métodos Quantitativos

Métodos Quantitativos Métodos Quantitativos Unidade 4. Estatística inferencial Parte II 1 Sumário Seção Slides 4.1 Correlação entre variáveis quantitativas 03 11 4.2 Teste de significância 12 19 4.3 Regressão linear 20 27 4.4

Leia mais

Correlação e Regressão Linear

Correlação e Regressão Linear Correlação e Regressão Linear Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais CORRELAÇÃO LINEAR Coeficiente de correlação linear r Mede o grau de relacionamento linear entre valores

Leia mais

Regressão linear múltipla. Prof. Tatiele Lacerda

Regressão linear múltipla. Prof. Tatiele Lacerda Regressão linear múltipla Prof Tatiele Lacerda Yi = B + Bx + B3X3 + u Plano de resposta E(Y i ) = 0,00 Y i i 0 (,33;,67) Y i 0 X i Xi X p i, p i 3 Modelo de regressão linear múltipla em termos matriciais,

Leia mais

Econometria Semestre

Econometria Semestre Econometria Semestre 2010.01 174 174 21.4. PROCESSOS ESTOCÁSTICOS INTEGRADOS O passeio aleatório é apenas um caso particular de uma classe de processos estocásticos conhecidos como processos integrados.

Leia mais

Experimento 4: Roteiro básico para uso do programa Origin

Experimento 4: Roteiro básico para uso do programa Origin Experimento 4: Roteiro básico para uso do programa Origin Jorge Diego Marconi/Luís E. E. de Araujo Para usar o programa Origin em suas versões 6.0 ou 7.0 siga os seguintes passos: Abra o programa; você

Leia mais

Regressão Linear. Prof. Dr. Leandro Balby Marinho. Análise de Dados II. Introdução Regressão Linear Regressão Múltipla

Regressão Linear. Prof. Dr. Leandro Balby Marinho. Análise de Dados II. Introdução Regressão Linear Regressão Múltipla Regressão Linear Prof. Dr. Leandro Balby Marinho Análise de Dados II Prof. Leandro Balby Marinho 1 / 36 UFCG DSC Roteiro 1. Introdução 2. Regressão Linear 3. Regressão Múltipla Prof. Leandro Balby Marinho

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV TESTES DE COMPARAÇÕES MÚLTIPLAS DE MÉDIAS EXPERIMENTAIS Profª Railene Hérica Carlos

Leia mais

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES

Leia mais

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20%

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20% 0. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Poder do teste e determinação do tamanho da amostra:pca & PBC

Poder do teste e determinação do tamanho da amostra:pca & PBC Poder do teste e determinação do tamanho da amostra:pca & PBC Relembrando: α = probabilidade do erro do tipo I: P(Rejeitar H 0 H 0 é verdadeira). β = probabilidade do erro do tipo II: P(Não rejeitar H

Leia mais

- Testes Qui-quadrado - Aderência e Independência

- Testes Qui-quadrado - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista

Leia mais

II.3. Análise de Variância (ANOVA)

II.3. Análise de Variância (ANOVA) II.3. Análise de Variância (ANOVA) A Regressão Linear visa modelar uma variável resposta numérica (quantitativa), à custa de uma ou mais variáveis preditoras, igualmente numéricas. Mas uma variável resposta

Leia mais

OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1

OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1 Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE Instituto de Matemática, Estatística e Física Programa de Pós-Graduação em Modelagem Computacional

UNIVERSIDADE FEDERAL DO RIO GRANDE Instituto de Matemática, Estatística e Física Programa de Pós-Graduação em Modelagem Computacional UNIVERSIDADE FEDERAL DO RIO GRANDE Instituto de Matemática, Estatística e Física Programa de Pós-Graduação em Modelagem Computacional MINICURSO DE CORRELAÇÃO, REGRESSÃO LINEAR SIMPLES E ANOVA Ministrantes:

Leia mais

Modelos Lineares Generalizados - Métodos de Estimação

Modelos Lineares Generalizados - Métodos de Estimação Modelos Lineares Generalizados - Métodos de Estimação Erica Castilho Rodrigues 07 de Abril de 2014 3 Componentes dos MLG s Os MLG s são compostos por duas partes: componente sistemático e componente aleatório.

Leia mais

Estatística aplicada ao Melhoramento animal

Estatística aplicada ao Melhoramento animal Qual é a herdabilidade para uma característica? Qual é a variabilidade de desempenho para essa característica? Selecionando para a característica X, característica Y será afetada? Como predizer os valores

Leia mais

AULAS 25 E 26 Heteroscedasticidade

AULAS 25 E 26 Heteroscedasticidade 1 AULAS 25 E 26 Heteroscedasticidade Ernesto F. L. Amaral 10 e 15 de junho de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais

Teste de Hipótese e Intervalo de Confiança

Teste de Hipótese e Intervalo de Confiança Teste de Hipótese e Intervalo de Confiança Suponha que estamos interessados em investigar o tamanho da ruptura em um músculo do ombro... para determinar o tamanho exato da ruptura, é necessário um exame

Leia mais

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm

Leia mais

Medidas de associação entre duas variáveis qualitativas

Medidas de associação entre duas variáveis qualitativas Medidas de associação entre duas variáveis qualitativas Hoje vamos analisar duas variáveis qualitativas (categóricas) conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos

Leia mais

AULAS 20 E 21 Modelo de regressão simples

AULAS 20 E 21 Modelo de regressão simples 1 AULAS 20 E 21 Modelo de regressão simples Ernesto F. L. Amaral 22 e 24 de outubro de 2013 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem moderna.

