Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Tamanho: px
Começar a partir da página:

Download "Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa"

Transcrição

1 2011

2 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante o nível de significância fixado.

3 Erros de Decisão Ao tomar uma decisão no teste de hipóteses, uma das situações do quadro abaixo irá ocorrer: Rejeita H 0 Não Rejeita H 0 H 0 verdadeira Erro Tipo I Figura: Erros de Decisão H a verdadeira Erro Tipo II

4 O nível de significância α Definição O nível de significância α é a probabilidade de ocorrer um erro do tipo I. Esta probabilidade, assim como o nível de confiança na construção de um intervalo, é fixada. Os valores usuais para o nível de significância são: α = 0, 01 α = 0, 05 α = 0, 10

5 Estatística do Teste A estatística do teste é a função da amostra que levará a decisão a respeito das hipóteses formuladas. No teste de hipóteses sobre a média populacional, a estatística do teste será X que é o melhor estimador para µ. Para aplicar o teste de hipóteses devemos conhecer a distribuição de probabilidades da estatística do teste.

6 Valor-p : O nível descritivo do teste A forma tradicional de tomar a decisão a respeito das hipóteses de um teste de hipótese é pelo cálculo do p-valor(ou valor-p), também conhecido como nível descritivo do teste. Definição: O valor-p é a probabilidade de ocorrer, na estatística do teste, valores mais extremos do que o ocorrido na amostra,assumindo que a hipótese nula é verdadeira.

7 para 1 amostra para 2 amostras pareadas para 2 amostras independentes para duas variâncias conhecidas para duas variâncias desconhecidas e iguais para duas variâncias desconhecidas e desiguais

8 O teste t para 1 Amostra O teste t para uma amostra é aplicado quando se deseja testar a hipótese de que a média da população (µ) é igual a um hipotético valor µ 0. H 0 : µ = µ 0 H 1 : µ µ 0 ou µ < µ 0 ou µ > µ 0

9 teste t para 1 amostra - Estatística do teste t n 1 = X µ 0 S n O termo S n é chamado de erro padrão amostral. Ele mostra o quanto a variabilidade na amostra de tamanho n pode trazer de incerteza para a distância ( X µ 0 ).

10 Exemplo do teste t para 1 Amostra Os dados a seguir representam uma amostra de tamanho 15 da variável X : circunferência da cabeça de um recém-nascido. Nesta situação, o desejo é fazer inferência sobre µ, a circunferência média de uma população de recém nascidos. 33,38 32,15 33,99 34,10 33,97 34,34 33,95 33,85 34,23 32,73 33,46 34,13 34,45 34,19 34,05 Um estudo afirma que esta circunferência é igual a 34,5 mm. Em função dela, desejamos testar o par de hipóteses: H 0 : µ = 34, 5. H 1 : µ 34, 5

11 Exemplo do teste t para 1 Amostra 33,38 32,15 33,99 34,10 33,97 34,34 33,95 33,85 34,23 32,73 33,46 34,13 34,45 34,19 34,05 O resumo necessário para a aplicação do teste é constituído pela média amostral x, a variância amostral S 2 e o tamanho da amostra n.

12 Exemplo do teste t para 1 Amostra 33,38 32,15 33,99 34,10 33,97 34,34 33,95 33,85 34,23 32,73 33,46 34,13 34,45 34,19 34,05 x = 33, 798 S 2 = 0, 3973 n = 15

13 Exemplo do teste t para 1 Amostra 33,38 32,15 33,99 34,10 33,97 34,34 33,95 33,85 34,23 32,73 33,46 34,13 34,45 34,19 34,05 Cálculo da estatística do teste para a amostra observada: t 14 = X µ 0 S n = 33, , 5 0, t 14 obs = 4, 3136

14 O teste t para 2 Amostras Pareadas O teste t para duas amostras é aplicado quando se deseja testar a hipótese de que a diferença média entre os pares na população (µ d ) é igual a um hipotético valor µ 0. Repare que esta é uma situação similar ao teste para uma amostra, entretanto a variável que está sendo analisada é resultado da diferença entre duas variáveis aleatórias. Ou seja, nosso interesse é fazer inferência sobre a média(µ d ) da quantidade d = X 1 X 2 H 0 : µ d = µ 0 H 1 : µ d µ 0 ou µ d < µ 0 ou µ d > µ 0

