Métodos Estatísticos Avançados em Epidemiologia

Tamanho: px
Começar a partir da página:

Download "Métodos Estatísticos Avançados em Epidemiologia"

Transcrição

1 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39

2 Introdução Existem muitas situações nas quais um pesquisador deseja comparar mais do que dois grupos experimentais com relação a uma variável quantitativa. Exemplos: Comparar três drogas para reduzir o colesterol. Comparar a idade de pacientes entre três grupos de risco (baixo, médio, alto). 2 / 39

3 Introdução A primeira vista, pode parecer correto realizar vários testes t entre os grupos, comparando-os dois a dois. No caso da comparação de três grupos (grupo A, grupo B e grupo C), haveria três testes t de comparação entre médias: µ A vs µ B, µ A vs µ C e µ B vs µ C. Na comparação de quatro grupos, haveria seis testes t de comparação entre médias. Se o número de grupos é igual a 10, precisaríamos de 45 testes t dois a dois. 3 / 39

4 Introdução Observação 1: O número de testes aumenta conforme o número de grupos aumenta. Para k grupos temos ( ) k 2 comparações. Observação 2: Tal procedimento (a realização de todas as comparações dois a dois) é estatisticamente ineficiente. O teste t foi delineado para, em um mesmo experimento, comparar-se uma média A com apenas outra, B, com probabilidade α de se concluir, incorretamente, por uma diferença que não existe. Se forem feitas mais de uma comparação envolvendo a média A, a probabilidade de um erro deste tipo passa a ser maior do que α. 4 / 39

5 Introdução O procedimento mais indicado para se evitar esse aumento no nível global de significância do experimento consiste em utilizar a técnica da Análise de Variância (ANOVA). Este método compara todas as médias em um único teste e visa a identificar a existência de ao menos uma diferença entre grupos. Caso o resultado seja significativo, aplica-se posteriormente uma das várias técnicas existentes de comparações múltiplas entre as médias. Estes procedimentos permitem identificar quais as populações possuem médias diferentes entre si, mantendo controlado o nível de significância do teste. 5 / 39

6 Exemplo: Volume expiratório forçado (FEV) (Pagano e Gauvreau, 2004, p.256) Desejamos comparar o volume expiratório forçado de pacientes com doença coronária oriundos de três centros médicos diferentes (21 pacientes da Johns Hopkins University School of Medicine, 16 pacientes do Rancho Los Amigos Medical Center e 23 pacientes da St. Louis University School of Medicine). Estamos interessados em testar H 0 : µ 1 = µ 2 = µ 3 contra a alternativa de que pelo menos duas médias populacionais são diferentes. Os dados são apresentados a seguir. 6 / 39

7 Exemplo: Volume expiratório forçado (FEV) Tabela: Volume expiratório forçado em 1 segundo para pacientes com doença coronária de três diferentes centros médicos.(em litros) Johns Hopkins Rancho Los Amigos St. Louis 3,23 2,57 3,22 2,61 2,79 3,17 3,47 2,08 2,88 3,39 3,22 2,23 1,86 2,47 1,71 3,17 2,25 2,19 2,47 2,47 2,89 2,98 4,06 3,01 2,74 3,77 2,47 1,98 1,69 2,88 3,29 2,77 2,81 2,10 2,63 3,39 2,95 2,85 2,81 2,53 3,86 3,56 2,43 3,28 2,64 2,88 3,20 3,36 2,71 2,63 3,53 2,61 2,71 3,38 2,91 3,41 3,07 1,98 2,87 2,81 n 1 = 21 n 2 = 16 n 3 = 23 x 1 = 2, 63 litros x 2 = 3, 03 litros x 3 = 2, 88 litros s 1 = 0, 496 litros s 2 = 0, 523 litros s 3 = 0, 498 litros 7 / 39

8 Exemplo: FEV - Análise Descritiva - Box-plots Figura: 1- John Hopkins, 2- Rancho Los Amigos e 3- St. Louis. 8 / 39

9 Fontes de variação Como o nome sugere, a análise de variância depende de estimativas da dispersão/variância. Quando trabalhamos com diferentes populações, podemos calcular dois tipos de medidas de variância: a variação dos valores dos indivíduos em torno das médias populacionais (desvio-padrão intra-grupo); e a variação das médias populacionais em torno da média global (desvio-padrão inter-grupos). Se a variabilidade dentro das k diferentes populações é pequena em relação a variabilidade entre suas respectivas médias, isto sugere que as médias populacionais são de fato diferentes. 9 / 39

10 Fontes de variação Para testar a hipótese nula H 0 : µ 1 = µ 2 =... = µ k para um conjunto de k populações, primeiro precisamos encontrar uma medida de variabilidade das observações individuais em torno de suas médias populacionais. A estimativa combinada da variância comum σ 2 é tal medida. Seja n = n 1 + n n k (tamanho total da amostra), então s 2 D = (n 1 1)s (n 2 1)s (n k 1)s 2 k n k em que s 2 j é a variância amostral do grupo j. Esta quantidade é simplesmente a média ponderada das k variâncias amostrais. O subscrito D se refere a variabilidade dentro de grupos., 10 / 39

