Teste de hipótese de variância e Análise de Variância (ANOVA)

Tamanho: px
Começar a partir da página:

Download "Teste de hipótese de variância e Análise de Variância (ANOVA)"

Transcrição

1 Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais

2 Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente significativas entre os desvios-padrão de duas amostras, ou seja, se elas são ou não homocedásticas Em termos de teste de hipótese isso significa: H 0: 1 HA: 1

3 Teste para variância usando Qui-quadrado (χ) Pode-se testar uma variância nos mesmos moldes de teste de médias, utilizando-se a distribuição χ A medição de χ Obs é determinada por: n S ref Obs 1 obs A região crítica é bicaudal, determinada pelo γ, de acordo com os graus de liberdade (ν) determinados pela amostra. α/ γ α/ a b 3

4 Teste para variância usando F (Fisher-Snedecor) Sejam S 1 e S as variâncias de duas amostras, definimos F como: Para um determinado coeficiente de confiança γ, temos o seguinte intervalo de confiança para a razão entre duas variâncias: S S F 1 s s f s s f IC ; 4

5 Propriedades da distribuição F Família de curvas determinada pelos graus de liberdade no numerador e no denominador (ν 1 e ν ); São representadas graficamente de forma positiva; A área total sob cada curva de uma distribuição F é 1; Para todas as distribuições F, o valor médio de F é aproximadamente 1. 5

6 Exemplo de curvas da distribuição F Fonte: Wikipédia F f 1; 6

7 Região Crítica na curva F para teste de variâncias Dica prática: se o maior valor ficar no numerador, ou seja, F 1, os testes unicaudais serão à direita e para os testes bicaudais basta encontrar o valor crítico à direita. α/ F 1, f 1 1,, / F f : F 1,, / Como as tabelas são limitadas, lembrar que: F,, 1 F 1, 1, 7

8 Exemplo de tabela F: p=,5% 8

9 Exemplo: teste de variância 1.Estabeleça um intervalo de confiança de 95% para S 1 /S considerando duas amostras idênticas e independentes com os seguintes tamanhos: 30, 60 e 10. 9

10 Modelos explicativos estatísticos Modelos estatísticos visam descrever sinteticamente o comportamento de variáveis. Eles podem ser definidos como: Observação = Previsível + Aleatório; ou Observação = Previsível x Aleatório Um modelo estatístico para uma observação pode ser definido basicamente por uma equação do tipo: yi ei Onde: y i : efeito verificado na i-ésima observação θ : efeito fixo, comum a todos e i : erro, devido à fatores não explícitos no modelo, com distribuição e i ~N(0;σ ) 10

11 Questões sobre o modelo explicativo Será que eu consigo entender melhor a realidade ou fazer previsões melhores se eu tiver determinadas informações de antemão? Será que consigo diminuir as incertezas e o erro do meu modelo explicativo? Será que vale a pena tornar o modelo explicativo mais complexo, acrescentando variáveis? 11

12 ANOVA e modelos estatísticos O objetivo dos nossos modelos explicativos estatísticos é diminuir aquilo que não é explicado, ou seja, o erro. Até agora os nossos modelos restringiam-se a apenas uma estimativa: yi ei ou yi p ei onde ei f ( ) Será que podemos diminuir o erro se incluirmos outras variáveis explicativas não tratadas no modelo simples? A ANOVA permite testar e mensurar isso. 1

13 ANOVA (ANalisys Of VAriance) A ANOVA permite fazer uma comparação global de amostras ou subamostras, minimizando a probabilidade de erro amostral, pois, conforme aumenta o número de amostras, o total de comparações entre pares cresce exponencialmente Pressupostos da ANOVA Amostras aleatórias simples Amostras independentes Populações normais As populações são homocedásticas Amostras/ subamostras Total de comparações

14 Fonte: https://xkcd.com/88/ 14

15 ANOVA de 1 fator (unidirecional) Objetivo: avaliar se várias médias de subpopulações são iguais ou se pelo menos uma é diferente. H 0 : μ 1 = μ =... = μ n H A : pelo menos um μ é diferente Para isso, verificamos como se comporta a variação entre as várias subpopulações e a variação dentro dessas subpopulações, medindo o ganho explicativo usando a estatística F (razão F). Essa estatística indica o tamanho da diferença entre as amostras, em função do tamanho da variação dentro de cada amostra. F MQe MQd Onde: MQe = Variância entre amostras MQd = Variância dentro das amostras 15

16 Tabela da ANOVA Para facilitar o manuseio dos dados, eles são organizados em uma tabela: n: número de amostras k: número de subpopulações SQe k k 1n( xx ) SQd 1( 1) i ni si SQt 1 n x i n n x 1 ( 1) Variação Soma dos Quadrados (SQ) Graus de Liberdade Média dos Quadrados (MQ) F Entre populações/ grupos SQ e gl e = k-1 MQe SQe gln MQe MQd Dentro das populações/ grupos SQ d gl d = n-k MQd SQd gld Total SQ t gl t = n-1 16

17 17

18 Apresentação de grupos: dia 19/04 (terça) Definir e explicar sucintamente o funcionamento das seguintes pesquisas do IBGE: PNAD e PNAD contínua. Pesquisa mensal de emprego (atenção às mudanças em 001 e 014!). Explicar também os critérios de cada pesquisa no que se refere ao emprego e população economicamente ativa. Referências úteis: ftp://ftp.ibge.gov.br/trabalho_e_rendimento/pesquisa_mensal_de_emprego/metodologia_da_pesquisa/srmpme_ed.pdf ftp://ftp.ibge.gov.br/trabalho_e_rendimento/pesquisa_nacional_por_amostra_de_domicilios_continua/notas_metodologicas/no tas_metodologicas.pdf 18

19 Exemplo: modelo explicativo e uso da ANOVA Deseja-se avaliar explicações para o tempo de reação das pessoas a um estímulo visual. Para isso mede-se o tempo de reação (y) de 0 pessoas e compila-se variáveis que, com base nas teorias, podem afetar y. Objetivo: achar um modelo explicativo para o tempo de reação que seja simples e abrangente (satisfatório). Indivíduo Tempo de Gênero Idade Acuidade reação (ms) (M/F) (anos) Visual (%) i y w x z 1 96 M F M F F M M F F M M F F F M M F F M M Dados tirados de Bussab, Wilton. Análise de Variância e Regressão. a. Ed. Editora Atual: São Paulo

20 Modelo I: média e desvio-padrão Modelo explicativo básico: (o mais simples K.I.S.S.): o tempo de reação dos indivíduos varia aleatoriamente, podendo ser explicado apenas pela média e a variância. Obtenha média e desvio-padrão do tempo de reação. Calcule a soma dos erros quadráticos [Σ(ȳ-y i ) ]. O que vocês acham? O modelo explica bem o fenômeno? Por que? É possível melhorar? Será que vale a pena deixar o modelo mais complexo para melhorá-lo? 0

21 Modelo II: separando por Gênero (duas populações) Adicionamos uma discriminação nos nossos dados: j = Gênero (M/F; M=1,F=...) y ij i e ij Temos agora duas populações, Masculina e Feminina Calcular média e desvio-padrão para ambas. Calcule a soma dos erros quadráticos de ambas São estatisticamente diferentes? Será que o modelo fica melhor adicionando essa variável? ȳ M = 110,1; σ M = 74,54; SEQ M = 566,9 ȳ F = 104,9; σ F = 6,99; SEQ F = 670,9 1

22 Fazendo a tabela de ANOVA Precisamos calcular: Variância dentro das populações (SQ d ) o Soma da soma de erros quadráticos de cada uma das populações Variância entre as populações (SQ e ) o SQ t = SQ e + SQ d = SQ e = SQ t - SQ d Determinar os graus de liberdade Variação Entre populações/ grupos Dentro das populações/ grupos Soma dos Quadrados (SQ) ,8 =135, Graus de Liberdade SQ e = 1 566, ,9 =137,8 SQ d = n- = 18 Total 1373,0 n-1 = 19 Média dos Quadrados (MQ) SSe g ln SSd gld 135, 68,77 MSe MSd F 1,97