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Inferência Estatística. 1 Amostra Aleatória. Baseado nos slides cedidos pelo Professor Vinícius D. Mayrink (DEST-UFMG)

Inferência Estatística. 1 Amostra Aleatória. Baseado nos slides cedidos pelo Professor Vinícius D. Mayrink (DEST-UFMG) Inferência Estatística 1 Amostra Aleatória Baseado nos slides cedidos pelo Professor Vinícius D. Mayrink (DEST-UFMG) O que é Inferência Estatística? Desconhecimento, incerteza Fenômenos/experimentos: determinísticos

Leia mais

Testes de variância e Análise de Variância (ANOVA)

Testes de variância e Análise de Variância (ANOVA) Testes de variância e Análise de Variância (ANOVA) Introdução à Inferência Estatística Introdução à Inferência Estatística TESTE DE VARIÂNCIAS E DISTRIBUIÇÃO F Testes sobre variâncias Problema: queremos

Leia mais

AULA 11 Heteroscedasticidade

AULA 11 Heteroscedasticidade 1 AULA 11 Heteroscedasticidade Ernesto F. L. Amaral 30 de julho de 2012 Análise de Regressão Linear (MQ 2012) www.ernestoamaral.com/mq12reg.html Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

Planejamento e Pesquisa 1. Dois Grupos

Planejamento e Pesquisa 1. Dois Grupos Planejamento e Pesquisa 1 Dois Grupos Conceitos básicos Comparando dois grupos Testes t para duas amostras independentes Testes t para amostras pareadas Suposições e Diagnóstico Comparação de mais que

Leia mais

REGRESSÃO LINEAR SIMPLES PARTE II

REGRESSÃO LINEAR SIMPLES PARTE II REGRESSÃO LINEAR SIMPLES PARTE II Erro Padrão de Estimativa. Correlação. Francisco Cavalcante(f_c_a@uol.com.br) Administrador de Empresas graduado pela EAESP/FGV. É Sócio-Diretor da Cavalcante Associados,

Leia mais

Estudo sobre a aplicação da Análise de Variância. Augusto Sousa da Silva Filho 1

Estudo sobre a aplicação da Análise de Variância. Augusto Sousa da Silva Filho 1 Estudo sobre a aplicação da Análise de Variância Augusto Sousa da Silva Filho 1 Resumo: A análise de variância é um teste estatístico amplamente difundido entre os analistas, e visa fundamentalmente verificar

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Medidas Descritivas de Posição, Tendência Central e Variabilidade

Medidas Descritivas de Posição, Tendência Central e Variabilidade Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 27 de Março de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Sumário 1 Introdução

Leia mais

MAT146 - Cálculo I - Cálculo de Áreas

MAT146 - Cálculo I - Cálculo de Áreas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Anteriormente, definimos a área de uma região plana como sendo o limite de uma soma de Riemann e que tal limite é uma integral definida.

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Análise de Regressão Múltipla: Mínimos Quadrados Ordinários

Análise de Regressão Múltipla: Mínimos Quadrados Ordinários 1 Análise de Regressão Múltipla: Mínimos Quadrados Ordinários Ernesto F. L. Amaral Magna M. Inácio 26 de agosto de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica

Leia mais

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

DELINEAMENTO EM BLOCOS CASUALIZADOS (DBC) Mario de Andrade Lira Junior

DELINEAMENTO EM BLOCOS CASUALIZADOS (DBC) Mario de Andrade Lira Junior DELINEAMENTO EM BLOOS ASUALIZADOS (DB) Mario de Andrade Lira Junior GENERALIDADES Delineamento mais comum em ciências agrárias Delineamento mais simples com controle local Só usar quando confiar que pode

Leia mais

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Medidas Descritivas de Posição, Tendência Central e Variabilidade

Medidas Descritivas de Posição, Tendência Central e Variabilidade Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 24 de Agosto de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Local: Sala dos professores

Leia mais

Análise de Variância a um factor

Análise de Variância a um factor 1 Análise de Variância a um factor Análise de experiências com vários grupos de observações classificados através de um só factor (por exemplo grupos de indivíduos sujeitos a diferentes tratamentos para

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se

Leia mais

Respostas Aula 1 (POTI) = Produtos Notáveis

Respostas Aula 1 (POTI) = Produtos Notáveis Respostas Aula 1 (POTI) = Produtos Notáveis 01. CPM 010. Alternativa B. (a b) +(a+b) a (a+b) (a b) (a+b) = a ab+b +a +ab+b a b a +ab+b a +b = ab+b = b b (a+b) = b a+b 0. Ora: (x + xy + y ) = (x + y) =

Leia mais