Teste de hipótese de variância e Análise de Variância (ANOVA)

Tamanho: px
Começar a partir da página:

Download "Teste de hipótese de variância e Análise de Variância (ANOVA)"

Transcrição

1 Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais

2 Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente significativas entre os desvios-padrão de duas amostras, ou seja, se elas são ou não homocedásticas Em termos de teste de hipótese isso significa: H 0: 1 HA: 1

3 Teste para variância usando Qui-quadrado (χ) Pode-se testar uma variância nos mesmos moldes de teste de médias, utilizando-se a distribuição χ A medição de χ Obs é determinada por: n S ref Obs 1 obs A região crítica é bicaudal, determinada pelo γ, de acordo com os graus de liberdade (ν) determinados pela amostra. α/ γ α/ a b 3

4 Teste para variância usando F (Fisher-Snedecor) Sejam S 1 e S as variâncias de duas amostras, definimos F como: Para um determinado coeficiente de confiança γ, temos o seguinte intervalo de confiança para a razão entre duas variâncias: S S F 1 s s f s s f IC ; 4

5 Propriedades da distribuição F Família de curvas determinada pelos graus de liberdade no numerador e no denominador (ν 1 e ν ); São representadas graficamente de forma positiva; A área total sob cada curva de uma distribuição F é 1; Para todas as distribuições F, o valor médio de F é aproximadamente 1. 5

6 Exemplo de curvas da distribuição F Fonte: Wikipédia F f 1; 6

7 Região Crítica na curva F para teste de variâncias Dica prática: se o maior valor ficar no numerador, ou seja, F 1, os testes unicaudais serão à direita e para os testes bicaudais basta encontrar o valor crítico à direita. α/ F 1, f 1 1,, / F f : F 1,, / Como as tabelas são limitadas, lembrar que: F,, 1 F 1, 1, 7

8 Exemplo de tabela F: p=,5% 8

9 Exemplo: teste de variância 1.Estabeleça um intervalo de confiança de 95% para S 1 /S considerando duas amostras idênticas e independentes com os seguintes tamanhos: 30, 60 e 10. 9

10 Modelos explicativos estatísticos Modelos estatísticos visam descrever sinteticamente o comportamento de variáveis. Eles podem ser definidos como: Observação = Previsível + Aleatório; ou Observação = Previsível x Aleatório Um modelo estatístico para uma observação pode ser definido basicamente por uma equação do tipo: yi ei Onde: y i : efeito verificado na i-ésima observação θ : efeito fixo, comum a todos e i : erro, devido à fatores não explícitos no modelo, com distribuição e i ~N(0;σ ) 10

11 Questões sobre o modelo explicativo Será que eu consigo entender melhor a realidade ou fazer previsões melhores se eu tiver determinadas informações de antemão? Será que consigo diminuir as incertezas e o erro do meu modelo explicativo? Será que vale a pena tornar o modelo explicativo mais complexo, acrescentando variáveis? 11

12 ANOVA e modelos estatísticos O objetivo dos nossos modelos explicativos estatísticos é diminuir aquilo que não é explicado, ou seja, o erro. Até agora os nossos modelos restringiam-se a apenas uma estimativa: yi ei ou yi p ei onde ei f ( ) Será que podemos diminuir o erro se incluirmos outras variáveis explicativas não tratadas no modelo simples? A ANOVA permite testar e mensurar isso. 1

13 ANOVA (ANalisys Of VAriance) A ANOVA permite fazer uma comparação global de amostras ou subamostras, minimizando a probabilidade de erro amostral, pois, conforme aumenta o número de amostras, o total de comparações entre pares cresce exponencialmente Pressupostos da ANOVA Amostras aleatórias simples Amostras independentes Populações normais As populações são homocedásticas Amostras/ subamostras Total de comparações