23 Medidas que a ANOVA permite R : coeficiente de explicação = a quantidade de informação que é explicada pelo modelo adotado R SQe SQt p-valor de F: indica a possibilidade de generalização do modelo para a população Igual ao p-valor de um teste de hipótese, ou seja, o nível em que podemos afirmar que o modelo é significativo 3

24 Exemplo Separar as populações por idade Calcular para cada uma Média e desvio-padrão (colocar em um quadro comparativo) Soma dos quadrados dos erros Colocar na tabela de ANOVA O que parece? Esse modelo melhora a nossa previsão? Quanto? 4

25 Modelo III: Múltiplas populações (separação por idade) Resultado Total média 107,5 98,5 103,3 107,8 110,8 117,3 dpad 8,50 5,97 5,1 6,65 5,6 6,85 SQDesvios 1373,0 107,0 78,8 13,8 94,8 140,8 554,0 5

26 ANOVA do Modelo III n: número de amostras k: número de populações Fc (5%;4;15) = 3,06 p-valor (5,54;4;15) = 0,61% R = 0,587 Variação Entre populações/ grupos Dentro das populações/ grupos Soma dos Quadrados (SQ) Graus de Liberdade Quadrados das Médias (SQM) SS e = 819 k-1 = 4 04,75 5,54 SS d = 554,0 n-k = 15 36,93 Total 1373,0 n-1 = 19 7,6 SSe g ln SSd gld MSe MSd F 6

27 Conclusões do Modelo III É estatisticamente significativo (ao nível de menos de 1%) Possui um bom valor explicativo (58,7%) Portanto, o modelo III tem qualidades para ser adotado. Isso significa que a idade é um fator explicativo relevante para o fenômeno observado (tempo de reação). 7

28 Exercícios 1. Em um curso de extensão universitária pesquisaram-se os salários mensais (em unidades de referência) e a área de formação acadêmica dos estudantes, com base em uma amostra aleatória. Após eliminar-se os dados excessivamente destoantes, obteve-se o resultado abaixo. Podemos considerar que os salários de cada área são iguais? n Média Desvio-padrão Sociais 1 30,9 19, Engenharia 15 34, 8, Biológicas 7 38,1,3 8

29 Exercícios. Um analista quer determinar se há diferença na média de vendas mensais de quatro regiões diferentes. É feita uma seleção aleatória de vendedores de cada região e cada um fornece os resultados (em R$ mil) do mês anterior. Com α = 5% podemos concluir que há diferença na média de vendas de pelo menos uma das regiões? Variância total = 68,10 Norte Leste Sul Oeste Média Variância 45, ,67 4,5 9

30 Tabela da ANOVA Para facilitar o manuseio dos dados, eles são organizados em uma tabela: n: número de amostras k: número de subpopulações SQe k k 1n( xx ) SQd 1( 1) i ni si SQt 1 n x i n n x 1 ( 1) Variação Soma dos Quadrados (SQ) Graus de Liberdade Médias dos Quadrados (MQ) F Entre populações/ grupos SQ e gl e = k-1 MQe SQe gln MQe MQd Dentro das populações/ grupos SQ d gl d = n-k MQd SQd gld Total SQ t gl t = n-1 30

31 Tabela F: p=5% 31

Testes de variância e Análise de Variância (ANOVA)

Testes de variância e Análise de Variância (ANOVA) Testes de variância e Análise de Variância (ANOVA) Introdução à Inferência Estatística Introdução à Inferência Estatística TESTE DE VARIÂNCIAS E DISTRIBUIÇÃO F Testes sobre variâncias Problema: queremos

Leia mais

Análise da Variância. Prof. Dr. Alberto Franke (48)

Análise da Variância. Prof. Dr. Alberto Franke (48) Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros

Leia mais

Planejamento de Experimentos

Planejamento de Experimentos Planejamento de Experimentos Analise de Variância (ANOVA) com um Fator Planejamento de Experimentos Muitas vezes é necessário obter informações sobre produtos e processos empiricamente. Trabalho assemelha-se

Leia mais

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES

Leia mais

Inferência para várias populações normais análise de variância (ANOVA)

Inferência para várias populações normais análise de variância (ANOVA) Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues

Leia mais

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Capítulo 11 Análise da Variância Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Objetivos do Aprendizado Neste capítulo você aprenderá: Os conceitos básicos da modelagem

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Testes de hipóteses Paramétricos

Testes de hipóteses Paramétricos Testes de hipóteses Paramétricos Modelos de análise de variância com um factor Teste de Bartlett Teste de comparações múltiplas de Scheffé Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 1

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Estatística aplicada ao Melhoramento animal

Estatística aplicada ao Melhoramento animal Qual é a herdabilidade para uma característica? Qual é a variabilidade de desempenho para essa característica? Selecionando para a característica X, característica Y será afetada? Como predizer os valores

Leia mais

AULAS 14 E 15 Modelo de regressão simples

AULAS 14 E 15 Modelo de regressão simples 1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno ANOVA FACTORIAL Quando a variável dependente é influenciada por mais do que uma variável independente (Factor) estamos interessados em estudar o efeito não só de cada um dos factores mas e também a possível

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I 8/8/05 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 8/08/05 06:55 ESTATÍSTICA APLICADA

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

EXPERIMENTAÇÃO AGRÁRIA

EXPERIMENTAÇÃO AGRÁRIA EXPERIMENTAÇÃO AGRÁRIA Tema : Delineamentos experimentais básicos (DCC/DBCC/DQL) Delineamento de Blocos Completos Casualizados (DBCC) Quando usar? Quando as unidades experimentais não apresentam características

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Testes de Aderência, Homogeneidade e Independência

Testes de Aderência, Homogeneidade e Independência Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 7 Prof. Patricia Maria Bortolon, D. Sc. Análise da Variância Objetivos do Aprendizado Nesta aula você aprenderá: A utilizar a análise de variância de fator único para testar diferenças

Leia mais

Estatística e Probabilidade. Aula 11 Cap 06

Estatística e Probabilidade. Aula 11 Cap 06 Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

QUÍMICA ANALÍTICA V 2S Prof. Rafael Sousa. Notas de aula:

QUÍMICA ANALÍTICA V 2S Prof. Rafael Sousa. Notas de aula: QUÍMICA ANALÍTICA V 2S 2011 Aulas 1 e 2 Estatística Aplicada à Química Analítica Prof. Rafael Sousa Departamento de Química - ICE rafael.arromba@ufjf.edu.br Notas de aula: www.ufjf/baccan Algarismos significativos

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

Universidade Federal de Viçosa Departamento de Estatística

Universidade Federal de Viçosa Departamento de Estatística Universidade Federal de Viçosa Departamento de Estatística Prova Seletiva para o Programa de Pós-Graduação em Estatística Aplicada e Biometria. Nível Doutorado - 22/nov/2013 Nome: Assinatura:. Número do

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios Planejamento de Experimentos 13. Experimentos com fatores aleatórios Até aqui assumimos que os fatores nos experimentos eram fixos, isto é, os níveis dos fatores utilizados eram níveis específicos de interesse.

Leia mais

EXAME DE ESTATÍSTICA / ESTATÍSTICA I

EXAME DE ESTATÍSTICA / ESTATÍSTICA I INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL Dr Sivaldo Leite Correia CONCEITOS E DEFINIÇÕES FUNDAMENTAIS Muitos experimentos são realizados visando

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Correlação e Regressão Linear

Correlação e Regressão Linear Correlação e Regressão Linear Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais CORRELAÇÃO LINEAR Coeficiente de correlação linear - coeficiente de Pearson (r) Mede o grau de relacionamento

Leia mais

Teste Anova. Prof. David Prata Novembro de 2016

Teste Anova. Prof. David Prata Novembro de 2016 Teste Anova Prof. David Prata Novembro de 2016 Tipo de Variável Introduzimos o processo geral de teste de hipótese. É hora de aprender a testar a sua própria hipótese. Você sempre terá que interpretar

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

DELINEAMENTO EM BLOCOS AO ACASO

DELINEAMENTO EM BLOCOS AO ACASO DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.