15 O teste t para 2 Amostras Pareadas O teste t para duas amostras pareadas é aplicado quando se deseja testar a hipótese de que a diferença média entre os pares na população (µ d ) é igual a um hipotético valor µ 0. Repare que esta é uma situação similar ao teste para uma amostra, entretanto a variável que está sendo analisada é função da diferença entre duas variáveis aleatórias. Ou seja, nosso interesse é fazer inferência sobre a média(µ d ) da quantidade D = X 1 X 2. H 0 : µ d = µ 0 H 1 : µ d µ 0 ou µ d < µ 0 ou µ d > µ 0

16 O teste t para 2 Amostras Pareadas - Estatística do Teste t n 1 = D µ 0 S D n D: média amostral das diferenças S D = n i=1 (D i D) 2 :desvio padrão amostral das diferenças n 1

17 O para 2 amostras pareadas Exemplo: Um grupo de de n = 9 pessoas registram seus pesos em kilogramas, antes e depois de uma dieta. Dieta Antes Depois Depois - Antes

18 Cálculo da Estatística do Teste A estatística do teste é o valor que vai nos levar à decisão. t 8 = D µ 0 = n S D 5 t 8 obs = 2 O valor observado da estatística deve ser comparado com valores críticos( pouco prováveis sob H 0 ) em uma tabela t de Student com n 1 = 8 graus de liberdade. 9

19 Cálculo do p-valor do teste O p-valor é a probabilidade de obter uma valor tão ou mais extremo (em direção aos valores da hipótese alternativa H 1 ) do que o observado na amostra. Suponha que no exemplo anterior H 1 : µ D < 0. O p-valor será calculado como P(t 8 < 2). Caso a hipótese alternativa seja bilateral H 1 : µ D 0, o p-valor será a probabilidade de P( t 8 > 2) = 1 P( 2 < t 8 < 2).

20 O teste t para duas amostras independentes O teste t para duas amostras independentes vai verificar a hipótese de que a diferença entre as médias de duas populações é igual a µ 0. As hipóteses são estabelecidas da seguinte maneira: H 0 : µ 1 µ 2 = µ 0 H 1 : µ 1 µ 2 µ 0 ou µ 1 µ 2 < µ 0 ou µ 1 µ 2 > µ 0

21 O teste t para duas amostras independentes A estatística de teste neste caso segue a distribuição t de Student, entretanto a quantidade de graus de liberdade vai depender da relação entre as variâncias das duas populações, repare que estas também são desconhecidas. t n1+n2 2 = X 1 X 2 µ 0 Erro Padrão de ( X 1 X 2 )

22 Erro padrão de X 1 X 2 Caso 1 - Variâncias Desconhecidas e Iguais S p 1 n n 2 S 2 p = (n 1 1)S (n 2 1)S 2 2 (n 1 + n 2 ) Caso 2 - Variâncias Desconhecidas e Desiguais S 2 1 n 1 + S 2 2 n 2

23 Graus de Liberdade Para o caso de variâncias iguais, o número de graus de liberdade da estatística t de Student é igual a n 1 + n 2 2. Para variâncias desiguais, existe um cálculo especial para o número de graus de liberdade, que não será apresentado neste material. Quando ambos n 1 e n 2 são maiores que 15, não há grande prejuízo em buscar valores críticos na distribuição normal padrão (z).

24 Exemplo Foram comparados tempos de resolução, nos casos de óbito intra-uterino ocorridos no segundo trimestre de gestação, para gestantes submetidas ao misoprostol administrado por vias diferentes. Via Oral Vaginal

25 Exemplo Via Oral Vaginal Grupo Média Variância Amostra Oral (1) x 1 =17,333 S1 2 = 52,5667 n 1 =6 Vaginal(2) x 2 =17,875 S2 2 =59,839 n 2 =8

26 Calculando da estatística do teste, supondo as variâncias diferentes Grupo Média Variância Amostra Oral (1) x 1 =17,333 S 2 1 = 52,5667 n 1 =6 Vaginal(2) x 2 =17,875 S 2 2 =59,839 n 2 =8 t n1+n2 2 = x 1 x 2 S1 2 + S 2 2 n 1 n 2 17, , 875 t n1+n2 2 obs = = 0, , , Comparando o valor observado da estatística t com valores tabelados para n 1 + n 2 2 = 12 graus de liberdade, chegamos à conclusão de que não há evidência de diferença entre os dois tratamentos.

27 Análise de Variância Uma extensão do teste de comparação de duas médias ocorre quando há 3 ou mais grupos de interesse. Nestes casos, o procedimento utilizado é o da Análise de Variância que é utilizado para testar o par de hipóteses : H 0 : µ 1 = µ 2 =... = µ g H 1 : há pelo menos uma diferença entre as médias

28 Decomposição da Variância Variação Total = Variação explicada pelos Tratamentos + Variação não explicada SQT = SQTr + SQR SQT : Soma dos Quadrados Totais SQTr : Soma dos Quadrados dos Tratamentos SQR : Soma dos Quadrados dos Resíduos

29 Componentes da Variância g r SQT = (Y ij Ȳ ) 2 j =1 i=1 g SQTr = (Ȳ j Ȳ ) 2 j =1 g r SQR = (Y ij Ȳ j ) 2 j =1 i=1 g : número de grupos r : número de replicações (observações dentro de cada grupo) O tamanho de amostra total é n = r g.

30 Estimadores das Variâncias Quadrado Médio Total (Variância de Y ) S 2 = SQT n 1 Quadrado Médio de Tratamentos Quadrado Médio de Resíduos QMTr = SQTr g 1 QMR = SQR n g

31 Estatística F A estatística do teste na Análise de Variância segue a distribuição F de Snedecor. F (g 1,n g) = QMTr QMR Valores altos desta estatística fornecem evidências a favor da hipótese H 1, ou seja, as médias diferem conforme os tratamentos.

32 Exemplo - Análise de Variância (Bussab e Morettin,2004) Num experimento sobre a eficácia de regimes para emagrecer, homens, todos pesando cerca de 100kg e de biotipos semelhantes, são submetidos a 3 regimes. Após um mês, verifica-se a perda de peso de cada indivíduo obtendo-se os valores na tabela abaixo. Regime Tipo 1 Tipo 2 Tipo 3 11,8 7,4 10,5 10,5 9,7 11,2 12,5 8,2 11,8 12,3 7,2 13,1 15,5 8,6 14,0 11,4 7,1 9,8

33 perda de peso regime

34 Componentes da Variância SQT = 97.3 SQTr = SQR = g = 3 r = 6 n = 18.

35 Estimadores das Variâncias Quadrado Médio Total (Variância de Y ) S 2 = Quadrado Médio de Tratamentos QMTr = Quadrado Médio de Resíduos QMR = F 2,15 = pvalor = Decisão: Há evidências a favor de H 1

36 R 2 O valor da estatística F está diretamente ligado com o coeficiente de determinação amostral R 2. R 2 = 1 SQTr SQT =

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p

Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p Inferência Estatística Básica Teste de Hipóteses para uma média populacional Cálculo do Valor p Exemplo 1 Um restaurante compra frangos abatidos inteiros com peso médio de 3 Kg há vários anos de um mesmo

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

DELINEAMENTO EM BLOCOS AO ACASO

DELINEAMENTO EM BLOCOS AO ACASO DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Parte 8 Testes de hipóteses Comparação de dois grupos

Parte 8 Testes de hipóteses Comparação de dois grupos Parte 8 Testes de hipóteses Comparação de dois grupos Um objetivo frequente em estudos de diferentes áreas é a comparação de dois ou mais grupos (ou populações). Alguns exemplos: o Comparação dos salários