11 Fontes de variação Precisamos de uma expressão que estime a variação das médias em torno da média global, ou seja, a variância entre grupos. Se a hipótese nula é verdadeira, esta quantidade também estima a variância comum σ 2 se 2 = n 1( x 1 x) 2 + n 2 ( x 2 x) n k ( x k x) 2, k 1 em que x j é a média amostral do grupo j e x é a média global das n observações x = n 1 x 1 + n 2 x n k x k n 1 + n n k = n 1 x 1 + n 2 x n k x k. n 11 / 39

12 Fontes de variação Agora que temos as estimativas das variâncias, queremos responder a seguinte questão: as médias amostrais variam em torno da média global mais do que as observações individuais variam em torno das médias amostrais? Se sim, isto implica que as correspondentes médias populacionais são diferentes. Para testar a hipótese nula que as médias populacionais são idênticas, usamos a seguinte estatística de teste F = s2 E sd / 39

13 Fontes de variação Sob a hipótese nula, que as médias são iguais, tanto s 2 E quanto s 2 D estimam a variância comum σ2, e F é próximo de 1. Se existe uma diferença entre as populações, então a variância entre os grupos é maior que a variância dentro dos grupos, e F é maior que 1. Sob H 0, a razão F tem uma distribuição F com k 1 e n k graus de liberdade. 13 / 39

14 Distribuição F f(x) x Figura: Distribuição F com 4 e 2 graus de liberdade. 14 / 39

15 5 F Distribuição F Distribuição F de Snedecor a 5% (p=0,05) p=0,05 F t ,51 19,00 19,16 19,25 19,30 19,33 19,35 19,37 19,38 19,40 19,41 19,42 19,43 19,43 19,44 19,45 19,46 19,47 19,48 19, ,13 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 8,79 8,74 8,71 8,70 8,69 8,67 8,66 8,62 8,59 8,57 8,55 4 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6,00 5,96 5,91 5,87 5,86 5,84 5,82 5,80 5,75 5,72 5,69 5,66 5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 4,74 4,68 4,64 4,62 4,60 4,58 4,56 4,50 4,46 4,43 4,40 6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 4,06 4,00 3,96 3,94 3,92 3,90 3,87 3,81 3,77 3,74 3,70 7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,68 3,64 3,57 3,53 3,51 3,49 3,47 3,44 3,38 3,34 3,30 3,27 8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 3,35 3,28 3,24 3,22 3,20 3,17 3,15 3,08 3,04 3,01 2,97 9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 3,14 3,07 3,03 3,01 2,99 2,96 2,94 2,86 2,83 2,79 2, ,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 2,91 2,86 2,85 2,83 2,80 2,77 2,70 2,66 2,62 2, ,84 3,98 3,59 3,36 3,20 3,09 3,01 2,95 2,90 2,85 2,79 2,74 2,72 2,70 2,67 2,65 2,57 2,53 2,49 2, ,75 3,89 3,49 3,26 3,11 3,00 2,91 2,85 2,80 2,75 2,69 2,64 2,62 2,60 2,57 2,54 2,47 2,43 2,38 2, ,67 3,81 3,41 3,18 3,03 2,92 2,83 2,77 2,71 2,67 2,60 2,55 2,53 2,51 2,48 2,46 2,38 2,34 2,30 2, ,60 3,74 3,34 3,11 2,96 2,85 2,76 2,70 2,65 2,60 2,53 2,48 2,46 2,44 2,41 2,39 2,31 2,27 2,22 2, ,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 2,48 2,42 2,40 2,38 2,35 2,33 2,25 2,20 2,16 2, ,49 3,63 3,24 3,01 2,85 2,74 2,66 2,59 2,54 2,49 2,42 2,37 2,35 2,33 2,30 2,28 2,19 2,15 2,11 2, ,45 3,59 3,20 2,96 2,81 2,70 2,61 2,55 2,49 2,45 2,38 2,33 2,31 2,29 2,26 2,23 2,15 2,10 2,06 2, ,41 3,55 3,16 2,93 2,77 2,66 2,58 2,51 2,46 2,41 2,34 2,29 2,27 2,25 2,22 2,19 2,11 2,06 2,02 1, ,38 3,52 3,13 2,90 2,74 2,63 2,54 2,48 2,42 2,38 2,31 2,26 2,23 2,21 2,18 2,16 2,07 2,03 1,98 1, ,35 3,49 3,10 2,87 2,71 2,60 2,51 2,45 2,39 2,35 2,28 2,22 2,20 2,18 2,15 2,12 2,04 1,99 1,95 1, ,32 3,47 3,07 2,84 2,68 2,57 2,49 2,42 2,37 2,32 2,25 2,20 2,18 2,16 2,12 2,10 2,01 1,96 1,92 1, ,30 3,44 3,05 2,82 2,66 2,55 2,46 2,40 2,34 2,30 2,23 2,17 2,15 2,13 2,10 2,07 1,98 1,94 1,89 1, ,28 3,42 3,03 2,80 2,64 2,53 2,44 2,37 2,32 2,27 2,20 2,15 2,13 2,11 2,08 2,05 1,96 1,91 1,86 1, ,26 3,40 3,01 2,78 2,62 2,51 2,42 2,36 2,30 2,25 2,18 2,13 2,11 2,09 2,05 2,03 1,94 1,89 1,84 1, ,24 3,39 2,99 2,76 2,60 2,49 2,40 2,34 2,28 2,24 2,16 2,11 2,09 2,07 2,04 2,01 1,92 1,87 1,82 1, ,23 3,37 2,98 2,74 2,59 2,47 2,39 2,32 2,27 2,22 2,15 2,09 2,07 2,05 2,02 1,99 1,90 1,85 1,80 1, ,21 3,35 2,96 2,73 2,57 2,46 2,37 2,31 2,25 2,20 2,13 2,08 2,06 2,04 2,00 1,97 1,88 1,84 1,79 1, ,20 3,34 2,95 2,71 2,56 2,45 2,36 2,29 2,24 2,19 2,12 2,06 2,04 2,02 1,99 1,96 1,87 1,82 1,77 1, ,18 3,33 2,93 2,70 2,55 2,43 2,35 2,28 2,22 2,18 2,10 2,05 2,03 2,01 1,97 1,94 1,85 1,81 1,75 1, ,17 3,32 2,92 2,69 2,53 2,42 2,33 2,27 2,21 2,16 2,09 2,04 2,01 1,99 1,96 1,93 1,84 1,79 1,74 1, ,08 3,23 2,84 2,61 2,45 2,34 2,25 2,18 2,12 2,08 2,00 1,95 1,92 1,90 1,87 1,84 1,74 1,69 1,64 1, ,00 3,15 2,76 2,53 2,37 2,25 2,17 2,10 2,04 1,99 1,92 1,86 1,84 1,82 1,78 1,75 1,65 1,59 1,53 1, ,92 3,07 2,68 2,45 2,29 2,18 2,09 2,02 1,96 1,91 1,83 1,78 1,75 1,73 1,69 1,66 1,55 1,50 1,43 1,35 Tabela 5: Quantis da Distribuição F para probabilidade p = P [F Ft] = 0, 05. Graus de liberdade do numerador dado no topo e do denominador na margem esquerda. 15 / 39