14 Fonte: https://xkcd.com/88/ 14

15 ANOVA de 1 fator (unidirecional) Objetivo: avaliar se várias médias de subpopulações são iguais ou se pelo menos uma é diferente. H 0 : μ 1 = μ =... = μ n H A : pelo menos um μ é diferente Para isso, verificamos como se comporta a variação entre as várias subpopulações e a variação dentro dessas subpopulações, medindo o ganho explicativo usando a estatística F (razão F). Essa estatística indica o tamanho da diferença entre as amostras, em função do tamanho da variação dentro de cada amostra. F MQe MQd Onde: MQe = Variância entre amostras MQd = Variância dentro das amostras 15

16 Tabela da ANOVA Para facilitar o manuseio dos dados, eles são organizados em uma tabela: n: número de amostras k: número de subpopulações SQe k k 1n( xx ) SQd 1( 1) i ni si SQt 1 n x i n n x 1 ( 1) Variação Soma dos Quadrados (SQ) Graus de Liberdade Média dos Quadrados (MQ) F Entre populações/ grupos SQ e gl e = k-1 MQe SQe gln MQe MQd Dentro das populações/ grupos SQ d gl d = n-k MQd SQd gld Total SQ t gl t = n-1 16

17 17

18 Apresentação de grupos: dia 19/04 (terça) Definir e explicar sucintamente o funcionamento das seguintes pesquisas do IBGE: PNAD e PNAD contínua. Pesquisa mensal de emprego (atenção às mudanças em 001 e 014!). Explicar também os critérios de cada pesquisa no que se refere ao emprego e população economicamente ativa. Referências úteis: ftp://ftp.ibge.gov.br/trabalho_e_rendimento/pesquisa_mensal_de_emprego/metodologia_da_pesquisa/srmpme_ed.pdf ftp://ftp.ibge.gov.br/trabalho_e_rendimento/pesquisa_nacional_por_amostra_de_domicilios_continua/notas_metodologicas/no tas_metodologicas.pdf 18

19 Exemplo: modelo explicativo e uso da ANOVA Deseja-se avaliar explicações para o tempo de reação das pessoas a um estímulo visual. Para isso mede-se o tempo de reação (y) de 0 pessoas e compila-se variáveis que, com base nas teorias, podem afetar y. Objetivo: achar um modelo explicativo para o tempo de reação que seja simples e abrangente (satisfatório). Indivíduo Tempo de Gênero Idade Acuidade reação (ms) (M/F) (anos) Visual (%) i y w x z 1 96 M F M F F M M F F M M F F F M M F F M M Dados tirados de Bussab, Wilton. Análise de Variância e Regressão. a. Ed. Editora Atual: São Paulo

20 Modelo I: média e desvio-padrão Modelo explicativo básico: (o mais simples K.I.S.S.): o tempo de reação dos indivíduos varia aleatoriamente, podendo ser explicado apenas pela média e a variância. Obtenha média e desvio-padrão do tempo de reação. Calcule a soma dos erros quadráticos [Σ(ȳ-y i ) ]. O que vocês acham? O modelo explica bem o fenômeno? Por que? É possível melhorar? Será que vale a pena deixar o modelo mais complexo para melhorá-lo? 0

21 Modelo II: separando por Gênero (duas populações) Adicionamos uma discriminação nos nossos dados: j = Gênero (M/F; M=1,F=...) y ij i e ij Temos agora duas populações, Masculina e Feminina Calcular média e desvio-padrão para ambas. Calcule a soma dos erros quadráticos de ambas São estatisticamente diferentes? Será que o modelo fica melhor adicionando essa variável? ȳ M = 110,1; σ M = 74,54; SEQ M = 566,9 ȳ F = 104,9; σ F = 6,99; SEQ F = 670,9 1

22 Fazendo a tabela de ANOVA Precisamos calcular: Variância dentro das populações (SQ d ) o Soma da soma de erros quadráticos de cada uma das populações Variância entre as populações (SQ e ) o SQ t = SQ e + SQ d = SQ e = SQ t - SQ d Determinar os graus de liberdade Variação Entre populações/ grupos Dentro das populações/ grupos Soma dos Quadrados (SQ) ,8 =135, Graus de Liberdade SQ e = 1 566, ,9 =137,8 SQ d = n- = 18 Total 1373,0 n-1 = 19 Média dos Quadrados (MQ) SSe g ln SSd gld 135, 68,77 MSe MSd F 1,97