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Investigação Aplicada I

Investigação Aplicada I Investigação Aplicada I Aula 7 1º Semestre 2016/17 Licenciatura em Ciências Biomédicas Laboratoriais igrodrigues@ualg.pt; ESSUAlg: gabinete 2.06 Prof. Inês Rodrigues Inferência esta-s.ca Inferir dados

Leia mais

Teste de hipóteses para uma média populacional com variância conhecida e desconhecida

Teste de hipóteses para uma média populacional com variância conhecida e desconhecida Teste de hipóteses para uma média populacional com variância conhecida e desconhecida Teste de hipóteses para uma média populacional com variância conhecida Tomando-se como exemplo os dados de recém-nascidos

Leia mais

Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas).

Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas). Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas). Na comparação de duas populações, dispomos de duas amostras, em

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. TESTES DE HIPÓTESES HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. HIPÓTESES ESTATÍSTICA: Hipótese Nula (H 0 ): a ser validada pelo teste.

Leia mais

Métodos Quantitativos

Métodos Quantitativos Métodos Quantitativos Unidade 3 Estatística inferencial parte I Prof. Me. Diego Fernandes 1 Sumário Seção Slides 3.1 Noções de probabilidade 03 21 3.2 Distribuição dos estimadores 22 41 3.3 e 3.4 - Testes

Leia mais

Análise da Variância. Prof. Dr. Alberto Franke (48)

Análise da Variância. Prof. Dr. Alberto Franke (48) Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Análise da Regressão. Prof. Dr. Alberto Franke (48)

Análise da Regressão. Prof. Dr. Alberto Franke (48) Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Distribuição T - Student. Prof. Herondino S. F.

Distribuição T - Student. Prof. Herondino S. F. Distribuição T - Student Prof. Herondino S. F. Distribuição T-Student A distribuição T de Student é uma distribuição de probabilidade estatística, publicada por um autor que se chamou de Student, pseudônimo

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

TESTES NÃO PARAMÉTRICOS (para mediana/média)

TESTES NÃO PARAMÉTRICOS (para mediana/média) MAE212: Introdução à Probabilidade e à Estatística II - Profas. Beti e Chang (2012) 1 TESTES NÃO PARAMÉTRICOS (para mediana/média) Os métodos de estimação e testes de hipóteses estudados até agora nessa

Leia mais

Testes de Hipóteses sobre a média: Várias Amostras

Testes de Hipóteses sobre a média: Várias Amostras Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia 1 / 44 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Referência: Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 2 / 44

Leia mais

Princípios de Bioestatística Teste de Hipóteses

Princípios de Bioestatística Teste de Hipóteses 1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância

Leia mais

Especialização em Engenharia de Processos e de Sistemas de Produção

Especialização em Engenharia de Processos e de Sistemas de Produção Especialização em Engenharia de Processos e de Sistemas de Produção Projetos de Experimento e Confiabilidade de Sistemas da Produção Prof. Claudio Luis C. Frankenberg 2ª parte Experimentos inteiramente

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV TESTES DE COMPARAÇÕES MÚLTIPLAS DE MÉDIAS EXPERIMENTAIS Profª Railene Hérica Carlos

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou Testes de Hipóteses Professor: Josimar Vasconcelos Contato: josimar@ufpi.edu.br ou josimar@uag.ufrpe.br http://prof-josimar.blogspot.com.br/ Universidade Federal do Piauí UFPI Campus Senador Helvídio Nunes

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses TESTE

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Amostragem estratificada Divisão da população em

Leia mais

ANOVA - parte I Conceitos Básicos

ANOVA - parte I Conceitos Básicos ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I 8/8/05 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 8/08/05 06:55 ESTATÍSTICA APLICADA

Leia mais

Inferência Estatística:

Inferência Estatística: Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Estimação de Parâmetros O objetivo da Estatística Indutiva é tirar conclusões probabilísticas sobre aspectos da população,

Leia mais

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Cap. 11 Testes de comparação entre duas amostras

Cap. 11 Testes de comparação entre duas amostras Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 006 Cap. 11 Testes de comparação entre duas amostras Planejamento da pesquisa e análise estatística