16 Fontes de variação Observação: Podemos organizar o procedimento na seguinte tabela Tabela: Tabela da Análise de Variância. Fontes de variação SQ GL QM F Entre os grupos SQ E k 1 QM E = SQ E /k 1 QM E / QM D Dentro dos grupos SQ D n k QM D = SQ D /n k - Total SQ Total n em que: SQ E é a soma de quadrados entre os grupos e é o numerador de se 2, ou seja, SQ E = n 1 ( x 1 x) 2 + n 2 ( x 2 x) n k ( x k x) 2. SQ D é a soma de quadrados dentro dos grupos e é o numerador de sd 2, ou seja, SQ D = (n 1 1)s1 2 + (n 2 1)s (n k 1)sk 2. Note que QM E = se 2 e QM D = sd / 39

17 Fontes de variação Retomando ao exemplo, estamos interessados em testar se a média da variável FEV é igual para os pacientes dos três diferentes centros médicos. Ou seja, H 0 : µ 1 = µ 2 = µ 3. Para começar, calculamos a estimativa da variância dentro dos grupos s 2 D = (n 1 1)s (n 2 1)s (n 3 1)s 2 k n 1 + n 2 + n 3 3 = (21 1)(0, 496)2 + (16 1)(0, 523) 2 + (23 1)(0, 498) = 0, 254 litros / 39

18 Fontes de variação Temos que a média global é x = n 1 x 1 + n 2 x 2 + n 3 x 3 n 1 + n 2 + n 3 21(2, 63) + 16(3, 03) + 23(2, 88) = = 2, 83 litros, e assim a estimativa da variância entre os grupos é s 2 E = n 1( x 1 x) 2 + n 2 ( x 2 x) 2 + n 3 ( x 3 x) = 21(2, 63 2, 83)2 + 16(3, 03 2, 83) (2, 88 2, 83) = 0, 791 litros / 39

19 Fontes de variação Desta forma, a estatística de teste é F = s2 E s 2 D 0, 769 = 0, 254 = 3, 028. Para a distribuição F com k 1 = 3 1 = 2 e n k = 60 3 = 57 graus de liberdade, o valor p = 0, 052. Rejeitamos a hipótese nula ao nível de 10% de significância, mas não se rejeita ao nível de 5% de significância. Possivelmente haja alguma diferença entre as médias dos valores do FEV entre estas três populações. 19 / 39

20 Fontes de variação De forma análoga, temos a seguinte tabela de análise de variância. Tabela: Tabela da Análise de Variância. Fontes de variação SQ GL QM F p-valor Entre os grupos 1,58 2 0, 791 3,115 0,052 Dentro dos grupos 14, , Total 16, / 39

21 Procedimentos de comparações múltiplas Um valor de F significativo na ANOVA não indica quais são os grupos significativamente diferentes dois a dois. Ele apenas detecta a existência de pelo menos uma diferença entre os grupos estudados. A identificação de diferenças particulares entre médias, tomando-as duas a duas, deve ser realizada por um dos vários métodos de Comparações Múltiplas entre Médias existentes na literatura. Estes testes são semelhantes ao test t, com a diferença de que controlam o nível de significância ao levar em consideração o número de comparações a serem realizadas. 21 / 39

22 Procedimentos de comparações múltiplas Correção de Bonferroni O procedimento de Bonferroni consiste em corrigir o valor do nível de significância α, calculando-se α = α m em que α é o nível de significância global e m é o número de comparações a serem realizadas (m = ( k 2), para k grupos). Para o caso de k = 3 populações, o total de testes é m = ( 3 2) = 3. Se definimos o nível de significância global em 10%, devemos utilizar α = para cada teste individual. 0, 10 3 = 0, / 39

23 Procedimentos de comparações múltiplas Correção de Bonferroni Para realizar um teste da hipótese nula devemos calcular H 0 : µ i = µ j t ij = x i x j. sd 2 [(1/n i) + (1/n j )] Note que este é um teste t para duas amostras, porém ao invés de estimarmos a variância somente com as duas amostras que estão sendo comparandas, estimamos utilizando a informação das k amostras. Sob a hipótese nula, t ij tem uma distribuição t com n k graus de liberdade. 23 / 39

24 Procedimentos de comparações múltiplas Correção de Bonferroni Considerando o exemplo do FEV, começamos comparando as populações 1 e 2, os pacientes da Johns Hopkins e aqueles do Rancho Los Amigos. Neste caso, t 12 = x 1 x 2 sd 2 [(1/n 1) + (1/n 2 )] = 2, 63 3, 03 0, 254[(1/21) + (1/16)] = 2, 43. Para um teste t com n k = 60 3 graus de liberdade, o valor-p= 0, 018. Assim, rejeitamos a hipótese nula ao nível 3,3% e concluímos que as médias do FEV dos pacientes da Johns Hopkins e do Rancho Los Amigos são diferentes. 24 / 39

25 Procedimentos de comparações múltiplas Correção de Bonferroni Comparando as populações 1 e 3 (os pacientes da Johns Hopkins e aqueles da St. Louis), temos t 13 = = x 1 x 3 sd 2 [(1/n 1) + (1/n 3 )] 2, 63 2, 88 0, 254[(1/21) + (1/23)] = 1, 64. Como o valor-p> 0, 10, não temos evidências suficientes para concluir que µ 1 difere de µ / 39

26 Procedimentos de comparações múltiplas Correção de Bonferroni Comparando os pacientes do Rancho Los Amigos e aqueles da St. Louis (populações 2 e 3), temos t 23 = = x 2 x 3 sd 2 [(1/n 2) + (1/n 3 )] 3, 03 2, 88 0, 254[(1/16) + (1/23)] = 0, 91. Novamente o p-valor> 0, 10, e não temos evidências suficientes para concluir que µ 2 difere de µ / 39

27 Outros Procedimentos de Comparações Múltiplas Tukey, Schefée, etc. Cada método fornece um valor de referência que deve ser comparado às diferenças de médias amostrais. De forma equivalente, eles fornecem um intervalo de confiança para a diferença de médias. Um procedimento usual consiste em: (1) ordenar as médias amostrais; (2) compará-las utilizando um método de comparação múltipla. 27 / 39

28 Outros Procedimentos de Comparações Múltiplas Teste de Tukey O método de comparações múltiplas de Tukey é bastante popular por ser um dos primeiros e razoavelmente eficiente. Neste teste, duas média amostrais são comparadas usando ( S T (1 α);k,n k 1 s 2 2 D + 1 ) n i n j em que S T (1 α);k,n k é o quantil de probabilidade (1 α) da distribuição Studentizada com k e n k graus de liberdade. 28 / 39

29 Outros Procedimentos de Comparações Múltiplas Teste de Tukey A hipótese H 0 : µ i = µ j é rejeitada se x i x j S ( T (1 α);k,n k 1 s 2 2 D + 1 ) n i n j 29 / 39

30 Outros Procedimentos de Comparações Múltiplas Teste de Tukey Considerando o exemplo do FEV, comparando as populações 1 e 2, os pacientes da Jonh Hopkins e do Rancho Los Amigos, o valor-p obtido foi igual a 0,047. Assim, rejeitamos a hipótese nula ao nível 10% e concluímos que as médias do FEV dos pacientes da Johns Hopkins e do Rancho Los Amigos são diferentes. Comparando as populações 1 e 3 (pacientes da Jonh Hopkins e da St. Louis), o valor-p obtido foi igual a 0,229. Desta forma, não rejeitamos a hipótese nula ao nível de 10% e concluímos que as médias do FEV dos pacientes da Jonh Hopkins e da St. Louis não são diferentes. 30 / 39

31 Outros Procedimentos de Comparações Múltiplas Teste de Tukey Comparando os pacientes do Rancho Los Amigos e da St. Louis (populações 2 e 3), o valor-p obtido foi igual a 0,619. Assim, não rejeitamos a hipótese nula ao nível 10% e concluímos que as médias do FEV dos pacientes da St. Louis e do Rancho Los Amigos são iguais. 31 / 39

32 Outros Procedimentos de Comparações Múltiplas Teste de Scheffé Neste teste a hipótese nula H 0 : µ i = µ j é rejeitada se x i x j ( 1 (k 1)F (1 α);k 1,n k sd ) n i n j em que, F (1 α) é o quantil de probabilidade (1 α) da distribuição F k 1,n k. 32 / 39

33 Condições para o uso da ANOVA Para que os resultados da Análise de Variância sejam válidos, é necessário que: as variâncias das distribuições do desfecho de cada tratamento tem que ser iguais (HOMOCEDASTICIDADE); e, o desfecho de cada tratamento deve ter distribuição normal (NORMALIDADE). A ANOVA é razoavelmente robusta a afastamentos da normalidade, especialmente se os tamanhos amostrais forem grandes. 33 / 39

34 Como verificar as suposições da ANOVA Uma ferramente útil para esta tarefa são os resíduos do ajuste da ANOVA. Y ij = µ + τ i + ɛ ij em que Y ij é o desfecho da j-ésima observação no i-ésimo tratamento/grupo; µ: efeito geral da média: τ i : efeito do i-ésimo tratamento. Os resíduos são definidos da seguinte forma: ˆɛ ij = Y ij ˆµ ˆτ i em que ˆµ e ˆτ i são os valores estimados pelos dados. 34 / 39

35 Verificando as suposições da ANOVA 1 HOMOCEDASTICIDADE Teste Bartlett ou Levene (σ 2 1 =... = σ2 k ). Gráfico de resíduos vs ajustados (não deve exibir tendências sob homocedasticidade). 2 NORMALIDADE Teste Shapiro-Wilks. Gráfico de Probabilidade Normal dos resíduos. 35 / 39

36 Exemplo: FEV - Testes Considerando o exemplo do FEV os seguintes valores-p foram obtidos Bartlett: valor-p = 0,971 / Levene: valor-p=0,959 Shapiro-Wilks: valor-p = 0, / 39

37 Exemplo: FEV - Resíduos - Resultado do R Fitted values Residuals Residuals vs Fitted Theoretical Quantiles Standardized residuals Normal Q Q Fitted values Standardized residuals Scale Location Leverage Standardized residuals Cook's distance Residuals vs Leverage / 39

38 O que fazer se as suposições não valerem? 1 Testes Não-Paramétrico: Kruskal-Wallis, permutação, etc. 2 Transformação na Resposta. 3 Modelar a dispersão. 38 / 39

39 VEF - Conclusão Final Resumindo, encontramos que a média do FEV dos pacientes da Johns Hopikins é significativa menor que a média do FEV daqueles do Rancho Los Amigos. Nenhuma outra diferença foi detectada. Intervalo de 90% de Confiança para a diferença média de FEV entre os pacientes da Johns Hopkins e aqueles do Rancho Los Amigos: x 1 x 2 ± t 57;1 (0,1/2 3) s 2 D [(1/n 1) + (1/n 2 )] = 2, 63 3, 03 ± 2, 18 0, 25[(1/21) + (1/16)] = ( 0, 77; 0, 04) Ou seja, o FEV médio dos pacientes do centro médico de Rancho Los Amigos é 0,4 l (IC; 90%, 0,04;0,77) maior que o FEV médio daqueles da Johns Hopkins. 39 / 39

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 21 de Junho de 2013 3 Uma outra medida usada para verificar o ajuste do modelo. Essa estatística é dada por X

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Teste de hipótese em modelos normais lineares: ANOVA

Teste de hipótese em modelos normais lineares: ANOVA Teste de hipótese em modelos normais lineares: ANOVA Prof Caio Azevedo Prof Caio Azevedo Exemplo 1 No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

Análise de Variância (ANOVA)

Análise de Variância (ANOVA) Análise de Variância (ANOVA) A Regressão Linear visa modelar uma variável resposta numérica (quantitativa), à custa de uma ou mais variáveis preditoras, igualmente numéricas. Mas uma variável resposta

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Pós-Graduação em Computação Distribuída e Ubíqua

Pós-Graduação em Computação Distribuída e Ubíqua Pós-Graduação em Computação Distribuída e Ubíqua INF612 - Aspectos Avançados em Engenharia de Software Engenharia de Software Experimental [Head First Statistics] Capítulos 10, 11, 12 e 13 [Experimentation

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias

A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias CHICARELI, L.S 1 ; OLIVEIRA, M.C.N. de 2 ; POLIZEL, A 3 ; NEPOMUCENO, A.L. 2 1 Universidade Estadual de Londrina

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais

1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza

1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza 1ª) Lista de Exercícios de Laboratório de Física Experimental A Prof. Paulo César de Souza 1) Arredonde os valores abaixo, para apenas dois algarismos significativos: (a) 34,48 m (b) 1,281 m/s (c) 8,563x10

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

AULA 4 DELINEAMENTO EM QUADRADO LATINO (DQL)

AULA 4 DELINEAMENTO EM QUADRADO LATINO (DQL) AULA 4 DELINEAMENTO EM QUADRADO LATINO (DQL) Características Utiliza-se de três princípios básicos da experimentação: repetição, casualização e controle local. Possui um controle local mais eficiente que

Leia mais

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Camila Gomes de Souza Andrade 1 Denise Nunes Viola 2 Alexandro Teles de Oliveira 2 Florisneide

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

ANOVA. "ANalysis Of VAriance" - Análise de Variância. ANOVA One Way ANOVA de um fator. Comparar mais de dois grupos através de suas médias

ANOVA. ANalysis Of VAriance - Análise de Variância. ANOVA One Way ANOVA de um fator. Comparar mais de dois grupos através de suas médias Tópico 10 ANOVA ANOVA "ANalysis Of VAriance" - Análise de Variância ANOVA One Way ANOVA de um fator Utilidade: Comparar mais de dois grupos através de suas médias Grupo A Grupo B Grupo C Grupo D ANOVA

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

A dependência entre a inflação cabo-verdiana e a portuguesa: uma abordagem de copulas.

A dependência entre a inflação cabo-verdiana e a portuguesa: uma abordagem de copulas. A dependência entre a inflação cabo-verdiana e a portuguesa: uma abordagem de copulas. Jailson da Conceição Teixeira Oliveira 1 Murilo Massaru da Silva 2 Robson Oliveira Lima 3 Resumo: Cabo Verde é um

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Contexto Já vimos como analisar um experimento em blocos na presença de um único fator de interesse. Podemos ter experimentos

Leia mais

Exemplo Regressão Binomial Dados Emparelhados

Exemplo Regressão Binomial Dados Emparelhados Exemplo Regressão Binomial Dados Emparelhados Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2013 G. A. Paula (IME-USP) Desenvolvimento de Diabetes 2 o Semestre

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

www.isaia.com.br Porto Alegre/RS

www.isaia.com.br Porto Alegre/RS I Curso de Introdução em Pesquisa Clínica Delineamento de Estudos Clínicos e Randomização Biom. Carlo Isaia Neto carlo@isaia.com.br O delineamento de um ensaio clínico apoia-se em cinco colunas mestras:

Leia mais

LINEARIZAÇÃO DE GRÁFICOS

LINEARIZAÇÃO DE GRÁFICOS LINEARIZAÇÃO DE GRÁFICOS Física Básica Experimental I Departamento de Física / UFPR Processo de Linearização de Gráficos O que é linearização? procedimento para tornar uma curva que não é uma reta em uma

Leia mais

Hipóteses. Hipótese. É uma pressuposição de um determinado problema.

Hipóteses. Hipótese. É uma pressuposição de um determinado problema. Bioestatística Aula 7 Teoria dos Teste de Hitóteses Prof. Tiago A. E. Ferreira 1 Hipóteses Hipótese É uma pressuposição de um determinado problema. Uma vez formulada, a hipótese estará sujeita a uma comprovação

Leia mais

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira Análise estatística Aula de Bioestatística 17/9/2008 (2.ª Parte) Paulo Nogueira Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs.

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Códigos de bloco Prof. Diego da Silva de Medeiros São José, maio de 2012 Codificação

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNVERSDADE DO ESTADO DO RO GRANDE DO NORTE UERN FACULDADE DE CÊNCAS EXATAS E NATURAS FANAT DEPARTAMENTO DE

Leia mais

Exemplo Turbinas de Avião

Exemplo Turbinas de Avião Exemplo Turbinas de Avião Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2015 G. A. Paula (IME-USP) Turbinas de Avião 2 o Semestre 2015 1 / 29 Turbinas de

Leia mais

Aula 12 Teste de hipótese sobre proporções amostras grandes

Aula 12 Teste de hipótese sobre proporções amostras grandes Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida.

Leia mais

ANOVA (Analysis of Variance)

ANOVA (Analysis of Variance) Tópicos Avançados em Avaliação e Desempenho de Sistemas ANOVA (Analysis of Variance) Aleciano Júnior aflj@cin.ufpe.br Carlos Melo casm3@cin.ufpe.br Charles Bezerra cbm3@cin.ufpe.br Tópicos Introdução História,

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

CAPÍTULO IV Análise de variância

CAPÍTULO IV Análise de variância CAPÍTULO IV Análise de variância O objectivo principal da análise de variância (analysis of variance - ANOVA) é a comparação de mais do que dois grupos no que diz respeito à localização. Para exemplificar,

Leia mais

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03)

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03) UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS DA SAÚDE E DO ESPORTE - CEFID DEPARTAMENTO DE EDUCAÇÃO FÍSICA - DEF CURSO: LICENCIATURA EM EDUCAÇÃO FÍSICA CURRÍCULO: 2008/2 P R O G

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição

Leia mais

Versão 2 COTAÇÕES. 13... 5 pontos. 6... 4 pontos 7... 7 pontos. 5... 6 pontos. 8... 9 pontos. 9... 8 pontos

Versão 2 COTAÇÕES. 13... 5 pontos. 6... 4 pontos 7... 7 pontos. 5... 6 pontos. 8... 9 pontos. 9... 8 pontos Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 07.02.2011 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro 1. 2. COTAÇÕES 1.1....

Leia mais

Modelo Normal. Aplicações: Parte 1. Prof. Caio Azevedo. Prof. Caio Azevedo

Modelo Normal. Aplicações: Parte 1. Prof. Caio Azevedo. Prof. Caio Azevedo Variância conhecida Seja X 1 θ,..., X n θ, θ = (µ, σ 2 ) uma amostra aleatória de X θ N(µ, σ 2 ). Se σ 2 conhecido, e µ N(α, ψ), (família conjugada) então µ x N(ψ α, ψ ), em que ψ = ( n σ 2 + 1 ) 1 ( α

Leia mais

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma

Leia mais

Inferência sobre duas proporções

Inferência sobre duas proporções Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

REGRESSÃO LINEAR ENTRE TEMPERATURA E DENSIDADE DA GASOLINA RESUMO

REGRESSÃO LINEAR ENTRE TEMPERATURA E DENSIDADE DA GASOLINA RESUMO REGRESSÃO LINEAR ENTRE TEMPERATURA E DENSIDADE DA GASOLINA Maderson Alves Ferreira Universidade Tecnológica Federal do Paraná - UTFPR madersonalvesferreira@hotmail.com Rosangela A. B. Assumpção Universidade

Leia mais

CADERNO DE EXERCÍCIOS 2F

CADERNO DE EXERCÍCIOS 2F CADERNO DE EXERCÍCIOS F Ensino Fundamental Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Números inteiros (positivos e negativos) H9 Proporcionalidade H37 3 Média aritmética H50 4 Comprimento

Leia mais

Contrata Consultor na modalidade Produto

Contrata Consultor na modalidade Produto Contrata Consultor na modalidade Produto PROJETO 914BRZ4012 EDITAL Nº 005/2010 1. Perfil: TR 007/2010-CGS - CIÊNCIAS SOCIAIS APLICÁVEIS 3. Qualificação educacional: Graduação na área de CIÊNCIAS SOCIAIS

Leia mais

25 a 30 de novembro de 2013

25 a 30 de novembro de 2013 LSD Introdução à Programa de Pós-Graduação em Estatística e Experimentação Agronômica ESALQ/USP 25 a 30 de novembro de 2013 LSD 1 2 3 LSD 4 Parte 2 - Conteúdo LSD Quando o F da ANOVA está sendo utilizado

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Aula 03. Processadores. Prof. Ricardo Palma

Aula 03. Processadores. Prof. Ricardo Palma Aula 03 Processadores Prof. Ricardo Palma Definição O processador é a parte mais fundamental para o funcionamento de um computador. Processadores são circuitos digitais que realizam operações como: cópia

Leia mais

Lista 1: Processo Estocástico I

Lista 1: Processo Estocástico I IFBA/Introdução aos Processos Estocásticos/ Prof. Fabrício Simões 1 Lista 1: Processo Estocástico I 1. Esboce o espaço amostral do processo estocástico x(t) = acos(ωt + θ), em que ω e θ constantes e a

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

Algoritmos e Estruturas de Dados I. Recursividade. Pedro O.S. Vaz de Melo

Algoritmos e Estruturas de Dados I. Recursividade. Pedro O.S. Vaz de Melo Algoritmos e Estruturas de Dados I Recursividade Pedro O.S. Vaz de Melo Problema Implemente uma função que classifique os elementos de um vetor em ordem crescente usando o algoritmo quicksort: 1. Seja

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

Lógica de Programação. Profas. Simone Campos Camargo e Janete Ferreira Biazotto

Lógica de Programação. Profas. Simone Campos Camargo e Janete Ferreira Biazotto Lógica de Programação Profas. Simone Campos Camargo e Janete Ferreira Biazotto O curso Técnico em Informática É o profissional que desenvolve e opera sistemas, aplicações, interfaces gráficas; monta estruturas

Leia mais

tipo e tamanho e com os "mesmos" elementos do vetor A, ou seja, B[i] = A[i].

tipo e tamanho e com os mesmos elementos do vetor A, ou seja, B[i] = A[i]. INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL-RIO- GRANDENSE CAMPUS SAPUCAIA DO SUL PROFESSOR: RICARDO LUIS DOS SANTOS EXERCÍCIO DE REVISÃO E FIXAÇÃO DE CONTEÚDO - ARRAYS 1. Criar um vetor A

Leia mais

AULA 12 Inferência a Partir de Duas Amostras

AULA 12 Inferência a Partir de Duas Amostras 1 AULA 12 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 15 de setembro de 2011 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

4. Análise de Tarefas

4. Análise de Tarefas Interacção com o Utilizador 4. Análise de Tarefas Nuno Miguel Gil Fonseca nuno.fonseca@estgoh.ipc.pt Identificar necessidades e problemas dos utilizadores Avaliar solução Conceber uma solução Prototipar

Leia mais

Inteligência de negócios do laboratório DESCUBRA INFORMAÇÕES ÚTEIS DE DADOS OPERACIONAIS DO LABORATÓRIO

Inteligência de negócios do laboratório DESCUBRA INFORMAÇÕES ÚTEIS DE DADOS OPERACIONAIS DO LABORATÓRIO Inteligência de negócios do laboratório DESCUBRA INFORMAÇÕES ÚTEIS DE DADOS OPERACIONAIS DO LABORATÓRIO INTELIGÊNCIA DE NEGÓCIOS DO LABORATÓRIO AS DECISÕES SOBRE O LABORATÓRIO COMEÇAM COM A INTELIGÊNCIA

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Média, Mediana e Moda 1 Coletando Dados A coleta de dados produz um conjunto de escores de uma ou mais variáveis Para chegar à distribuição dos escores, estes têm de ser arrumados / ordenados do menor

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 5 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: cruzamentos e medidas de associação variáveis nominais e ordinais e variáveis

Leia mais

Probabilidade e Estatística, 2009/2

Probabilidade e Estatística, 2009/2 Probabilidade e Estatística, 2009/2 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Testes de Hipóteses 1. Uma empresa de manufatura têxtil está testando rolos de fio que o fornecedor afirma

Leia mais

Exercício. Exercício

Exercício. Exercício Exercício Exercício Aula Prática Utilizar o banco de dados ACCESS para passar o MER dos cenários apresentados anteriormente para tabelas. 1 Exercício oções básicas: ACCESS 2003 2 1 Exercício ISERIDO UMA

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

Avaliação Econômica do Projeto de Microcrédito para a população da Zona Norte de Natal/RN

Avaliação Econômica do Projeto de Microcrédito para a população da Zona Norte de Natal/RN FUNDAÇÃO ITAÚ SOCIAL CENTRO DE APOIO AOS MICROEMPREENDEDORES Avaliação Econômica do Projeto de Microcrédito para a população da Zona Norte de Natal/RN Equipe: Iraê Cardoso, Isabela Almeida, Lilian Prado,

Leia mais

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail. Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha professorfmp@hotmail.com Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)

Leia mais

Gerenciador de Ambiente Laboratorial - GAL Manual do Usuário Módulo Controle de Qualidade Analítico

Gerenciador de Ambiente Laboratorial - GAL Manual do Usuário Módulo Controle de Qualidade Analítico Ministério da Saúde Secretaria Executiva Departamento de Informática do SUS DATASUS Gerenciador de Ambiente Laboratorial GAL Manual do Usuário Módulo Laboratório Manual de Operação_Módulo Laboratório_Controle

Leia mais

Dureza Rockwell. No início do século XX houve muitos progressos. Nossa aula. Em que consiste o ensaio Rockwell. no campo da determinação da dureza.

Dureza Rockwell. No início do século XX houve muitos progressos. Nossa aula. Em que consiste o ensaio Rockwell. no campo da determinação da dureza. A UU L AL A Dureza Rockwell No início do século XX houve muitos progressos no campo da determinação da dureza. Introdução Em 1922, Rockwell desenvolveu um método de ensaio de dureza que utilizava um sistema

Leia mais

ANÁLISE ESTATÍSTICA com o SPSS Statistics

ANÁLISE ESTATÍSTICA com o SPSS Statistics João Marôco 5 a. Edição ANÁLISE ESTATÍSTICA com o SPSS Statistics ANÁLISE ESTATÍSTICA com o SPSS Statistics 5ª Edição JOÃO MARÔCO É proibida toda e qualquer reprodução desta obra por qualquer meio físico

Leia mais

Aula 8. Teste Binomial a uma proporção p

Aula 8. Teste Binomial a uma proporção p Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma

Leia mais

MODELO SUGERIDO PARA PROJETO DE PESQUISA

MODELO SUGERIDO PARA PROJETO DE PESQUISA MODELO SUGERIDO PARA PROJETO DE PESQUISA MODELO PARA ELABORAÇÃO DE PROJETO DE PESQUISA (Hospital Regional do Mato Grosso do Sul- HRMS) Campo Grande MS MÊS /ANO TÍTULO/SUBTÍTULO DO PROJETO NOME DO (s) ALUNO

Leia mais

MANUAL DO AVALIADOR O que é uma Feira de Ciência? Por que avaliar os trabalhos? Como os avaliadores devem proceder?

MANUAL DO AVALIADOR O que é uma Feira de Ciência? Por que avaliar os trabalhos? Como os avaliadores devem proceder? MANUAL DO AVALIADOR O que é uma Feira de Ciência? É uma exposição que divulga os resultados de experimentos ou de levantamentos realizados, com rigor científico, por alunos, sob a orientação de um professor.

Leia mais

AULA 11 Experimentos Multinomiais e Tabelas de Contingência

AULA 11 Experimentos Multinomiais e Tabelas de Contingência 1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Leia mais

Bombons a Granel. Série Matemática na Escola. Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes.

Bombons a Granel. Série Matemática na Escola. Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes. Bombons a Granel Série Matemática na Escola Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes. Bombons a granel Série Matemática na Escola Conteúdos Produto de matrizes. Duração Aprox.

Leia mais

AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL

AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL E. F. S. PEREIRA e L. M. N de Gois Universidade Federal da Bahia, Escola Politécnica, Departamento de Engenharia

Leia mais

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 7 Prof. Patricia Maria Bortolon, D. Sc. Análise da Variância Objetivos do Aprendizado Nesta aula você aprenderá: A utilizar a análise de variância de fator único para testar diferenças

Leia mais

Proposta de ajuste de modelos não lineares na descrição de germinação de sementes de café

Proposta de ajuste de modelos não lineares na descrição de germinação de sementes de café Proposta de ajuste de modelos não lineares na descrição de germinação de sementes de café Iábita Fabiana Sousa 1 Joel Augusto Muniz 1 Renato Mendes Guimarães 2 Taciana Villela Savian 3 1 Introdução Um

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002....

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002.... GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002.... 1 Como encaminhar uma Pesquisa? A pesquisa é um projeto racional e sistemático com objetivo de proporcionar respostas

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

RELATÓRIO PARA A. SOCIEDADE informações sobre recomendações de incorporação de medicamentos e outras tecnologias no SUS

RELATÓRIO PARA A. SOCIEDADE informações sobre recomendações de incorporação de medicamentos e outras tecnologias no SUS RELATÓRIO PARA A SOCIEDADE informações sobre recomendações de incorporação de medicamentos e outras tecnologias no SUS RELATÓRIO PARA A SOCIEDADE Este relatório é uma versão resumida do relatório técnico

Leia mais

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados Prof. Hugo Souza Após vermos uma breve contextualização sobre esquemas para bases dados e aprendermos

Leia mais

FÍSICA EXPERIMENTAL 3001

FÍSICA EXPERIMENTAL 3001 FÍSICA EXPERIMENTAL 3001 EXPERIÊNCIA 1 CIRCUITO RLC EM CORRENTE ALTERNADA 1. OBJETIOS 1.1. Objetivo Geral Apresentar aos acadêmicos um circuito elétrico ressonante, o qual apresenta um máximo de corrente

Leia mais