23 Medidas que a ANOVA permite R : coeficiente de explicação = a quantidade de informação que é explicada pelo modelo adotado R SQe SQt p-valor de F: indica a possibilidade de generalização do modelo para a população Igual ao p-valor de um teste de hipótese, ou seja, o nível em que podemos afirmar que o modelo é significativo 3

24 Exemplo Separar as populações por idade Calcular para cada uma Média e desvio-padrão (colocar em um quadro comparativo) Soma dos quadrados dos erros Colocar na tabela de ANOVA O que parece? Esse modelo melhora a nossa previsão? Quanto? 4

25 Modelo III: Múltiplas populações (separação por idade) Resultado Total média 107,5 98,5 103,3 107,8 110,8 117,3 dpad 8,50 5,97 5,1 6,65 5,6 6,85 SQDesvios 1373,0 107,0 78,8 13,8 94,8 140,8 554,0 5

26 ANOVA do Modelo III n: número de amostras k: número de populações Fc (5%;4;15) = 3,06 p-valor (5,54;4;15) = 0,61% R = 0,587 Variação Entre populações/ grupos Dentro das populações/ grupos Soma dos Quadrados (SQ) Graus de Liberdade Quadrados das Médias (SQM) SS e = 819 k-1 = 4 04,75 5,54 SS d = 554,0 n-k = 15 36,93 Total 1373,0 n-1 = 19 7,6 SSe g ln SSd gld MSe MSd F 6

27 Conclusões do Modelo III É estatisticamente significativo (ao nível de menos de 1%) Possui um bom valor explicativo (58,7%) Portanto, o modelo III tem qualidades para ser adotado. Isso significa que a idade é um fator explicativo relevante para o fenômeno observado (tempo de reação). 7

28 Exercícios 1. Em um curso de extensão universitária pesquisaram-se os salários mensais (em unidades de referência) e a área de formação acadêmica dos estudantes, com base em uma amostra aleatória. Após eliminar-se os dados excessivamente destoantes, obteve-se o resultado abaixo. Podemos considerar que os salários de cada área são iguais? n Média Desvio-padrão Sociais 1 30,9 19, Engenharia 15 34, 8, Biológicas 7 38,1,3 8

29 Exercícios. Um analista quer determinar se há diferença na média de vendas mensais de quatro regiões diferentes. É feita uma seleção aleatória de vendedores de cada região e cada um fornece os resultados (em R$ mil) do mês anterior. Com α = 5% podemos concluir que há diferença na média de vendas de pelo menos uma das regiões? Variância total = 68,10 Norte Leste Sul Oeste Média Variância 45, ,67 4,5 9

30 Tabela da ANOVA Para facilitar o manuseio dos dados, eles são organizados em uma tabela: n: número de amostras k: número de subpopulações SQe k k 1n( xx ) SQd 1( 1) i ni si SQt 1 n x i n n x 1 ( 1) Variação Soma dos Quadrados (SQ) Graus de Liberdade Médias dos Quadrados (MQ) F Entre populações/ grupos SQ e gl e = k-1 MQe SQe gln MQe MQd Dentro das populações/ grupos SQ d gl d = n-k MQd SQd gld Total SQ t gl t = n-1 30

31 Tabela F: p=5% 31

Testes de variância e Análise de Variância (ANOVA)

Testes de variância e Análise de Variância (ANOVA) Testes de variância e Análise de Variância (ANOVA) Introdução à Inferência Estatística Introdução à Inferência Estatística TESTE DE VARIÂNCIAS E DISTRIBUIÇÃO F Testes sobre variâncias Problema: queremos

Leia mais

Planejamento de Experimentos

Planejamento de Experimentos Planejamento de Experimentos Analise de Variância (ANOVA) com um Fator Planejamento de Experimentos Muitas vezes é necessário obter informações sobre produtos e processos empiricamente. Trabalho assemelha-se

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I 8/8/05 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 8/08/05 06:55 ESTATÍSTICA APLICADA

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB rangel.ufg@gmail.com Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 7 Prof. Patricia Maria Bortolon, D. Sc. Análise da Variância Objetivos do Aprendizado Nesta aula você aprenderá: A utilizar a análise de variância de fator único para testar diferenças

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Turma: Engenharia Data: 12/06/2012

Turma: Engenharia Data: 12/06/2012 DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

Gabarito da 1 a Lista de Exercícios de Econometria II

Gabarito da 1 a Lista de Exercícios de Econometria II Gabarito da 1 a Lista de Exercícios de Econometria II Professor: Rogério Silva Mattos Monitor: Delano H. A. Cortez Questão 1 Considerando que o modelo verdadeiro inicialmente seja o seguinte: C = a + 2Y

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência 1 AULAS 24 E 25 Análise de Regressão Múltipla: Inferência Ernesto F. L. Amaral 23 e 25 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma

Leia mais

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Poder do teste e Tamanho de Amostra

Poder do teste e Tamanho de Amostra Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 24 Poder do teste e Tamanho de Amostra APOIO: Fundação de Ciência

Leia mais

Medidas Resumo. Medidas de Posição/ Medidas de Dispersão. A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão.

Medidas Resumo. Medidas de Posição/ Medidas de Dispersão. A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão. Medidas Resumo Medidas de Posição/ Medidas de Dispersão A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão. Prof. MSc. Herivelto Marcondes Março/2009 1 Medidas Resumo

Leia mais

X e Y independentes. n + 1 m

X e Y independentes. n + 1 m DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.

Leia mais

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

ERRO E TRATAMENTO DE DADOS ANALÍTICOS

ERRO E TRATAMENTO DE DADOS ANALÍTICOS Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Química Introdução a Analise Química - I sem/2013 Profa Ma Auxiliadora - 1 Disciplina QUIO94 - Introdução à Análise Química

Leia mais

Medidas Estatísticas NILO FERNANDES VARELA

Medidas Estatísticas NILO FERNANDES VARELA Medidas Estatísticas NILO FERNANDES VARELA Tendência Central Medidas que orientam quanto aos valores centrais. Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar

Leia mais

Inferência Estatística. Teoria da Estimação

Inferência Estatística. Teoria da Estimação Inferência Estatística Teoria da Estimação Os procedimentos básicos de inferência Estimação: usamos o resultado amostral para estimar o valor desconhecido do parâmetro Teste de hipótese: usamos o resultado

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA. Cursos: Licenciatura em Enfermagem

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA. Cursos: Licenciatura em Enfermagem INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA Cursos: Licenciatura em Enfermagem Teste Final o Ano/3 o Semestre 007/08 Data: a feira, 9 de Novembro de 007 Duração: 4h às h Instruções:.

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura

Leia mais

Poder do teste e determinação do tamanho da amostra:pca & PBC

Poder do teste e determinação do tamanho da amostra:pca & PBC Poder do teste e determinação do tamanho da amostra:pca & PBC Relembrando: α = probabilidade do erro do tipo I: P(Rejeitar H 0 H 0 é verdadeira). β = probabilidade do erro do tipo II: P(Não rejeitar H

Leia mais

Estatística Descritiva (I)

Estatística Descritiva (I) Estatística Descritiva (I) 1 O que é Estatística Origem relacionada com a coleta e construção de tabelas de dados para o governo. A situação evoluiu: a coleta de dados representa somente um dos aspectos

Leia mais

Prof. MSc. David Roza José 1/44

Prof. MSc. David Roza José 1/44 1/44 Regressão Linear Objetivos: Familiarizar-se com estatística descritiva e distribuição normal; Saber como calcular coeficientes angular e linear da reta de melhor ajuste com regressão linear; Saber

Leia mais

Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara

Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara Adquirir conhecimento dos fundamentos da Estatística, em seus campos Descritivo e Inferencial, como base

Leia mais

AULA 11 Heteroscedasticidade

AULA 11 Heteroscedasticidade 1 AULA 11 Heteroscedasticidade Ernesto F. L. Amaral 30 de julho de 2012 Análise de Regressão Linear (MQ 2012) www.ernestoamaral.com/mq12reg.html Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais

4 O Erro de Medição. Erro de Medição. Fundamentos de Metrologia. sistema de medição. mensurando. erro de medição

4 O Erro de Medição. Erro de Medição. Fundamentos de Metrologia. sistema de medição. mensurando. erro de medição 4 O Erro de Medição Fundamentos de Metrologia Erro de Medição sistema de medição mensurando indicação erro de medição valor verdadeiro 1 Um exemplo de erros... Teste de precisão de tiro de canhões: Canhão

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 16/11/2011 Testes de

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Testes

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

c) Encontre um intervalo de confiança 95% para a razão das variâncias variâncias das duas amostras podem ser iguais com este grau de confiança?

c) Encontre um intervalo de confiança 95% para a razão das variâncias variâncias das duas amostras podem ser iguais com este grau de confiança? MQI 003 Estatística para Metrologia semestre 008.0 Lista 4 Profa. Mônica Barros PROBLEMA Toma-se duas amostras de engenheiros formados há 5 anos por duas Universidades e faz-se uma pesquisa salarial, cujos

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS 2ª PARTE

ANÁLISE EXPLORATÓRIA DE DADOS 2ª PARTE ANÁLISE EXPLORATÓRIA DE DADOS 2ª PARTE 1 Medidas de síntese TERCEIRA maneira de resumir um conjunto de dados referente a uma variável quantitativa. Separatrizes Locação x % x % x % x % Dispersão Forma

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica. ANOVA e MANOVA

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica. ANOVA e MANOVA UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica e M ANalysis Of Variance Permite determinar se as médias de 2 ou mais populações são iguais População: o grupo (universo)

Leia mais

Aula 2 Regressão e Correlação Linear

Aula 2 Regressão e Correlação Linear 1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 1. Unidade Orgânica Ciências da Economia e da Empresa (1º Ciclo) 2. Curso Engenharia Informática 3. Ciclo de Estudos 1º

Leia mais

Elementos de Estatística

Elementos de Estatística Elementos de Estatística Lupércio F. Bessegato & Marcel T. Vieira UFJF Departamento de Estatística 2013 Medidas Resumo Medidas Resumo Medidas que sintetizam informações contidas nas variáveis em um único

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Comprovação Estatística de Medidas Elétricas

Comprovação Estatística de Medidas Elétricas Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Métodos e Técnicas de Laboratório em Eletrônica Comprovação Estatística de Medidas Elétricas Florianópolis,

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical

Leia mais

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD

Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável

Leia mais

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS DA SAÚDE FACULDADE DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA DISCIPLINA DE EPIDEMIOLOGIA ESTUDOS DE COORTE 1) Com o objetivo de investigar

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

CÁLCULO DA INCERTEZA

CÁLCULO DA INCERTEZA CÁLCULO DA INCERTEZA O resultado de uma medição é somente um valor aproximado ou uma estimativa do Mensurando. ele é completo somente quando acompanhado do valor declarado de sua incerteza. A incerteza

Leia mais

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo PROGRAMA e Metas Curriculares Matemática A Estatística António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo O tema da Estatística nos Cursos Científico-Humanísticos de

Leia mais

MAE0219 Introdução à Probabilidade e Estatística I

MAE0219 Introdução à Probabilidade e Estatística I Exercício 1 A altura média dos estudantes do sexo masculino em uma universidade é de 170 cm com desvio padrão de 12 cm. Uma amostra aleatória de de 64 estudantes dessa universidade é observada. Calcule

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.

Leia mais

Determinação de medidas de posição a partir de dados agrupados

Determinação de medidas de posição a partir de dados agrupados Determinação de medidas de posição a partir de dados agrupados Rinaldo Artes Em algumas situações, o acesso aos microdados de uma pesquisa é restrito ou tecnicamente difícil. Em seu lugar, são divulgados

Leia mais

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos DISTRIBUIÇÃO DE FREQÜÊNCIAS & INTERPOLAÇÃO LINEAR DA OGIVA 0. (AFRF-000) Utilize a tabela que se segue. Freqüências Acumuladas de Salários Anuais, em Milhares de Reais, da Cia. Alfa Classes de Salário

Leia mais

EXPERIMENTAÇÃO AGRÁRIA

EXPERIMENTAÇÃO AGRÁRIA EXPERIMENTAÇÃO AGRÁRIA Tema 4: Experimentos factoriais Definição Experimentos factoriais são aqueles que incluem todas as combinações possíveis de vários conjuntos de factores. Ex : Um experimento com

Leia mais

Coeficiente de Assimetria

Coeficiente de Assimetria Coeficiente de Assimetria Rinaldo Artes Insper Nesta etapa do curso estudaremos medidas associadas à forma de uma distribuição de dados, em particular, os coeficientes de assimetria e curtose. Tais medidas

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Dependentes Teste t para amostras emparelhadas Variâncias Teste z Conhecidas Independentes Variâncias Desconhecidas Supostas iguais

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

A Influência da Amostragem na Representatividade dos Dados

A Influência da Amostragem na Representatividade dos Dados A Influência da Amostragem na Representatividade dos Dados por Manuel Rui F. Azevedo Alves ESTG- Instituto Politécnico de Viana do Castelo REQUIMTE Rede de Química e Tecnologia Sumário Tópico 1: Definições

Leia mais

APONTAMENTOS DE SPSS

APONTAMENTOS DE SPSS Instituto de Ciências Biomédicas de Abel Salazar APONTAMENTOS DE SPSS Rui Magalhães 2010-1 - - 2 - Menu DATA Opção SPLIT FILE Permite dividir, de uma forma virtual, o ficheiro em diferentes ficheiros com

Leia mais

Paulo Jorge Silveira Ferreira. Princípios de Econometria

Paulo Jorge Silveira Ferreira. Princípios de Econometria Paulo Jorge Silveira Ferreira Princípios de Econometria FICHA TÉCNICA TÍTULO: Princípios de Econometria AUTOR: Paulo Ferreira ISBN: 978-84-9916-654-4 DEPÓSITO LEGAL: M-15833-2010 IDIOMA: Português EDITOR:

Leia mais

9 Regressão linear simples

9 Regressão linear simples 9 Regressão linear simples José Luis Duarte Ribeiro Carla ten Caten COMENTÁRIOS INICIAIS Em muitos problemas há duas ou mais variáveis que são relacionadas e pode ser importante modelar essa relação. Por

Leia mais

Apresentação gráfica de séries estatísticas

Apresentação gráfica de séries estatísticas 15 R E S U M O 04 Apresentação gráfica de séries estatísticas 4.1 INTRODUÇÃO Além da apresentação tabular, outra forma de se resumir e apresentar dados estatísticos são por meio de gráficos. A principal

Leia mais

6 Intervalos de confiança

6 Intervalos de confiança 6 Intervalos de confiança Estatística Aplicada Larson Farber Seção 6.1 Intervalos de confiança para a média (amostras grandes) Estimativa pontual DEFINIÇÃO: Uma estimativa pontual é a estimativa de um

Leia mais

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão Prof. Dr. Guanis de Barros Vilela Junior Relembrando!!! Não é uma CIÊNCIA EXATA!!! É UMA CIÊNCIA PROBABILÍSTICA!!!!!!! Serve

Leia mais

HEP Bioestatística

HEP Bioestatística HEP 57800 Bioestatística DATA Aula CONTEÚDO PROGRAMÁTICO 05/03 Terça 1 Níveis de mensuração, variáveis, organização de dados, apresentação tabular 07/03 Quinta 2 Apresentação tabular e gráfica 12/03 Terça

Leia mais

Estimação de Modelos ARMA e ARIMA

Estimação de Modelos ARMA e ARIMA Estimação de Modelos ARMA e ARIMA Estagiária Docente: Vívian dos Santos Queiroz Disciplina: Econometria Aplicada Professor: Sabino da Silva Porto Júnior Apresentação Inserindo Dados de Séries Temporais

Leia mais

Introdução à pesquisa clínica. FACIMED Investigação científica II 5º período Professora Gracian Li Pereira

Introdução à pesquisa clínica. FACIMED Investigação científica II 5º período Professora Gracian Li Pereira Introdução à pesquisa clínica FACIMED 2012.1 Investigação científica II 5º período Professora Gracian Li Pereira Questão de pesquisa x relevância Questão PICO FINER Literatura existente Como fazer? Delineamento

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Princípios de Bioestatística Cálculo do Tamanho de Amostra Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 1 / 32 2 / 32 Cálculo do Tamanho de Amostra Parte fundamental

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA Revista da Estatística da UFOP, Vol I, 2011 - XI Semana da Matemática e III Semana da Estatística, 2011 ISSN 2237-8111 EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA

Leia mais

Professora conteudista: Maria Ester Domingues de Oliveira. Revisor: Francisco Roberto Crisóstomo

Professora conteudista: Maria Ester Domingues de Oliveira. Revisor: Francisco Roberto Crisóstomo Estatística Básica Professora conteudista: Maria Ester Domingues de Oliveira Revisor: Francisco Roberto Crisóstomo Sumário Estatística Básica Unidade I 1 CICLO SEMPRE CRESCENTE...2 2 ESTATÍSTICA: CIÊNCIA

Leia mais

Planejamento da pesquisa científica: incerteza e estatística. Edilson Batista de Oliveira Embrapa Florestas

Planejamento da pesquisa científica: incerteza e estatística. Edilson Batista de Oliveira Embrapa Florestas Planejamento da pesquisa científica: incerteza e estatística Edilson Batista de Oliveira Embrapa Florestas Pesquisa em laboratórios na Embrapa Anos 70 Anos 80 Anos 90 Século 21 Precisão em Laboratórios:

Leia mais

Inferência Estatística - Teoria da Estimação

Inferência Estatística - Teoria da Estimação Inferência Estatística - Teoria da Estimação Introdução Neste capítulo abordaremos situações em que o interesse está em obter informações da população a partir dos resultados de uma amostra. Como exemplo,

Leia mais

Amostras, amostragem e tamanho da amostra

Amostras, amostragem e tamanho da amostra Amostras, amostragem e tamanho da amostra Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Amostragem POPULAÇÃO AMOSTRA Estatísticas amostrais Parâmetros populacionais Fonte: Bolfarine;

Leia mais

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos Aula 2 ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos 1. DEFINIÇÕES FENÔMENO Toda modificação que se processa nos corpos pela ação de agentes físicos ou químicos. 2. Tudo o que pode ser percebido

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I)

Aula 6. Testes de Hipóteses Paramétricos (I) Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

NÍVEL DE ENSINO: CARGA HORÁRIA: PROBABILIDADE EST PROFESSOR-AUTOR:

NÍVEL DE ENSINO: CARGA HORÁRIA: PROBABILIDADE EST PROFESSOR-AUTOR: ESTATÍSTICA E PROBABILIDADE NÍVEL DE ENSINO: Graduação CARGA HORÁRIA: 80h PROFESSOR-AUTOR: Bráulio Roberto Gonçalves Marinho Couto Janaína Giovani Noronha de Oliveira Octávio Alcântara Torres Reinaldo

Leia mais

Agrupamento de Escolas do Fundão

Agrupamento de Escolas do Fundão Agrupamento de Escolas do Fundão MATEMÁTICA P GPI 13 12º Ano CURRÍCULO DA DISCIPLINA E Nº DE AULAS PREVISTAS Período PLANIFICAÇÃO ANUAL Módulos a leccionar + Conteúdos Programáticos Módulo A6- Taxa de

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

A Importância do Desenho Amostral. Donald Pianto Departamento de Estatística UnB

A Importância do Desenho Amostral. Donald Pianto Departamento de Estatística UnB A Importância do Desenho Amostral Donald Pianto Departamento de Estatística UnB Objetivo dessa aula Explicar os tipos básicos de amostragem e a razão pelo uso de cada um Contemplar o uso simultaneo de

Leia mais