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Teste de Hipóteses. Enrico A. Colosimo/UFMG enricoc/ Depto. Estatística - ICEx - UFMG 1/24

Teste de Hipóteses. Enrico A. Colosimo/UFMG  enricoc/ Depto. Estatística - ICEx - UFMG 1/24 1/24 Introdução à Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/24 Exemplo A concentração de certa substância no sangue entre

Leia mais

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20%

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20% 0. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

ERRO E TRATAMENTO DE DADOS ANALÍTICOS

ERRO E TRATAMENTO DE DADOS ANALÍTICOS Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Química Introdução a Analise Química - I sem/2013 Profa Ma Auxiliadora - 1 Disciplina QUIO94 - Introdução à Análise Química

Leia mais

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4 MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno

Leia mais

HEP-5800 BIOESTATÌSTICA

HEP-5800 BIOESTATÌSTICA HEP-58 BIOESTATÌSTICA UNIDADE IV INFERÊNCIA ESTATÍSTICA: TESTES DE HIPÓTESES Nila Nunes da Silva Regina I. T. Bernal I. QUADRO CONCEITUAL São procedimentos estatísticos que consistem em usar dados de amostras

Leia mais

REGRESSÃO LINEAR Parte I. Flávia F. Feitosa

REGRESSÃO LINEAR Parte I. Flávia F. Feitosa REGRESSÃO LINEAR Parte I Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2015 Onde Estamos Para onde vamos Inferência Esta5s6ca se resumindo a uma equação

Leia mais

(a) 0,90 (b) 0,67 (c) 1,0 (d) 0,005

(a) 0,90 (b) 0,67 (c) 1,0 (d) 0,005 359$'((67$7Ë67,&$6(/(d 0(675$'80*,QVWUXo}HVSDUDDSURYD D&DGDTXHVWmRUHVSRQGLGDFRUUHWDPHQWHYDOHSRQWR E4XHVW}HV GHL[DGDV HP EUDQFR YDOHP ]HUR SRQWRV QHVVH FDVR PDUTXH WRGDV DV DOWHUQDWLYDV F &DGDTXHVWmRUHVSRQGLGDLQFRUUHWDPHQWHYDOHSRQWR

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL Dr Sivaldo Leite Correia CONCEITOS E DEFINIÇÕES FUNDAMENTAIS Muitos experimentos são realizados visando

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

Intervalos de Confiança - Amostras Pequenas

Intervalos de Confiança - Amostras Pequenas Intervalos de Confiança - Amostras Pequenas Teste de Hipóteses para uma Média Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2016

Leia mais

TESTE DE MANN-WHITNEY

TESTE DE MANN-WHITNEY TESTE DE MANN-WHITNEY A importância deste teste é ser a alternativa não paramétrica ao teste t para a diferença de médias. Sejam (X,X,...,X n ) e (Y,Y,...,Y m ) duas amostras independentes, de tamanhos

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística. Introdução à Bioestatística Turma Nutrição.

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística. Introdução à Bioestatística Turma Nutrição. Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Inferência Básica Introdução à Bioestatística Turma Nutrição decidindo na presença

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

Planejamento e Pesquisa 1. Dois Grupos

Planejamento e Pesquisa 1. Dois Grupos Planejamento e Pesquisa 1 Dois Grupos Conceitos básicos Comparando dois grupos Testes t para duas amostras independentes Testes t para amostras pareadas Suposições e Diagnóstico Comparação de mais que

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

Turma: Engenharia Data: 12/06/2012

Turma: Engenharia Data: 12/06/2012 DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Estatística. Guia de Estudos P1

Estatística. Guia de Estudos P1 Estatística Guia de Estudos P1 1. Introdução O objetivo principal do curso de estatística é dar as ferramentas necessárias para o aluno saber analisar e manipular dados e, a partir deles, extrair conclusões

Leia mais

5. Carta de controle e homogeneidade de variância

5. Carta de controle e homogeneidade de variância 5. Carta de controle e homogeneidade de variância O desenvolvimento deste estudo faz menção a dois conceitos estatísticos: as cartas de controle, de amplo uso em controle estatístico de processo, e a homogeneidade

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Teste Qui-quadrado Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Teste Qui-quadrado É um teste não paramétrico, pois independe dos parâmetros

Leia mais

Testes de Hipótese para uma única Amostra - parte I

Testes de Hipótese para uma única Amostra - parte I Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os

Leia mais

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml.

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. O nível médio de colesterol da subpopulação de homens que são fumantes hipertensos

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E Exercícios para Revisão de Teste de Hipótese Material retirado do site http://adm.online.unip.br/ Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E 1) Um revendedor de lâmpadas recebeu

Leia mais

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA População (N) representa o conjunto de todas as unidades experimentais que apresentam características em comum Amostra (n) representa uma parte do todo.

Leia mais

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno ANOVA FACTORIAL Quando a variável dependente é influenciada por mais do que uma variável independente (Factor) estamos interessados em estudar o efeito não só de cada um dos factores mas e também a possível

Leia mais

16/6/2014. Teste Qui-quadrado de independência

16/6/2014. Teste Qui-quadrado de independência UNIVERSIDADE FEDERAL DA PARAÍBA TESTES NÃO- PARAMÉTRICOS Parte I Prof. Luiz Medeiros Departamento de Estatística Teste Qui-quadrado de independência Um dos principais objetivos de se construir uma tabela

Leia mais

MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha Universidade Estadual de Londrina. 26 de abril de 2017

MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha  Universidade Estadual de Londrina. 26 de abril de 2017 MEDIDAS DE POSIÇÃO Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de abril de 2017 Introdução Medidas de posição São utilizadas para sintetizar,

Leia mais

Estatística II. Intervalo de Confiança Lista de Exercícios

Estatística II. Intervalo de Confiança Lista de Exercícios Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Estimação Teste de Hipóteses Qual é a probabilidade de "cara no lançamento de uma moeda? A moeda é honesta ou desequilibrada?

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ As medidas de posição apresentadas fornecem a informação dos dados apenas a nível

Leia mais

Questão 1 Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal com desvio padrão σ = 2kg

Questão 1 Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal com desvio padrão σ = 2kg Lista suplementar Teste de uma média populacional Questão 1 Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal com desvio padrão σ = kg. A diretoria da indústria

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

1.1. Definições importantes

1.1. Definições importantes Parte I. Inferência Estatística Trata-se do processo de se obter informações sobre uma população a partir dos resultados observados numa amostra. De um modo geral, tem-se uma população com um grande número

Leia mais

Inferência Estatística. Teoria da Estimação

Inferência Estatística. Teoria da Estimação Inferência Estatística Teoria da Estimação Os procedimentos básicos de inferência Estimação: usamos o resultado amostral para estimar o valor desconhecido do parâmetro Teste de hipótese: usamos o resultado

Leia mais

Intervalos de conança

Intervalos de conança Intervalos de conança Prof. Hemílio Fernandes Campos Coêlho Departamento de Estatística - Universidade Federal da Paraíba - UFPB Exemplo Suponha que se deseja estimar o diâmetro da pupila de coelhos adultos.

Leia mais

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM 1 Na prática da pesquisa em geral, o tamanho da amostra parece sintetizar todas as questões relacionadas ao processo

Leia mais

BAC011 - ESTATÍSTICA ANÁLISE DE VARIÂNCIA. Análise de Variância ANOVA. Prof. Dr. Emerson José de Paiva

BAC011 - ESTATÍSTICA ANÁLISE DE VARIÂNCIA. Análise de Variância ANOVA. Prof. Dr. Emerson José de Paiva BAC011 - ESTATÍSTICA Análise de Variância ANÁLISE DE VARIÂNCIA 1 A é utilizada para se verificar a influência de certos fatores sobre uma resposta de interesse. Testa-se como os diversos fatores exercem

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

X e Y independentes. n + 1 m

X e Y independentes. n + 1 m DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.

Leia mais

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de Hipóteses Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de hipóteses O Teste de Hipótese é uma regra de decisão para aceitar ou rejeitar uma hipótese

Leia mais