Leia mais

Fernando Nogueira Simulação 1

Fernando Nogueira Simulação 1 Simulação a Eventos Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

ANOVA - parte I Conceitos Básicos

ANOVA - parte I Conceitos Básicos ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20%

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20% 0. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Inferência Estatística. Teoria da Estimação

Inferência Estatística. Teoria da Estimação Inferência Estatística Teoria da Estimação Os procedimentos básicos de inferência Estimação: usamos o resultado amostral para estimar o valor desconhecido do parâmetro Teste de hipótese: usamos o resultado

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto Introdução 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2.

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

Inferência Estatística: Conceitos Básicos II

Inferência Estatística: Conceitos Básicos II Inferência Estatística: Conceitos Básicos II Distribuição Amostral e Teorema do Limite Central Análise Exploratória de dados no SPSS Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação

Leia mais

DELINEAMENTO FATORIAL. Profª. Sheila Regina Oro

DELINEAMENTO FATORIAL. Profª. Sheila Regina Oro DELINEAMENTO FATORIAL Profª. Sheila Regina Oro Existem casos em que vários fatores devem ser estudados simultaneamente para que possam nos conduzir a resultados de interesse. Experimentos fatoriais: são

Leia mais

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................

Leia mais

Distribuição t de Student

Distribuição t de Student Distribuição t de Student Introdução Quando o desvio padrão da população não é conhecido (o que é o caso, geralmente), usase o desvio padrão da amostra como estimativa, substituindo-se σ x por S x nas

Leia mais

Química Analítica V 2S Prof. Rafael Sousa. Notas de aula:

Química Analítica V 2S Prof. Rafael Sousa. Notas de aula: Química Analítica V 2S 2012 Aula 3: 04-12-12 Estatística Aplicada à Química Analítica Prof. Rafael Sousa Departamento de Química - ICE rafael.arromba@ufjf.edu.br Notas de aula: www.ufjf.br/baccan 1 Conceito

Leia mais

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Patricia Maria Bortolon, D. Sc. Cap. 9 Modelos de Regressão com Variáveis Binárias Fonte: GUJARATI; D. N. Econometria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Variáveis

Leia mais

Turma: Engenharia Data: 12/06/2012

Turma: Engenharia Data: 12/06/2012 DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Amostragem. Cuidados a ter na amostragem Tipos de amostragem Distribuições de amostragem

Amostragem. Cuidados a ter na amostragem Tipos de amostragem Distribuições de amostragem Amostragem Cuidados a ter na amostragem Tipos de amostragem Distribuições de amostragem 1 Muito Importante!! Em relação às amostras, deve assegurar-se a sua representatividade relativamente à população

Leia mais

Módulo IV Medidas de Variabilidade ESTATÍSTICA

Módulo IV Medidas de Variabilidade ESTATÍSTICA Módulo IV Medidas de Variabilidade ESTATÍSTICA Objetivos do Módulo IV Compreender o significado das medidas de variabilidade em um conjunto de dados Encontrar a amplitude total de um conjunto de dados

Leia mais

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma

Leia mais

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados.

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados. INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 007/008 Estatística Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB rangel.ufg@gmail.com Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat

Leia mais

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou Testes de Hipóteses Professor: Josimar Vasconcelos Contato: josimar@ufpi.edu.br ou josimar@uag.ufrpe.br http://prof-josimar.blogspot.com.br/ Universidade Federal do Piauí UFPI Campus Senador Helvídio Nunes

Leia mais

TESTE DE MANN-WHITNEY

TESTE DE MANN-WHITNEY TESTE DE MANN-WHITNEY A importância deste teste é ser a alternativa não paramétrica ao teste t para a diferença de médias. Sejam (X,X,...,X n ) e (Y,Y,...,Y m ) duas amostras independentes, de tamanhos

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Prof. Marcos Pó Métodos Quantitativos para Ciências Sociais Distribuição amostral Duas amostragens oriundas

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013 Análise da Regressão múltipla: Inferência Revisão da graduação Aula 4 6 de maio de 2013 Hipóteses do modelo linear clássico (MLC) Sabemos que, dadas as hipóteses de Gauss- Markov, MQO é BLUE. Para realizarmos

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

REGRESSÃO LINEAR SIMPLES PARTE III

REGRESSÃO LINEAR SIMPLES PARTE III REGRESSÃO LINEAR SIMPLES PARTE III Instalando e usando a opção Regressão do Excel. Francisco Cavalcante(f_c_a@uol.com.br) Administrador de Empresas graduado pela EAESP/FGV. É Sócio-Diretor da Cavalcante

Leia mais

Gabarito da 1 a Lista de Exercícios de Econometria II

Gabarito da 1 a Lista de Exercícios de Econometria II Gabarito da 1 a Lista de Exercícios de Econometria II Professor: Rogério Silva Mattos Monitor: Delano H. A. Cortez Questão 1 Considerando que o modelo verdadeiro inicialmente seja o seguinte: C = a + 2Y

Leia mais

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 4

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 4 UNIVERSIDADE EDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Disciplina: Estatística II LISTA DE EXERCÍCIOS 4 1. Torna-se necessária uma comparação múltipla de médias quando

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

ERRO E TRATAMENTO DE DADOS ANALÍTICOS

ERRO E TRATAMENTO DE DADOS ANALÍTICOS Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Química Introdução a Analise Química - I sem/2013 Profa Ma Auxiliadora - 1 Disciplina QUIO94 - Introdução à Análise Química

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

PERFIL DO MICROEMPREENDEDOR INDIVIDUAL DE ANÁPOLIS

PERFIL DO MICROEMPREENDEDOR INDIVIDUAL DE ANÁPOLIS PERFIL DO MICROEMPREENDEDOR INDIVIDUAL DE ANÁPOLIS Deyvison Dias Gomes1 Polyana Pâmela Ferreira Vitorino 2, Joana D arc Bardella 3 1 Graduando do curso de Ciências Econômicas do Campus Anápolis de CSEH/UEG.

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência 1 AULAS 24 E 25 Análise de Regressão Múltipla: Inferência Ernesto F. L. Amaral 23 e 25 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

Poder do teste e Tamanho de Amostra

Poder do teste e Tamanho de Amostra Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 24 Poder do teste e Tamanho de Amostra APOIO: Fundação de Ciência

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Júlio Osório Distribuições Teóricas de Probabilidades Diz-se que uma variável aleatória contínua X tem uma distribuição normal de parâmetros µ (média) e σ (desviopadrão)

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Aula 2 Regressão e Correlação Linear

Aula 2 Regressão e Correlação Linear 1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

Ajuste por mínimos quadrados no Scilab

Ajuste por mínimos quadrados no Scilab Ajuste por mínimos quadrados no Scilab O ajuste por mínimos quadrados é uma regressão linear nos parâmetros (eles podem ser arranjados na equação de regressão na forma de um único vetor) que tem sua eficiância

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB DISCIPLINA BIOEXPERIMENTAÇÃO Exercício de experimento fatorial resolução passo-à-passo Os dados apresentados abaixo são uma adaptação do exemplo apresentado por Banzato e Kronka (199) Os dados são valores

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

AULA 11 Heteroscedasticidade

AULA 11 Heteroscedasticidade 1 AULA 11 Heteroscedasticidade Ernesto F. L. Amaral 30 de julho de 2012 Análise de Regressão Linear (MQ 2012) www.ernestoamaral.com/mq12reg.html Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais