Métodos Estatísticos Avançados em Epidemiologia

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Métodos Estatísticos Avançados em Epidemiologia"

Transcrição

1 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39

2 Introdução Existem muitas situações nas quais um pesquisador deseja comparar mais do que dois grupos experimentais com relação a uma variável quantitativa. Exemplos: Comparar três drogas para reduzir o colesterol. Comparar a idade de pacientes entre três grupos de risco (baixo, médio, alto). 2 / 39

3 Introdução A primeira vista, pode parecer correto realizar vários testes t entre os grupos, comparando-os dois a dois. No caso da comparação de três grupos (grupo A, grupo B e grupo C), haveria três testes t de comparação entre médias: µ A vs µ B, µ A vs µ C e µ B vs µ C. Na comparação de quatro grupos, haveria seis testes t de comparação entre médias. Se o número de grupos é igual a 10, precisaríamos de 45 testes t dois a dois. 3 / 39

4 Introdução Observação 1: O número de testes aumenta conforme o número de grupos aumenta. Para k grupos temos ( ) k 2 comparações. Observação 2: Tal procedimento (a realização de todas as comparações dois a dois) é estatisticamente ineficiente. O teste t foi delineado para, em um mesmo experimento, comparar-se uma média A com apenas outra, B, com probabilidade α de se concluir, incorretamente, por uma diferença que não existe. Se forem feitas mais de uma comparação envolvendo a média A, a probabilidade de um erro deste tipo passa a ser maior do que α. 4 / 39

5 Introdução O procedimento mais indicado para se evitar esse aumento no nível global de significância do experimento consiste em utilizar a técnica da Análise de Variância (ANOVA). Este método compara todas as médias em um único teste e visa a identificar a existência de ao menos uma diferença entre grupos. Caso o resultado seja significativo, aplica-se posteriormente uma das várias técnicas existentes de comparações múltiplas entre as médias. Estes procedimentos permitem identificar quais as populações possuem médias diferentes entre si, mantendo controlado o nível de significância do teste. 5 / 39

6 Exemplo: Volume expiratório forçado (FEV) (Pagano e Gauvreau, 2004, p.256) Desejamos comparar o volume expiratório forçado de pacientes com doença coronária oriundos de três centros médicos diferentes (21 pacientes da Johns Hopkins University School of Medicine, 16 pacientes do Rancho Los Amigos Medical Center e 23 pacientes da St. Louis University School of Medicine). Estamos interessados em testar H 0 : µ 1 = µ 2 = µ 3 contra a alternativa de que pelo menos duas médias populacionais são diferentes. Os dados são apresentados a seguir. 6 / 39

7 Exemplo: Volume expiratório forçado (FEV) Tabela: Volume expiratório forçado em 1 segundo para pacientes com doença coronária de três diferentes centros médicos.(em litros) Johns Hopkins Rancho Los Amigos St. Louis 3,23 2,57 3,22 2,61 2,79 3,17 3,47 2,08 2,88 3,39 3,22 2,23 1,86 2,47 1,71 3,17 2,25 2,19 2,47 2,47 2,89 2,98 4,06 3,01 2,74 3,77 2,47 1,98 1,69 2,88 3,29 2,77 2,81 2,10 2,63 3,39 2,95 2,85 2,81 2,53 3,86 3,56 2,43 3,28 2,64 2,88 3,20 3,36 2,71 2,63 3,53 2,61 2,71 3,38 2,91 3,41 3,07 1,98 2,87 2,81 n 1 = 21 n 2 = 16 n 3 = 23 x 1 = 2, 63 litros x 2 = 3, 03 litros x 3 = 2, 88 litros s 1 = 0, 496 litros s 2 = 0, 523 litros s 3 = 0, 498 litros 7 / 39

8 Exemplo: FEV - Análise Descritiva - Box-plots Figura: 1- John Hopkins, 2- Rancho Los Amigos e 3- St. Louis. 8 / 39

9 Fontes de variação Como o nome sugere, a análise de variância depende de estimativas da dispersão/variância. Quando trabalhamos com diferentes populações, podemos calcular dois tipos de medidas de variância: a variação dos valores dos indivíduos em torno das médias populacionais (desvio-padrão intra-grupo); e a variação das médias populacionais em torno da média global (desvio-padrão inter-grupos). Se a variabilidade dentro das k diferentes populações é pequena em relação a variabilidade entre suas respectivas médias, isto sugere que as médias populacionais são de fato diferentes. 9 / 39

10 Fontes de variação Para testar a hipótese nula H 0 : µ 1 = µ 2 =... = µ k para um conjunto de k populações, primeiro precisamos encontrar uma medida de variabilidade das observações individuais em torno de suas médias populacionais. A estimativa combinada da variância comum σ 2 é tal medida. Seja n = n 1 + n n k (tamanho total da amostra), então s 2 D = (n 1 1)s (n 2 1)s (n k 1)s 2 k n k em que s 2 j é a variância amostral do grupo j. Esta quantidade é simplesmente a média ponderada das k variâncias amostrais. O subscrito D se refere a variabilidade dentro de grupos., 10 / 39

11 Fontes de variação Precisamos de uma expressão que estime a variação das médias em torno da média global, ou seja, a variância entre grupos. Se a hipótese nula é verdadeira, esta quantidade também estima a variância comum σ 2 se 2 = n 1( x 1 x) 2 + n 2 ( x 2 x) n k ( x k x) 2, k 1 em que x j é a média amostral do grupo j e x é a média global das n observações x = n 1 x 1 + n 2 x n k x k n 1 + n n k = n 1 x 1 + n 2 x n k x k. n 11 / 39

12 Fontes de variação Agora que temos as estimativas das variâncias, queremos responder a seguinte questão: as médias amostrais variam em torno da média global mais do que as observações individuais variam em torno das médias amostrais? Se sim, isto implica que as correspondentes médias populacionais são diferentes. Para testar a hipótese nula que as médias populacionais são idênticas, usamos a seguinte estatística de teste F = s2 E sd / 39

13 Fontes de variação Sob a hipótese nula, que as médias são iguais, tanto s 2 E quanto s 2 D estimam a variância comum σ2, e F é próximo de 1. Se existe uma diferença entre as populações, então a variância entre os grupos é maior que a variância dentro dos grupos, e F é maior que 1. Sob H 0, a razão F tem uma distribuição F com k 1 e n k graus de liberdade. 13 / 39

14 Distribuição F f(x) x Figura: Distribuição F com 4 e 2 graus de liberdade. 14 / 39

15 5 F Distribuição F Distribuição F de Snedecor a 5% (p=0,05) p=0,05 F t ,51 19,00 19,16 19,25 19,30 19,33 19,35 19,37 19,38 19,40 19,41 19,42 19,43 19,43 19,44 19,45 19,46 19,47 19,48 19, ,13 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 8,79 8,74 8,71 8,70 8,69 8,67 8,66 8,62 8,59 8,57 8,55 4 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6,00 5,96 5,91 5,87 5,86 5,84 5,82 5,80 5,75 5,72 5,69 5,66 5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 4,74 4,68 4,64 4,62 4,60 4,58 4,56 4,50 4,46 4,43 4,40 6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 4,06 4,00 3,96 3,94 3,92 3,90 3,87 3,81 3,77 3,74 3,70 7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,68 3,64 3,57 3,53 3,51 3,49 3,47 3,44 3,38 3,34 3,30 3,27 8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 3,35 3,28 3,24 3,22 3,20 3,17 3,15 3,08 3,04 3,01 2,97 9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 3,14 3,07 3,03 3,01 2,99 2,96 2,94 2,86 2,83 2,79 2, ,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 2,91 2,86 2,85 2,83 2,80 2,77 2,70 2,66 2,62 2, ,84 3,98 3,59 3,36 3,20 3,09 3,01 2,95 2,90 2,85 2,79 2,74 2,72 2,70 2,67 2,65 2,57 2,53 2,49 2, ,75 3,89 3,49 3,26 3,11 3,00 2,91 2,85 2,80 2,75 2,69 2,64 2,62 2,60 2,57 2,54 2,47 2,43 2,38 2, ,67 3,81 3,41 3,18 3,03 2,92 2,83 2,77 2,71 2,67 2,60 2,55 2,53 2,51 2,48 2,46 2,38 2,34 2,30 2, ,60 3,74 3,34 3,11 2,96 2,85 2,76 2,70 2,65 2,60 2,53 2,48 2,46 2,44 2,41 2,39 2,31 2,27 2,22 2, ,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 2,48 2,42 2,40 2,38 2,35 2,33 2,25 2,20 2,16 2, ,49 3,63 3,24 3,01 2,85 2,74 2,66 2,59 2,54 2,49 2,42 2,37 2,35 2,33 2,30 2,28 2,19 2,15 2,11 2, ,45 3,59 3,20 2,96 2,81 2,70 2,61 2,55 2,49 2,45 2,38 2,33 2,31 2,29 2,26 2,23 2,15 2,10 2,06 2, ,41 3,55 3,16 2,93 2,77 2,66 2,58 2,51 2,46 2,41 2,34 2,29 2,27 2,25 2,22 2,19 2,11 2,06 2,02 1, ,38 3,52 3,13 2,90 2,74 2,63 2,54 2,48 2,42 2,38 2,31 2,26 2,23 2,21 2,18 2,16 2,07 2,03 1,98 1, ,35 3,49 3,10 2,87 2,71 2,60 2,51 2,45 2,39 2,35 2,28 2,22 2,20 2,18 2,15 2,12 2,04 1,99 1,95 1, ,32 3,47 3,07 2,84 2,68 2,57 2,49 2,42 2,37 2,32 2,25 2,20 2,18 2,16 2,12 2,10 2,01 1,96 1,92 1, ,30 3,44 3,05 2,82 2,66 2,55 2,46 2,40 2,34 2,30 2,23 2,17 2,15 2,13 2,10 2,07 1,98 1,94 1,89 1, ,28 3,42 3,03 2,80 2,64 2,53 2,44 2,37 2,32 2,27 2,20 2,15 2,13 2,11 2,08 2,05 1,96 1,91 1,86 1, ,26 3,40 3,01 2,78 2,62 2,51 2,42 2,36 2,30 2,25 2,18 2,13 2,11 2,09 2,05 2,03 1,94 1,89 1,84 1, ,24 3,39 2,99 2,76 2,60 2,49 2,40 2,34 2,28 2,24 2,16 2,11 2,09 2,07 2,04 2,01 1,92 1,87 1,82 1, ,23 3,37 2,98 2,74 2,59 2,47 2,39 2,32 2,27 2,22 2,15 2,09 2,07 2,05 2,02 1,99 1,90 1,85 1,80 1, ,21 3,35 2,96 2,73 2,57 2,46 2,37 2,31 2,25 2,20 2,13 2,08 2,06 2,04 2,00 1,97 1,88 1,84 1,79 1, ,20 3,34 2,95 2,71 2,56 2,45 2,36 2,29 2,24 2,19 2,12 2,06 2,04 2,02 1,99 1,96 1,87 1,82 1,77 1, ,18 3,33 2,93 2,70 2,55 2,43 2,35 2,28 2,22 2,18 2,10 2,05 2,03 2,01 1,97 1,94 1,85 1,81 1,75 1, ,17 3,32 2,92 2,69 2,53 2,42 2,33 2,27 2,21 2,16 2,09 2,04 2,01 1,99 1,96 1,93 1,84 1,79 1,74 1, ,08 3,23 2,84 2,61 2,45 2,34 2,25 2,18 2,12 2,08 2,00 1,95 1,92 1,90 1,87 1,84 1,74 1,69 1,64 1, ,00 3,15 2,76 2,53 2,37 2,25 2,17 2,10 2,04 1,99 1,92 1,86 1,84 1,82 1,78 1,75 1,65 1,59 1,53 1, ,92 3,07 2,68 2,45 2,29 2,18 2,09 2,02 1,96 1,91 1,83 1,78 1,75 1,73 1,69 1,66 1,55 1,50 1,43 1,35 Tabela 5: Quantis da Distribuição F para probabilidade p = P [F Ft] = 0, 05. Graus de liberdade do numerador dado no topo e do denominador na margem esquerda. 15 / 39

16 Fontes de variação Observação: Podemos organizar o procedimento na seguinte tabela Tabela: Tabela da Análise de Variância. Fontes de variação SQ GL QM F Entre os grupos SQ E k 1 QM E = SQ E /k 1 QM E / QM D Dentro dos grupos SQ D n k QM D = SQ D /n k - Total SQ Total n em que: SQ E é a soma de quadrados entre os grupos e é o numerador de se 2, ou seja, SQ E = n 1 ( x 1 x) 2 + n 2 ( x 2 x) n k ( x k x) 2. SQ D é a soma de quadrados dentro dos grupos e é o numerador de sd 2, ou seja, SQ D = (n 1 1)s1 2 + (n 2 1)s (n k 1)sk 2. Note que QM E = se 2 e QM D = sd / 39

17 Fontes de variação Retomando ao exemplo, estamos interessados em testar se a média da variável FEV é igual para os pacientes dos três diferentes centros médicos. Ou seja, H 0 : µ 1 = µ 2 = µ 3. Para começar, calculamos a estimativa da variância dentro dos grupos s 2 D = (n 1 1)s (n 2 1)s (n 3 1)s 2 k n 1 + n 2 + n 3 3 = (21 1)(0, 496)2 + (16 1)(0, 523) 2 + (23 1)(0, 498) = 0, 254 litros / 39

18 Fontes de variação Temos que a média global é x = n 1 x 1 + n 2 x 2 + n 3 x 3 n 1 + n 2 + n 3 21(2, 63) + 16(3, 03) + 23(2, 88) = = 2, 83 litros, e assim a estimativa da variância entre os grupos é s 2 E = n 1( x 1 x) 2 + n 2 ( x 2 x) 2 + n 3 ( x 3 x) = 21(2, 63 2, 83)2 + 16(3, 03 2, 83) (2, 88 2, 83) = 0, 791 litros / 39

19 Fontes de variação Desta forma, a estatística de teste é F = s2 E s 2 D 0, 769 = 0, 254 = 3, 028. Para a distribuição F com k 1 = 3 1 = 2 e n k = 60 3 = 57 graus de liberdade, o valor p = 0, 052. Rejeitamos a hipótese nula ao nível de 10% de significância, mas não se rejeita ao nível de 5% de significância. Possivelmente haja alguma diferença entre as médias dos valores do FEV entre estas três populações. 19 / 39

20 Fontes de variação De forma análoga, temos a seguinte tabela de análise de variância. Tabela: Tabela da Análise de Variância. Fontes de variação SQ GL QM F p-valor Entre os grupos 1,58 2 0, 791 3,115 0,052 Dentro dos grupos 14, , Total 16, / 39

21 Procedimentos de comparações múltiplas Um valor de F significativo na ANOVA não indica quais são os grupos significativamente diferentes dois a dois. Ele apenas detecta a existência de pelo menos uma diferença entre os grupos estudados. A identificação de diferenças particulares entre médias, tomando-as duas a duas, deve ser realizada por um dos vários métodos de Comparações Múltiplas entre Médias existentes na literatura. Estes testes são semelhantes ao test t, com a diferença de que controlam o nível de significância ao levar em consideração o número de comparações a serem realizadas. 21 / 39

22 Procedimentos de comparações múltiplas Correção de Bonferroni O procedimento de Bonferroni consiste em corrigir o valor do nível de significância α, calculando-se α = α m em que α é o nível de significância global e m é o número de comparações a serem realizadas (m = ( k 2), para k grupos). Para o caso de k = 3 populações, o total de testes é m = ( 3 2) = 3. Se definimos o nível de significância global em 10%, devemos utilizar α = para cada teste individual. 0, 10 3 = 0, / 39

23 Procedimentos de comparações múltiplas Correção de Bonferroni Para realizar um teste da hipótese nula devemos calcular H 0 : µ i = µ j t ij = x i x j. sd 2 [(1/n i) + (1/n j )] Note que este é um teste t para duas amostras, porém ao invés de estimarmos a variância somente com as duas amostras que estão sendo comparandas, estimamos utilizando a informação das k amostras. Sob a hipótese nula, t ij tem uma distribuição t com n k graus de liberdade. 23 / 39

24 Procedimentos de comparações múltiplas Correção de Bonferroni Considerando o exemplo do FEV, começamos comparando as populações 1 e 2, os pacientes da Johns Hopkins e aqueles do Rancho Los Amigos. Neste caso, t 12 = x 1 x 2 sd 2 [(1/n 1) + (1/n 2 )] = 2, 63 3, 03 0, 254[(1/21) + (1/16)] = 2, 43. Para um teste t com n k = 60 3 graus de liberdade, o valor-p= 0, 018. Assim, rejeitamos a hipótese nula ao nível 3,3% e concluímos que as médias do FEV dos pacientes da Johns Hopkins e do Rancho Los Amigos são diferentes. 24 / 39

25 Procedimentos de comparações múltiplas Correção de Bonferroni Comparando as populações 1 e 3 (os pacientes da Johns Hopkins e aqueles da St. Louis), temos t 13 = = x 1 x 3 sd 2 [(1/n 1) + (1/n 3 )] 2, 63 2, 88 0, 254[(1/21) + (1/23)] = 1, 64. Como o valor-p> 0, 10, não temos evidências suficientes para concluir que µ 1 difere de µ / 39

26 Procedimentos de comparações múltiplas Correção de Bonferroni Comparando os pacientes do Rancho Los Amigos e aqueles da St. Louis (populações 2 e 3), temos t 23 = = x 2 x 3 sd 2 [(1/n 2) + (1/n 3 )] 3, 03 2, 88 0, 254[(1/16) + (1/23)] = 0, 91. Novamente o p-valor> 0, 10, e não temos evidências suficientes para concluir que µ 2 difere de µ / 39

27 Outros Procedimentos de Comparações Múltiplas Tukey, Schefée, etc. Cada método fornece um valor de referência que deve ser comparado às diferenças de médias amostrais. De forma equivalente, eles fornecem um intervalo de confiança para a diferença de médias. Um procedimento usual consiste em: (1) ordenar as médias amostrais; (2) compará-las utilizando um método de comparação múltipla. 27 / 39

28 Outros Procedimentos de Comparações Múltiplas Teste de Tukey O método de comparações múltiplas de Tukey é bastante popular por ser um dos primeiros e razoavelmente eficiente. Neste teste, duas média amostrais são comparadas usando ( S T (1 α);k,n k 1 s 2 2 D + 1 ) n i n j em que S T (1 α);k,n k é o quantil de probabilidade (1 α) da distribuição Studentizada com k e n k graus de liberdade. 28 / 39

29 Outros Procedimentos de Comparações Múltiplas Teste de Tukey A hipótese H 0 : µ i = µ j é rejeitada se x i x j S ( T (1 α);k,n k 1 s 2 2 D + 1 ) n i n j 29 / 39

30 Outros Procedimentos de Comparações Múltiplas Teste de Tukey Considerando o exemplo do FEV, comparando as populações 1 e 2, os pacientes da Jonh Hopkins e do Rancho Los Amigos, o valor-p obtido foi igual a 0,047. Assim, rejeitamos a hipótese nula ao nível 10% e concluímos que as médias do FEV dos pacientes da Johns Hopkins e do Rancho Los Amigos são diferentes. Comparando as populações 1 e 3 (pacientes da Jonh Hopkins e da St. Louis), o valor-p obtido foi igual a 0,229. Desta forma, não rejeitamos a hipótese nula ao nível de 10% e concluímos que as médias do FEV dos pacientes da Jonh Hopkins e da St. Louis não são diferentes. 30 / 39

31 Outros Procedimentos de Comparações Múltiplas Teste de Tukey Comparando os pacientes do Rancho Los Amigos e da St. Louis (populações 2 e 3), o valor-p obtido foi igual a 0,619. Assim, não rejeitamos a hipótese nula ao nível 10% e concluímos que as médias do FEV dos pacientes da St. Louis e do Rancho Los Amigos são iguais. 31 / 39

32 Outros Procedimentos de Comparações Múltiplas Teste de Scheffé Neste teste a hipótese nula H 0 : µ i = µ j é rejeitada se x i x j ( 1 (k 1)F (1 α);k 1,n k sd ) n i n j em que, F (1 α) é o quantil de probabilidade (1 α) da distribuição F k 1,n k. 32 / 39

33 Condições para o uso da ANOVA Para que os resultados da Análise de Variância sejam válidos, é necessário que: as variâncias das distribuições do desfecho de cada tratamento tem que ser iguais (HOMOCEDASTICIDADE); e, o desfecho de cada tratamento deve ter distribuição normal (NORMALIDADE). A ANOVA é razoavelmente robusta a afastamentos da normalidade, especialmente se os tamanhos amostrais forem grandes. 33 / 39

34 Como verificar as suposições da ANOVA Uma ferramente útil para esta tarefa são os resíduos do ajuste da ANOVA. Y ij = µ + τ i + ɛ ij em que Y ij é o desfecho da j-ésima observação no i-ésimo tratamento/grupo; µ: efeito geral da média: τ i : efeito do i-ésimo tratamento. Os resíduos são definidos da seguinte forma: ˆɛ ij = Y ij ˆµ ˆτ i em que ˆµ e ˆτ i são os valores estimados pelos dados. 34 / 39

35 Verificando as suposições da ANOVA 1 HOMOCEDASTICIDADE Teste Bartlett ou Levene (σ 2 1 =... = σ2 k ). Gráfico de resíduos vs ajustados (não deve exibir tendências sob homocedasticidade). 2 NORMALIDADE Teste Shapiro-Wilks. Gráfico de Probabilidade Normal dos resíduos. 35 / 39

36 Exemplo: FEV - Testes Considerando o exemplo do FEV os seguintes valores-p foram obtidos Bartlett: valor-p = 0,971 / Levene: valor-p=0,959 Shapiro-Wilks: valor-p = 0, / 39

37 Exemplo: FEV - Resíduos - Resultado do R Fitted values Residuals Residuals vs Fitted Theoretical Quantiles Standardized residuals Normal Q Q Fitted values Standardized residuals Scale Location Leverage Standardized residuals Cook's distance Residuals vs Leverage / 39

38 O que fazer se as suposições não valerem? 1 Testes Não-Paramétrico: Kruskal-Wallis, permutação, etc. 2 Transformação na Resposta. 3 Modelar a dispersão. 38 / 39

39 VEF - Conclusão Final Resumindo, encontramos que a média do FEV dos pacientes da Johns Hopikins é significativa menor que a média do FEV daqueles do Rancho Los Amigos. Nenhuma outra diferença foi detectada. Intervalo de 90% de Confiança para a diferença média de FEV entre os pacientes da Johns Hopkins e aqueles do Rancho Los Amigos: x 1 x 2 ± t 57;1 (0,1/2 3) s 2 D [(1/n 1) + (1/n 2 )] = 2, 63 3, 03 ± 2, 18 0, 25[(1/21) + (1/16)] = ( 0, 77; 0, 04) Ou seja, o FEV médio dos pacientes do centro médico de Rancho Los Amigos é 0,4 l (IC; 90%, 0,04;0,77) maior que o FEV médio daqueles da Johns Hopkins. 39 / 39

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia 1 / 44 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Referência: Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 2 / 44

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Análise da Variância. Prof. Dr. Alberto Franke (48)

Análise da Variância. Prof. Dr. Alberto Franke (48) Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB DISCIPLINA BIOEXPERIMENTAÇÃO Exercício de experimento fatorial resolução passo-à-passo Os dados apresentados abaixo são uma adaptação do exemplo apresentado por Banzato e Kronka (199) Os dados são valores

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas).

Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas). Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas). Na comparação de duas populações, dispomos de duas amostras, em

Leia mais

Teste de Hipóteses. Enrico A. Colosimo/UFMG enricoc/ Depto. Estatística - ICEx - UFMG 1/24

Teste de Hipóteses. Enrico A. Colosimo/UFMG  enricoc/ Depto. Estatística - ICEx - UFMG 1/24 1/24 Introdução à Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/24 Exemplo A concentração de certa substância no sangue entre

Leia mais

Bioestatística Básica RCA 5804 COMPARANDO GRUPOS INDEPENDENTES. Prof. Dr. Alfredo J Rodrigues

Bioestatística Básica RCA 5804 COMPARANDO GRUPOS INDEPENDENTES. Prof. Dr. Alfredo J Rodrigues Bioestatística Básica RCA 5804 COMPARANDO GRUPOS INDEPENDENTES Prof. Dr. Alfredo J Rodrigues Departamento de Cirurgia e Anatomia Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo alfredo@fmrp.usp.br

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

Testes de Hipóteses sobre a média: Várias Amostras

Testes de Hipóteses sobre a média: Várias Amostras Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)

Leia mais

Testes de Hipótese para uma única Amostra - parte I

Testes de Hipótese para uma única Amostra - parte I Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os

Leia mais

Teste de Cochran (Homogeneidade de Variância)

Teste de Cochran (Homogeneidade de Variância) ara o modelo heterocedástico, vamos inicialmente testar as hipóteses Os métodos mais utilizados são os testes de Cochran, Bartlett e de Levene. Teste de Cochran (Homogeneidade de Variância) O teste de

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml.

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. O nível médio de colesterol da subpopulação de homens que são fumantes hipertensos

Leia mais

EXPERIMENTAÇÃO AGRÍCOLA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

EXPERIMENTAÇÃO AGRÍCOLA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari EXPERIMENTAÇÃO AGRÍCOLA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br INTRODUÇÃO Muitas vezes, embora se tenha cuidado no planejamento e Ao planejar um experimento, o pesquisador

Leia mais

Princípios de Bioestatística Teste de Hipóteses

Princípios de Bioestatística Teste de Hipóteses 1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Teste Anova. Prof. David Prata Novembro de 2016

Teste Anova. Prof. David Prata Novembro de 2016 Teste Anova Prof. David Prata Novembro de 2016 Tipo de Variável Introduzimos o processo geral de teste de hipótese. É hora de aprender a testar a sua própria hipótese. Você sempre terá que interpretar

Leia mais

ANOVA - parte I Conceitos Básicos

ANOVA - parte I Conceitos Básicos ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução

Leia mais

Planejamento de Experimentos

Planejamento de Experimentos Planejamento de Experimentos Analise de Variância (ANOVA) com um Fator Planejamento de Experimentos Muitas vezes é necessário obter informações sobre produtos e processos empiricamente. Trabalho assemelha-se

Leia mais

DELINEAMENTO EM BLOCOS AO ACASO

DELINEAMENTO EM BLOCOS AO ACASO DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.

Leia mais

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................

Leia mais

DIC com número diferente de repetições por tratamento

DIC com número diferente de repetições por tratamento DIC com número diferente de repetições por tratamento Introdução Muitas vezes, embora se tenha cuidado no planejamento e Ao planejar um experimento, o pesquisador deve utilizar na execução do experimento,

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Testes de hipóteses Paramétricos

Testes de hipóteses Paramétricos Testes de hipóteses Paramétricos Modelos de análise de variância com um factor Teste de Bartlett Teste de comparações múltiplas de Scheffé Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 1

Leia mais

Parte 8 Testes de hipóteses Comparação de dois grupos

Parte 8 Testes de hipóteses Comparação de dois grupos Parte 8 Testes de hipóteses Comparação de dois grupos Um objetivo frequente em estudos de diferentes áreas é a comparação de dois ou mais grupos (ou populações). Alguns exemplos: o Comparação dos salários

Leia mais

CAPÍTULO IV Análise de variância

CAPÍTULO IV Análise de variância CAPÍTULO IV Análise de variância O objectivo principal da análise de variância (analysis of variance - ANOVA) é a comparação de mais do que dois grupos no que diz respeito à localização. Para exemplificar,

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO GRR: Observação: em todos os problemas que envolvem teste de hipótese, é necessário

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Carlos Antonio Filho

Carlos Antonio Filho Estatística II - Seção 04 Carlos Antonio Filho ESAGS 2 o semestre de 2017 Carlos Antonio Filho (ESAGS) Estatística II - Seção 04 2 o semestre de 2017 1 / 137 Comparação de médias de duas populações Vamos

Leia mais

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 21 de Junho de 2013 3 Uma outra medida usada para verificar o ajuste do modelo. Essa estatística é dada por X

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

Inferência para várias populações normais análise de variância (ANOVA)

Inferência para várias populações normais análise de variância (ANOVA) Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Teste de Hipótese e Intervalo de Confiança

Teste de Hipótese e Intervalo de Confiança Teste de Hipótese e Intervalo de Confiança Suponha que estamos interessados em investigar o tamanho da ruptura em um músculo do ombro... para determinar o tamanho exato da ruptura, é necessário um exame

Leia mais

Inferência Estatística:

Inferência Estatística: Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos

Leia mais

Estatística: Objetivos e fundamentos

Estatística: Objetivos e fundamentos AULA/TEMA Estatística Básica Estatística: Objetivos e fundamentos Profa. Vanessa Ziotti Conteúdo Programático Estatística. O que é? Inferência estatística Estatística descritiva e experimental Termos estatísticos

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Princípios de Bioestatística Cálculo do Tamanho de Amostra Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 1 / 32 2 / 32 Cálculo do Tamanho de Amostra Parte fundamental

Leia mais

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS DA SAÚDE FACULDADE DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA DISCIPLINA DE EPIDEMIOLOGIA ESTUDOS DE COORTE 1) Com o objetivo de investigar

Leia mais

Estatística. Guia de Estudos P2

Estatística. Guia de Estudos P2 Estatística Guia de Estudos P2 1. Intervalo de Confiança Conceito extremamente importante que consiste em utilizar os valores amostrais obtidos através das fórmulas de Estatística Descritiva para encontrar

Leia mais

Investigação Aplicada I

Investigação Aplicada I Investigação Aplicada I Aula 7 1º Semestre 2016/17 Licenciatura em Ciências Biomédicas Laboratoriais igrodrigues@ualg.pt; ESSUAlg: gabinete 2.06 Prof. Inês Rodrigues Inferência esta-s.ca Inferir dados

Leia mais

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV TESTES DE COMPARAÇÕES MÚLTIPLAS DE MÉDIAS EXPERIMENTAIS Profª Railene Hérica Carlos

Leia mais

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013 Análise da Regressão múltipla: Inferência Revisão da graduação Aula 4 6 de maio de 2013 Hipóteses do modelo linear clássico (MLC) Sabemos que, dadas as hipóteses de Gauss- Markov, MQO é BLUE. Para realizarmos

Leia mais

ANÁLISE DE VARIÂNCIA (ANOVA) Prof. Anderson Rodrigo da Silva

ANÁLISE DE VARIÂNCIA (ANOVA) Prof. Anderson Rodrigo da Silva ANÁLISE DE VARIÂNCIA (ANOVA) Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Exemplo 1 de Introdução Medley & Clements (1998) estudaram o efeito de metais pesados, especialmente zinco, sobre

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas

Leia mais

Intervalos de Confiança - Amostras Pequenas

Intervalos de Confiança - Amostras Pequenas Intervalos de Confiança - Amostras Pequenas Teste de Hipóteses para uma Média Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2016

Leia mais

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E Exercícios para Revisão de Teste de Hipótese Material retirado do site http://adm.online.unip.br/ Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E 1) Um revendedor de lâmpadas recebeu

Leia mais

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Capítulo 11 Análise da Variância Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Objetivos do Aprendizado Neste capítulo você aprenderá: Os conceitos básicos da modelagem

Leia mais

INTRODUÇÃO A MODELOS MISTOS

INTRODUÇÃO A MODELOS MISTOS INTRODUÇÃO A MODELOS MISTOS Delineamento experimental ou desenho experimental, de uma forma bastante simples, é a forma em que os tratamentos (níveis de um fator ou combinações de níveis de fatores) são

Leia mais

Especialização em Engenharia de Processos e de Sistemas de Produção

Especialização em Engenharia de Processos e de Sistemas de Produção Especialização em Engenharia de Processos e de Sistemas de Produção Projetos de Experimento e Confiabilidade de Sistemas da Produção Prof. Claudio Luis C. Frankenberg 2ª parte Experimentos inteiramente

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

EXPERIMENTOS COM INTERAÇÕES

EXPERIMENTOS COM INTERAÇÕES EXPERIMENTOS COM INTERAÇÕES Na maioria dos experimentos, os tratamentos são de efeitos fixos. Mas também são realizados experimentos em que os efeitos dos tratamentos são aleatórios. 1 Para saber se, em

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Inferência por Teste de Hipótese Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas de M.

Leia mais

Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL

Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL Experimentos (testes) são realizados por pesquisadores em todos os campos de investigação, usualmente para descobrir

Leia mais

AULA 11 Heteroscedasticidade

AULA 11 Heteroscedasticidade 1 AULA 11 Heteroscedasticidade Ernesto F. L. Amaral 30 de julho de 2012 Análise de Regressão Linear (MQ 2012) www.ernestoamaral.com/mq12reg.html Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Contexto Já vimos como analisar um experimento em blocos na presença de um único fator de interesse. Podemos ter experimentos

Leia mais

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 7 Prof. Patricia Maria Bortolon, D. Sc. Análise da Variância Objetivos do Aprendizado Nesta aula você aprenderá: A utilizar a análise de variância de fator único para testar diferenças

Leia mais

Análise da Regressão. Prof. Dr. Alberto Franke (48)

Análise da Regressão. Prof. Dr. Alberto Franke (48) Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

Estudo sobre a aplicação da Análise de Variância. Augusto Sousa da Silva Filho 1

Estudo sobre a aplicação da Análise de Variância. Augusto Sousa da Silva Filho 1 Estudo sobre a aplicação da Análise de Variância Augusto Sousa da Silva Filho 1 Resumo: A análise de variância é um teste estatístico amplamente difundido entre os analistas, e visa fundamentalmente verificar

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

AULAS 25 E 26 Heteroscedasticidade

AULAS 25 E 26 Heteroscedasticidade 1 AULAS 25 E 26 Heteroscedasticidade Ernesto F. L. Amaral 10 e 15 de junho de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais

BAC011 - ESTATÍSTICA ANÁLISE DE VARIÂNCIA. Análise de Variância ANOVA. Prof. Dr. Emerson José de Paiva

BAC011 - ESTATÍSTICA ANÁLISE DE VARIÂNCIA. Análise de Variância ANOVA. Prof. Dr. Emerson José de Paiva BAC011 - ESTATÍSTICA Análise de Variância ANÁLISE DE VARIÂNCIA 1 A é utilizada para se verificar a influência de certos fatores sobre uma resposta de interesse. Testa-se como os diversos fatores exercem

Leia mais

Probabilidade e Estatística. Prof. Dr. Jhames Sampaio

Probabilidade e Estatística. Prof. Dr. Jhames Sampaio Probabilidade e Estatística Prof. Dr. Jhames Sampaio Medidas de Posição Moda observação mais frequente Medidas de Posição Moda observação mais frequente Vamos considerar a pesquisa do Twitter onde foram

Leia mais

Princípios de Bioestatística Estatística Descritiva/Exploratória

Princípios de Bioestatística Estatística Descritiva/Exploratória 1/31 Princípios de Bioestatística Estatística Descritiva/Exploratória Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/31 Descrição de Dados Variável: característica

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Capítulo 3 Introdução à Probabilidade e à Inferência Estatística INTERVALOS DE CONFIANÇA: Diferentes pesquisadores, selecionando amostras de uma mesma

Leia mais

Teste de hipóteses. Testes de Hipóteses. Valor de p ou P-valor. Lógica dos testes de hipótese. Valor de p 31/08/2016 VPS126

Teste de hipóteses. Testes de Hipóteses. Valor de p ou P-valor. Lógica dos testes de hipótese. Valor de p 31/08/2016 VPS126 3/8/26 Teste de hipóteses Testes de Hipóteses VPS26 Ferramenta estatística para auxiliar no acúmulo de evidências sobre uma questão Média de glicemia de um grupo de animais é diferente do esperado? Qual

Leia mais

Razão para rejeitar H 0

Razão para rejeitar H 0 Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco

Leia mais

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Modelos de Probabilidade e Inferência Estatística Análise de Variância Parte 2 Departamento de Estatística Luiz Medeiros Estimação dos parâmetros e diagnóstico do modelo

Leia mais

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA Revista da Estatística da UFOP, Vol I, 2011 - XI Semana da Matemática e III Semana da Estatística, 2011 ISSN 2237-8111 EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4 MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 16/11/2011 Testes de

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Testes

Leia mais

(a) 0,90 (b) 0,67 (c) 1,0 (d) 0,005

(a) 0,90 (b) 0,67 (c) 1,0 (d) 0,005 359$'((67$7Ë67,&$6(/(d 0(675$'80*,QVWUXo}HVSDUDDSURYD D&DGDTXHVWmRUHVSRQGLGDFRUUHWDPHQWHYDOHSRQWR E4XHVW}HV GHL[DGDV HP EUDQFR YDOHP ]HUR SRQWRV QHVVH FDVR PDUTXH WRGDV DV DOWHUQDWLYDV F &DGDTXHVWmRUHVSRQGLGDLQFRUUHWDPHQWHYDOHSRQWR

Leia mais

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA População (N) representa o conjunto de todas as unidades experimentais que apresentam características em comum Amostra (n) representa uma parte do todo.

Leia mais

Análise de Variância (ANOVA)

Análise de Variância (ANOVA) Análise de Variância (ANOVA) A Regressão Linear visa modelar uma variável resposta numérica (quantitativa), à custa de uma ou mais variáveis preditoras, igualmente numéricas. Mas uma variável resposta

Leia mais

Teste de hipóteses para proporção populacional p

Teste de hipóteses para proporção populacional p Teste de hipóteses para proporção populacional p 1 Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses 2 TESTE DE HIPÓTESES Eu acredito

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Princípios de Bioestatística Cálculo de Tamanho de Amostra Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 1 / 31 2 / 31 Cálculo de Tamanho de Amostra Parte fundamental

Leia mais

Teste de hipótese em modelos normais lineares: ANOVA

Teste de hipótese em modelos normais lineares: ANOVA Teste de hipótese em modelos normais lineares: ANOVA Prof Caio Azevedo Prof Caio Azevedo Exemplo 1 No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar

Leia mais

09 de setembro de 2013

09 de setembro de 2013 Programa de Pós-Graduação em Estatística e Experimentação Agronômica ESALQ/USP 09 de setembro de 2013 1 2 3 4 5 6 7 8 9 10 Conteúdo Contexto Quando o F da ANOVA está sendo utilizado para testar diferenças

Leia mais

Delineamento e Análise Experimental Aula 7. Anderson Castro Soares de Oliveira

Delineamento e Análise Experimental Aula 7. Anderson Castro Soares de Oliveira Aula 7 Castro Soares de Oliveira Experimentos Fatoriais Nos experimentos mais simples comparamos tratamentos de apenas um tipo ou fator. Em algumas situações existem vários fatores envolvidos em um experimento,

Leia mais

Métodos Quantitativos

Métodos Quantitativos Métodos Quantitativos Unidade 4. Estatística inferencial Parte II 1 Sumário Seção Slides 4.1 Correlação entre variáveis quantitativas 03 11 4.2 Teste de significância 12 19 4.3 Regressão linear 20 27 4.4

Leia mais

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total. INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

5. Carta de controle e homogeneidade de variância

5. Carta de controle e homogeneidade de variância 5. Carta de controle e homogeneidade de variância O desenvolvimento deste estudo faz menção a dois conceitos estatísticos: as cartas de controle, de amplo uso em controle estatístico de processo, e a homogeneidade

Leia mais

Testes de Aderência, Homogeneidade e Independência

Testes de Aderência, Homogeneidade e Independência Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais