Métodos Estatísticos Avançados em Epidemiologia

Tamanho: px
Começar a partir da página:

Download "Métodos Estatísticos Avançados em Epidemiologia"

Transcrição

1 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39

2 Introdução Existem muitas situações nas quais um pesquisador deseja comparar mais do que dois grupos experimentais com relação a uma variável quantitativa. Exemplos: Comparar três drogas para reduzir o colesterol. Comparar a idade de pacientes entre três grupos de risco (baixo, médio, alto). 2 / 39

3 Introdução A primeira vista, pode parecer correto realizar vários testes t entre os grupos, comparando-os dois a dois. No caso da comparação de três grupos (grupo A, grupo B e grupo C), haveria três testes t de comparação entre médias: µ A vs µ B, µ A vs µ C e µ B vs µ C. Na comparação de quatro grupos, haveria seis testes t de comparação entre médias. Se o número de grupos é igual a 10, precisaríamos de 45 testes t dois a dois. 3 / 39

4 Introdução Observação 1: O número de testes aumenta conforme o número de grupos aumenta. Para k grupos temos ( ) k 2 comparações. Observação 2: Tal procedimento (a realização de todas as comparações dois a dois) é estatisticamente ineficiente. O teste t foi delineado para, em um mesmo experimento, comparar-se uma média A com apenas outra, B, com probabilidade α de se concluir, incorretamente, por uma diferença que não existe. Se forem feitas mais de uma comparação envolvendo a média A, a probabilidade de um erro deste tipo passa a ser maior do que α. 4 / 39

5 Introdução O procedimento mais indicado para se evitar esse aumento no nível global de significância do experimento consiste em utilizar a técnica da Análise de Variância (ANOVA). Este método compara todas as médias em um único teste e visa a identificar a existência de ao menos uma diferença entre grupos. Caso o resultado seja significativo, aplica-se posteriormente uma das várias técnicas existentes de comparações múltiplas entre as médias. Estes procedimentos permitem identificar quais as populações possuem médias diferentes entre si, mantendo controlado o nível de significância do teste. 5 / 39

6 Exemplo: Volume expiratório forçado (FEV) (Pagano e Gauvreau, 2004, p.256) Desejamos comparar o volume expiratório forçado de pacientes com doença coronária oriundos de três centros médicos diferentes (21 pacientes da Johns Hopkins University School of Medicine, 16 pacientes do Rancho Los Amigos Medical Center e 23 pacientes da St. Louis University School of Medicine). Estamos interessados em testar H 0 : µ 1 = µ 2 = µ 3 contra a alternativa de que pelo menos duas médias populacionais são diferentes. Os dados são apresentados a seguir. 6 / 39

7 Exemplo: Volume expiratório forçado (FEV) Tabela: Volume expiratório forçado em 1 segundo para pacientes com doença coronária de três diferentes centros médicos.(em litros) Johns Hopkins Rancho Los Amigos St. Louis 3,23 2,57 3,22 2,61 2,79 3,17 3,47 2,08 2,88 3,39 3,22 2,23 1,86 2,47 1,71 3,17 2,25 2,19 2,47 2,47 2,89 2,98 4,06 3,01 2,74 3,77 2,47 1,98 1,69 2,88 3,29 2,77 2,81 2,10 2,63 3,39 2,95 2,85 2,81 2,53 3,86 3,56 2,43 3,28 2,64 2,88 3,20 3,36 2,71 2,63 3,53 2,61 2,71 3,38 2,91 3,41 3,07 1,98 2,87 2,81 n 1 = 21 n 2 = 16 n 3 = 23 x 1 = 2, 63 litros x 2 = 3, 03 litros x 3 = 2, 88 litros s 1 = 0, 496 litros s 2 = 0, 523 litros s 3 = 0, 498 litros 7 / 39

8 Exemplo: FEV - Análise Descritiva - Box-plots Figura: 1- John Hopkins, 2- Rancho Los Amigos e 3- St. Louis. 8 / 39

9 Fontes de variação Como o nome sugere, a análise de variância depende de estimativas da dispersão/variância. Quando trabalhamos com diferentes populações, podemos calcular dois tipos de medidas de variância: a variação dos valores dos indivíduos em torno das médias populacionais (desvio-padrão intra-grupo); e a variação das médias populacionais em torno da média global (desvio-padrão inter-grupos). Se a variabilidade dentro das k diferentes populações é pequena em relação a variabilidade entre suas respectivas médias, isto sugere que as médias populacionais são de fato diferentes. 9 / 39

10 Fontes de variação Para testar a hipótese nula H 0 : µ 1 = µ 2 =... = µ k para um conjunto de k populações, primeiro precisamos encontrar uma medida de variabilidade das observações individuais em torno de suas médias populacionais. A estimativa combinada da variância comum σ 2 é tal medida. Seja n = n 1 + n n k (tamanho total da amostra), então s 2 D = (n 1 1)s (n 2 1)s (n k 1)s 2 k n k em que s 2 j é a variância amostral do grupo j. Esta quantidade é simplesmente a média ponderada das k variâncias amostrais. O subscrito D se refere a variabilidade dentro de grupos., 10 / 39

11 Fontes de variação Precisamos de uma expressão que estime a variação das médias em torno da média global, ou seja, a variância entre grupos. Se a hipótese nula é verdadeira, esta quantidade também estima a variância comum σ 2 se 2 = n 1( x 1 x) 2 + n 2 ( x 2 x) n k ( x k x) 2, k 1 em que x j é a média amostral do grupo j e x é a média global das n observações x = n 1 x 1 + n 2 x n k x k n 1 + n n k = n 1 x 1 + n 2 x n k x k. n 11 / 39

12 Fontes de variação Agora que temos as estimativas das variâncias, queremos responder a seguinte questão: as médias amostrais variam em torno da média global mais do que as observações individuais variam em torno das médias amostrais? Se sim, isto implica que as correspondentes médias populacionais são diferentes. Para testar a hipótese nula que as médias populacionais são idênticas, usamos a seguinte estatística de teste F = s2 E sd / 39

13 Fontes de variação Sob a hipótese nula, que as médias são iguais, tanto s 2 E quanto s 2 D estimam a variância comum σ2, e F é próximo de 1. Se existe uma diferença entre as populações, então a variância entre os grupos é maior que a variância dentro dos grupos, e F é maior que 1. Sob H 0, a razão F tem uma distribuição F com k 1 e n k graus de liberdade. 13 / 39

14 Distribuição F f(x) x Figura: Distribuição F com 4 e 2 graus de liberdade. 14 / 39

15 5 F Distribuição F Distribuição F de Snedecor a 5% (p=0,05) p=0,05 F t ,51 19,00 19,16 19,25 19,30 19,33 19,35 19,37 19,38 19,40 19,41 19,42 19,43 19,43 19,44 19,45 19,46 19,47 19,48 19, ,13 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 8,79 8,74 8,71 8,70 8,69 8,67 8,66 8,62 8,59 8,57 8,55 4 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6,00 5,96 5,91 5,87 5,86 5,84 5,82 5,80 5,75 5,72 5,69 5,66 5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 4,74 4,68 4,64 4,62 4,60 4,58 4,56 4,50 4,46 4,43 4,40 6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 4,06 4,00 3,96 3,94 3,92 3,90 3,87 3,81 3,77 3,74 3,70 7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,68 3,64 3,57 3,53 3,51 3,49 3,47 3,44 3,38 3,34 3,30 3,27 8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 3,35 3,28 3,24 3,22 3,20 3,17 3,15 3,08 3,04 3,01 2,97 9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 3,14 3,07 3,03 3,01 2,99 2,96 2,94 2,86 2,83 2,79 2, ,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 2,91 2,86 2,85 2,83 2,80 2,77 2,70 2,66 2,62 2, ,84 3,98 3,59 3,36 3,20 3,09 3,01 2,95 2,90 2,85 2,79 2,74 2,72 2,70 2,67 2,65 2,57 2,53 2,49 2, ,75 3,89 3,49 3,26 3,11 3,00 2,91 2,85 2,80 2,75 2,69 2,64 2,62 2,60 2,57 2,54 2,47 2,43 2,38 2, ,67 3,81 3,41 3,18 3,03 2,92 2,83 2,77 2,71 2,67 2,60 2,55 2,53 2,51 2,48 2,46 2,38 2,34 2,30 2, ,60 3,74 3,34 3,11 2,96 2,85 2,76 2,70 2,65 2,60 2,53 2,48 2,46 2,44 2,41 2,39 2,31 2,27 2,22 2, ,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 2,48 2,42 2,40 2,38 2,35 2,33 2,25 2,20 2,16 2, ,49 3,63 3,24 3,01 2,85 2,74 2,66 2,59 2,54 2,49 2,42 2,37 2,35 2,33 2,30 2,28 2,19 2,15 2,11 2, ,45 3,59 3,20 2,96 2,81 2,70 2,61 2,55 2,49 2,45 2,38 2,33 2,31 2,29 2,26 2,23 2,15 2,10 2,06 2, ,41 3,55 3,16 2,93 2,77 2,66 2,58 2,51 2,46 2,41 2,34 2,29 2,27 2,25 2,22 2,19 2,11 2,06 2,02 1, ,38 3,52 3,13 2,90 2,74 2,63 2,54 2,48 2,42 2,38 2,31 2,26 2,23 2,21 2,18 2,16 2,07 2,03 1,98 1, ,35 3,49 3,10 2,87 2,71 2,60 2,51 2,45 2,39 2,35 2,28 2,22 2,20 2,18 2,15 2,12 2,04 1,99 1,95 1, ,32 3,47 3,07 2,84 2,68 2,57 2,49 2,42 2,37 2,32 2,25 2,20 2,18 2,16 2,12 2,10 2,01 1,96 1,92 1, ,30 3,44 3,05 2,82 2,66 2,55 2,46 2,40 2,34 2,30 2,23 2,17 2,15 2,13 2,10 2,07 1,98 1,94 1,89 1, ,28 3,42 3,03 2,80 2,64 2,53 2,44 2,37 2,32 2,27 2,20 2,15 2,13 2,11 2,08 2,05 1,96 1,91 1,86 1, ,26 3,40 3,01 2,78 2,62 2,51 2,42 2,36 2,30 2,25 2,18 2,13 2,11 2,09 2,05 2,03 1,94 1,89 1,84 1, ,24 3,39 2,99 2,76 2,60 2,49 2,40 2,34 2,28 2,24 2,16 2,11 2,09 2,07 2,04 2,01 1,92 1,87 1,82 1, ,23 3,37 2,98 2,74 2,59 2,47 2,39 2,32 2,27 2,22 2,15 2,09 2,07 2,05 2,02 1,99 1,90 1,85 1,80 1, ,21 3,35 2,96 2,73 2,57 2,46 2,37 2,31 2,25 2,20 2,13 2,08 2,06 2,04 2,00 1,97 1,88 1,84 1,79 1, ,20 3,34 2,95 2,71 2,56 2,45 2,36 2,29 2,24 2,19 2,12 2,06 2,04 2,02 1,99 1,96 1,87 1,82 1,77 1, ,18 3,33 2,93 2,70 2,55 2,43 2,35 2,28 2,22 2,18 2,10 2,05 2,03 2,01 1,97 1,94 1,85 1,81 1,75 1, ,17 3,32 2,92 2,69 2,53 2,42 2,33 2,27 2,21 2,16 2,09 2,04 2,01 1,99 1,96 1,93 1,84 1,79 1,74 1, ,08 3,23 2,84 2,61 2,45 2,34 2,25 2,18 2,12 2,08 2,00 1,95 1,92 1,90 1,87 1,84 1,74 1,69 1,64 1, ,00 3,15 2,76 2,53 2,37 2,25 2,17 2,10 2,04 1,99 1,92 1,86 1,84 1,82 1,78 1,75 1,65 1,59 1,53 1, ,92 3,07 2,68 2,45 2,29 2,18 2,09 2,02 1,96 1,91 1,83 1,78 1,75 1,73 1,69 1,66 1,55 1,50 1,43 1,35 Tabela 5: Quantis da Distribuição F para probabilidade p = P [F Ft] = 0, 05. Graus de liberdade do numerador dado no topo e do denominador na margem esquerda. 15 / 39

16 Fontes de variação Observação: Podemos organizar o procedimento na seguinte tabela Tabela: Tabela da Análise de Variância. Fontes de variação SQ GL QM F Entre os grupos SQ E k 1 QM E = SQ E /k 1 QM E / QM D Dentro dos grupos SQ D n k QM D = SQ D /n k - Total SQ Total n em que: SQ E é a soma de quadrados entre os grupos e é o numerador de se 2, ou seja, SQ E = n 1 ( x 1 x) 2 + n 2 ( x 2 x) n k ( x k x) 2. SQ D é a soma de quadrados dentro dos grupos e é o numerador de sd 2, ou seja, SQ D = (n 1 1)s1 2 + (n 2 1)s (n k 1)sk 2. Note que QM E = se 2 e QM D = sd / 39

17 Fontes de variação Retomando ao exemplo, estamos interessados em testar se a média da variável FEV é igual para os pacientes dos três diferentes centros médicos. Ou seja, H 0 : µ 1 = µ 2 = µ 3. Para começar, calculamos a estimativa da variância dentro dos grupos s 2 D = (n 1 1)s (n 2 1)s (n 3 1)s 2 k n 1 + n 2 + n 3 3 = (21 1)(0, 496)2 + (16 1)(0, 523) 2 + (23 1)(0, 498) = 0, 254 litros / 39

18 Fontes de variação Temos que a média global é x = n 1 x 1 + n 2 x 2 + n 3 x 3 n 1 + n 2 + n 3 21(2, 63) + 16(3, 03) + 23(2, 88) = = 2, 83 litros, e assim a estimativa da variância entre os grupos é s 2 E = n 1( x 1 x) 2 + n 2 ( x 2 x) 2 + n 3 ( x 3 x) = 21(2, 63 2, 83)2 + 16(3, 03 2, 83) (2, 88 2, 83) = 0, 791 litros / 39

19 Fontes de variação Desta forma, a estatística de teste é F = s2 E s 2 D 0, 769 = 0, 254 = 3, 028. Para a distribuição F com k 1 = 3 1 = 2 e n k = 60 3 = 57 graus de liberdade, o valor p = 0, 052. Rejeitamos a hipótese nula ao nível de 10% de significância, mas não se rejeita ao nível de 5% de significância. Possivelmente haja alguma diferença entre as médias dos valores do FEV entre estas três populações. 19 / 39

20 Fontes de variação De forma análoga, temos a seguinte tabela de análise de variância. Tabela: Tabela da Análise de Variância. Fontes de variação SQ GL QM F p-valor Entre os grupos 1,58 2 0, 791 3,115 0,052 Dentro dos grupos 14, , Total 16, / 39

21 Procedimentos de comparações múltiplas Um valor de F significativo na ANOVA não indica quais são os grupos significativamente diferentes dois a dois. Ele apenas detecta a existência de pelo menos uma diferença entre os grupos estudados. A identificação de diferenças particulares entre médias, tomando-as duas a duas, deve ser realizada por um dos vários métodos de Comparações Múltiplas entre Médias existentes na literatura. Estes testes são semelhantes ao test t, com a diferença de que controlam o nível de significância ao levar em consideração o número de comparações a serem realizadas. 21 / 39

22 Procedimentos de comparações múltiplas Correção de Bonferroni O procedimento de Bonferroni consiste em corrigir o valor do nível de significância α, calculando-se α = α m em que α é o nível de significância global e m é o número de comparações a serem realizadas (m = ( k 2), para k grupos). Para o caso de k = 3 populações, o total de testes é m = ( 3 2) = 3. Se definimos o nível de significância global em 10%, devemos utilizar α = para cada teste individual. 0, 10 3 = 0, / 39

23 Procedimentos de comparações múltiplas Correção de Bonferroni Para realizar um teste da hipótese nula devemos calcular H 0 : µ i = µ j t ij = x i x j. sd 2 [(1/n i) + (1/n j )] Note que este é um teste t para duas amostras, porém ao invés de estimarmos a variância somente com as duas amostras que estão sendo comparandas, estimamos utilizando a informação das k amostras. Sob a hipótese nula, t ij tem uma distribuição t com n k graus de liberdade. 23 / 39

24 Procedimentos de comparações múltiplas Correção de Bonferroni Considerando o exemplo do FEV, começamos comparando as populações 1 e 2, os pacientes da Johns Hopkins e aqueles do Rancho Los Amigos. Neste caso, t 12 = x 1 x 2 sd 2 [(1/n 1) + (1/n 2 )] = 2, 63 3, 03 0, 254[(1/21) + (1/16)] = 2, 43. Para um teste t com n k = 60 3 graus de liberdade, o valor-p= 0, 018. Assim, rejeitamos a hipótese nula ao nível 3,3% e concluímos que as médias do FEV dos pacientes da Johns Hopkins e do Rancho Los Amigos são diferentes. 24 / 39

25 Procedimentos de comparações múltiplas Correção de Bonferroni Comparando as populações 1 e 3 (os pacientes da Johns Hopkins e aqueles da St. Louis), temos t 13 = = x 1 x 3 sd 2 [(1/n 1) + (1/n 3 )] 2, 63 2, 88 0, 254[(1/21) + (1/23)] = 1, 64. Como o valor-p> 0, 10, não temos evidências suficientes para concluir que µ 1 difere de µ / 39

26 Procedimentos de comparações múltiplas Correção de Bonferroni Comparando os pacientes do Rancho Los Amigos e aqueles da St. Louis (populações 2 e 3), temos t 23 = = x 2 x 3 sd 2 [(1/n 2) + (1/n 3 )] 3, 03 2, 88 0, 254[(1/16) + (1/23)] = 0, 91. Novamente o p-valor> 0, 10, e não temos evidências suficientes para concluir que µ 2 difere de µ / 39

27 Outros Procedimentos de Comparações Múltiplas Tukey, Schefée, etc. Cada método fornece um valor de referência que deve ser comparado às diferenças de médias amostrais. De forma equivalente, eles fornecem um intervalo de confiança para a diferença de médias. Um procedimento usual consiste em: (1) ordenar as médias amostrais; (2) compará-las utilizando um método de comparação múltipla. 27 / 39

28 Outros Procedimentos de Comparações Múltiplas Teste de Tukey O método de comparações múltiplas de Tukey é bastante popular por ser um dos primeiros e razoavelmente eficiente. Neste teste, duas média amostrais são comparadas usando ( S T (1 α);k,n k 1 s 2 2 D + 1 ) n i n j em que S T (1 α);k,n k é o quantil de probabilidade (1 α) da distribuição Studentizada com k e n k graus de liberdade. 28 / 39

29 Outros Procedimentos de Comparações Múltiplas Teste de Tukey A hipótese H 0 : µ i = µ j é rejeitada se x i x j S ( T (1 α);k,n k 1 s 2 2 D + 1 ) n i n j 29 / 39

30 Outros Procedimentos de Comparações Múltiplas Teste de Tukey Considerando o exemplo do FEV, comparando as populações 1 e 2, os pacientes da Jonh Hopkins e do Rancho Los Amigos, o valor-p obtido foi igual a 0,047. Assim, rejeitamos a hipótese nula ao nível 10% e concluímos que as médias do FEV dos pacientes da Johns Hopkins e do Rancho Los Amigos são diferentes. Comparando as populações 1 e 3 (pacientes da Jonh Hopkins e da St. Louis), o valor-p obtido foi igual a 0,229. Desta forma, não rejeitamos a hipótese nula ao nível de 10% e concluímos que as médias do FEV dos pacientes da Jonh Hopkins e da St. Louis não são diferentes. 30 / 39

31 Outros Procedimentos de Comparações Múltiplas Teste de Tukey Comparando os pacientes do Rancho Los Amigos e da St. Louis (populações 2 e 3), o valor-p obtido foi igual a 0,619. Assim, não rejeitamos a hipótese nula ao nível 10% e concluímos que as médias do FEV dos pacientes da St. Louis e do Rancho Los Amigos são iguais. 31 / 39

32 Outros Procedimentos de Comparações Múltiplas Teste de Scheffé Neste teste a hipótese nula H 0 : µ i = µ j é rejeitada se x i x j ( 1 (k 1)F (1 α);k 1,n k sd ) n i n j em que, F (1 α) é o quantil de probabilidade (1 α) da distribuição F k 1,n k. 32 / 39

33 Condições para o uso da ANOVA Para que os resultados da Análise de Variância sejam válidos, é necessário que: as variâncias das distribuições do desfecho de cada tratamento tem que ser iguais (HOMOCEDASTICIDADE); e, o desfecho de cada tratamento deve ter distribuição normal (NORMALIDADE). A ANOVA é razoavelmente robusta a afastamentos da normalidade, especialmente se os tamanhos amostrais forem grandes. 33 / 39

34 Como verificar as suposições da ANOVA Uma ferramente útil para esta tarefa são os resíduos do ajuste da ANOVA. Y ij = µ + τ i + ɛ ij em que Y ij é o desfecho da j-ésima observação no i-ésimo tratamento/grupo; µ: efeito geral da média: τ i : efeito do i-ésimo tratamento. Os resíduos são definidos da seguinte forma: ˆɛ ij = Y ij ˆµ ˆτ i em que ˆµ e ˆτ i são os valores estimados pelos dados. 34 / 39

35 Verificando as suposições da ANOVA 1 HOMOCEDASTICIDADE Teste Bartlett ou Levene (σ 2 1 =... = σ2 k ). Gráfico de resíduos vs ajustados (não deve exibir tendências sob homocedasticidade). 2 NORMALIDADE Teste Shapiro-Wilks. Gráfico de Probabilidade Normal dos resíduos. 35 / 39

36 Exemplo: FEV - Testes Considerando o exemplo do FEV os seguintes valores-p foram obtidos Bartlett: valor-p = 0,971 / Levene: valor-p=0,959 Shapiro-Wilks: valor-p = 0, / 39

37 Exemplo: FEV - Resíduos - Resultado do R Fitted values Residuals Residuals vs Fitted Theoretical Quantiles Standardized residuals Normal Q Q Fitted values Standardized residuals Scale Location Leverage Standardized residuals Cook's distance Residuals vs Leverage / 39

38 O que fazer se as suposições não valerem? 1 Testes Não-Paramétrico: Kruskal-Wallis, permutação, etc. 2 Transformação na Resposta. 3 Modelar a dispersão. 38 / 39

39 VEF - Conclusão Final Resumindo, encontramos que a média do FEV dos pacientes da Johns Hopikins é significativa menor que a média do FEV daqueles do Rancho Los Amigos. Nenhuma outra diferença foi detectada. Intervalo de 90% de Confiança para a diferença média de FEV entre os pacientes da Johns Hopkins e aqueles do Rancho Los Amigos: x 1 x 2 ± t 57;1 (0,1/2 3) s 2 D [(1/n 1) + (1/n 2 )] = 2, 63 3, 03 ± 2, 18 0, 25[(1/21) + (1/16)] = ( 0, 77; 0, 04) Ou seja, o FEV médio dos pacientes do centro médico de Rancho Los Amigos é 0,4 l (IC; 90%, 0,04;0,77) maior que o FEV médio daqueles da Johns Hopkins. 39 / 39

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Análise da Variância. Prof. Dr. Alberto Franke (48)

Análise da Variância. Prof. Dr. Alberto Franke (48) Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Planejamento de Experimentos

Planejamento de Experimentos Planejamento de Experimentos Analise de Variância (ANOVA) com um Fator Planejamento de Experimentos Muitas vezes é necessário obter informações sobre produtos e processos empiricamente. Trabalho assemelha-se

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 21 de Junho de 2013 3 Uma outra medida usada para verificar o ajuste do modelo. Essa estatística é dada por X

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013 Análise da Regressão múltipla: Inferência Revisão da graduação Aula 4 6 de maio de 2013 Hipóteses do modelo linear clássico (MLC) Sabemos que, dadas as hipóteses de Gauss- Markov, MQO é BLUE. Para realizarmos

Leia mais

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas

Leia mais

CAPÍTULO IV Análise de variância

CAPÍTULO IV Análise de variância CAPÍTULO IV Análise de variância O objectivo principal da análise de variância (analysis of variance - ANOVA) é a comparação de mais do que dois grupos no que diz respeito à localização. Para exemplificar,

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Princípios de Bioestatística Cálculo do Tamanho de Amostra Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 1 / 32 2 / 32 Cálculo do Tamanho de Amostra Parte fundamental

Leia mais

Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL

Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL Experimentos (testes) são realizados por pesquisadores em todos os campos de investigação, usualmente para descobrir

Leia mais

Análise de Variância (ANOVA)

Análise de Variância (ANOVA) Análise de Variância (ANOVA) A Regressão Linear visa modelar uma variável resposta numérica (quantitativa), à custa de uma ou mais variáveis preditoras, igualmente numéricas. Mas uma variável resposta

Leia mais

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS DA SAÚDE FACULDADE DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA DISCIPLINA DE EPIDEMIOLOGIA ESTUDOS DE COORTE 1) Com o objetivo de investigar

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 16/11/2011 Testes de

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Testes

Leia mais

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E Exercícios para Revisão de Teste de Hipótese Material retirado do site http://adm.online.unip.br/ Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E 1) Um revendedor de lâmpadas recebeu

Leia mais

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Capítulo 11 Análise da Variância Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Objetivos do Aprendizado Neste capítulo você aprenderá: Os conceitos básicos da modelagem

Leia mais

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Contexto Já vimos como analisar um experimento em blocos na presença de um único fator de interesse. Podemos ter experimentos

Leia mais

AULA 11 Heteroscedasticidade

AULA 11 Heteroscedasticidade 1 AULA 11 Heteroscedasticidade Ernesto F. L. Amaral 30 de julho de 2012 Análise de Regressão Linear (MQ 2012) www.ernestoamaral.com/mq12reg.html Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais

Teste de hipótese em modelos normais lineares: ANOVA

Teste de hipótese em modelos normais lineares: ANOVA Teste de hipótese em modelos normais lineares: ANOVA Prof Caio Azevedo Prof Caio Azevedo Exemplo 1 No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar

Leia mais

Planejamento e Pesquisa 1. Dois Grupos

Planejamento e Pesquisa 1. Dois Grupos Planejamento e Pesquisa 1 Dois Grupos Conceitos básicos Comparando dois grupos Testes t para duas amostras independentes Testes t para amostras pareadas Suposições e Diagnóstico Comparação de mais que

Leia mais

Testes t para médias

Testes t para médias Testes t para médias 1-1 Testes t para médias Os testes t aplicam-se tanto a amostras independentes como a amostras emparelhadas. Servem para testar hipóteses sobre médias de uma variável quantitativa

Leia mais

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 7. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 7 Prof. Patricia Maria Bortolon, D. Sc. Análise da Variância Objetivos do Aprendizado Nesta aula você aprenderá: A utilizar a análise de variância de fator único para testar diferenças

Leia mais

AULAS 25 E 26 Heteroscedasticidade

AULAS 25 E 26 Heteroscedasticidade 1 AULAS 25 E 26 Heteroscedasticidade Ernesto F. L. Amaral 10 e 15 de junho de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais

Hipóteses. Hipótese. É uma pressuposição de um determinado problema.

Hipóteses. Hipótese. É uma pressuposição de um determinado problema. Bioestatística Aula 7 Teoria dos Teste de Hitóteses Prof. Tiago A. E. Ferreira 1 Hipóteses Hipótese É uma pressuposição de um determinado problema. Uma vez formulada, a hipótese estará sujeita a uma comprovação

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA Revista da Estatística da UFOP, Vol I, 2011 - XI Semana da Matemática e III Semana da Estatística, 2011 ISSN 2237-8111 EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Capítulo 3 Introdução à Probabilidade e à Inferência Estatística INTERVALOS DE CONFIANÇA: Diferentes pesquisadores, selecionando amostras de uma mesma

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Modelos de Probabilidade e Inferência Estatística Análise de Variância Parte 2 Departamento de Estatística Luiz Medeiros Estimação dos parâmetros e diagnóstico do modelo

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

ESTATÍSTICA ANALÍTICA. Prof. Dr. Guanis de Barros Vilela Junior

ESTATÍSTICA ANALÍTICA. Prof. Dr. Guanis de Barros Vilela Junior ESTATÍSTICA ANALÍTICA Prof. Dr. Guanis de Barros Vilela Junior Introdução Permite ao pesquisador ir além da descrição dos dados e fazer inferências sobre a população, a partir da amostra. Estas inferências

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

GERÊNCIA DE ENSINO E PESQUISA - GEP SETOR DE GESTÃO DA PESQUISA E INOVAÇÃO TECNOLOGICA ESTATÍSTICA ALICADA NO EXCEL. Estatística Descritiva

GERÊNCIA DE ENSINO E PESQUISA - GEP SETOR DE GESTÃO DA PESQUISA E INOVAÇÃO TECNOLOGICA ESTATÍSTICA ALICADA NO EXCEL. Estatística Descritiva GERÊNCIA DE ENSINO E PESQUISA - GEP SETOR DE GESTÃO DA PESQUISA E INOVAÇÃO TECNOLOGICA ESTATÍSTICA ALICADA NO EXCEL Estatística Descritiva A análise descritiva consiste basicamente na organização e descrição

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

AULA 05 Análise de regressão múltipla: inferência

AULA 05 Análise de regressão múltipla: inferência 1 AULA 05 Análise de regressão múltipla: inferência Ernesto F. L. Amaral 19 de julho de 2013 Análise de Regressão Linear (MQ 2013) www.ernestoamaral.com/mq13reg.html Fonte: Wooldridge, Jeffrey M. Introdução

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses TESTE

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

quadrado testa conjuntamente se existe uma associação entre a variável resposta e uma variável preditora. No Assistente, é possível realizar um Teste

quadrado testa conjuntamente se existe uma associação entre a variável resposta e uma variável preditora. No Assistente, é possível realizar um Teste Este artigo é parte de uma série de artigos que explicam a pesquisa conduzida pelos estatísticos do Minitab para desenvolver os métodos e verificações de dados usados no Assistente no Software Estatístico

Leia mais

Precificação de apartamentos para o bairro Água Verde em Curitiba

Precificação de apartamentos para o bairro Água Verde em Curitiba Precificação de apartamentos para o bairro Água Verde em Curitiba Chuck Norris Arnold Schwarzenegger 18 de julho de 2013 O preço de imóveis depende principalmente do seu tamanho e localização. A infraestrutura

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016

Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016 Teste Chi-Quadrado de Independência Prof. David Prata Novembro de 2016 Duas Variáveis Categóricas Análise de variância envolve o exame da relação entre uma variável categórica explicativa e uma variável

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB rangel.ufg@gmail.com Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Amostragem Aleatória e Descrição de Dados - parte II

Amostragem Aleatória e Descrição de Dados - parte II Amostragem Aleatória e Descrição de Dados - parte II 2012/02 1 Diagrama de Ramo e Folhas 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Construir e interpretar disposições gráficas dos

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

Para ajudar a interpretar os resultados, o Cartão de Relatórios do Assistente do teste de % de defeituosos para 1 amostra exibe os seguintes

Para ajudar a interpretar os resultados, o Cartão de Relatórios do Assistente do teste de % de defeituosos para 1 amostra exibe os seguintes Este documento é de uma série de papéis que explicam a pesquisa conduzida por estatísticos da Minitab para desenvolver os métodos e as verificações de dados usadas no assistente no software estatístico

Leia mais

ANOVA (Analysis of Variance)

ANOVA (Analysis of Variance) Tópicos Avançados em Avaliação e Desempenho de Sistemas ANOVA (Analysis of Variance) Aleciano Júnior aflj@cin.ufpe.br Carlos Melo casm3@cin.ufpe.br Charles Bezerra cbm3@cin.ufpe.br Tópicos Introdução História,

Leia mais

AULA 12 Inferência a Partir de Duas Amostras

AULA 12 Inferência a Partir de Duas Amostras 1 AULA 12 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 15 de setembro de 2011 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Comparando riscos e chances. Risco relativo e Razão de Chances

Comparando riscos e chances. Risco relativo e Razão de Chances Comparando riscos e chances Risco relativo e Razão de Chances Exemplo Inicial Estudo para verificar se a ingestão de extrato de guaraná tem efeito sobre a fadiga em pacientes tratados com quimioterapia

Leia mais

Unidade: Risco e Retorno. Unidade I:

Unidade: Risco e Retorno. Unidade I: Unidade I: 0 Unidade: Risco e Retorno A análise de investimentos está baseada nas estimativas dos fluxos de caixa de um projeto. Nem sempre essas previsões de fluxo de caixa coincidem com os resultados

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

II.3. Análise de Variância (ANOVA)

II.3. Análise de Variância (ANOVA) II.3. Análise de Variância (ANOVA) A Regressão Linear visa modelar uma variável resposta numérica (quantitativa), à custa de uma ou mais variáveis preditoras, igualmente numéricas. Mas uma variável resposta

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03)

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03) UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS DA SAÚDE E DO ESPORTE - CEFID DEPARTAMENTO DE EDUCAÇÃO FÍSICA - DEF CURSO: LICENCIATURA EM EDUCAÇÃO FÍSICA CURRÍCULO: 2008/2 P R O G

Leia mais

Teste de hipóteses. Estatística Aplicada Larson Farber

Teste de hipóteses. Estatística Aplicada Larson Farber 7 Teste de hipóteses Estatística Aplicada Larson Farber Seção 7.1 Introdução ao teste de hipóteses Uma hipótese estatística é uma alegação sobre uma população. A hipótese nula H 0 contém uma alternativa

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição

Leia mais

A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias

A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias CHICARELI, L.S 1 ; OLIVEIRA, M.C.N. de 2 ; POLIZEL, A 3 ; NEPOMUCENO, A.L. 2 1 Universidade Estadual de Londrina

Leia mais

Teste de Hipóteses = 0 = 0

Teste de Hipóteses = 0 = 0 Teste de Hipóteses Nos estudos analíticos, além da descrição estatística, às vezes é necessário tomar uma decisão. O teste de hipóteses é um procedimento estatístico que tem por objetivo ajudar o pesquisador,

Leia mais

Estatística aplicada ao Melhoramento animal

Estatística aplicada ao Melhoramento animal Qual é a herdabilidade para uma característica? Qual é a variabilidade de desempenho para essa característica? Selecionando para a característica X, característica Y será afetada? Como predizer os valores

Leia mais

Pós-Graduação em Computação Distribuída e Ubíqua

Pós-Graduação em Computação Distribuída e Ubíqua Pós-Graduação em Computação Distribuída e Ubíqua INF612 - Aspectos Avançados em Engenharia de Software Engenharia de Software Experimental [Head First Statistics] Capítulos 10, 11, 12 e 13 [Experimentation

Leia mais

O poder da ANOVA e da igualdade de variância

O poder da ANOVA e da igualdade de variância O poder da ANOVA e da igualdade de variância Por Marcelo Rivas Fernandes A ANOVA e o Teste de Iguldade de Variância são tão imprescindíveis para a estatística inferencial, quanto a média e o desvio padrão

Leia mais

A Metodologia de Box & Jenkins

A Metodologia de Box & Jenkins A Metodologia de Box & Jenins Aula 03 Bueno, 0, Capítulo 3 Enders, 009, Capítulo Morettin e Toloi, 006, Capítulos 6 a 8 A Metodologia Box & Jenins Uma abordagem bastante utilizada para a construção de

Leia mais

Análise de Variância (ANOVA)

Análise de Variância (ANOVA) Análise de Variância (ANOVA) Prof. Dr. Vinicius Campos Disciplina de Bioestatística e Delineamento Experimental Graduação em Biotecnologia - UFPel Abordagens da aula... 1. Bases da ANOVA 2. Tipos de ANOVA

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

ESTUDO DE CASO. Terapêutica e prevenção secundária no tumor do pulmão

ESTUDO DE CASO. Terapêutica e prevenção secundária no tumor do pulmão ESTUDO DE CASO Terapêutica e prevenção secundária no tumor do pulmão É bem conhecida a relação tabaco / tumor do pulmão, embora existam casos de neoplasia do pulmão sem antecedentes de tabagismo. Mesmo

Leia mais

Probabilidade e Estatística, 2009/2

Probabilidade e Estatística, 2009/2 Probabilidade e Estatística, 2009/2 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Testes de Hipóteses 1. Uma empresa de manufatura têxtil está testando rolos de fio que o fornecedor afirma

Leia mais

MAE0325 - Séries Temporais

MAE0325 - Séries Temporais MAE0325 - Séries Temporais Fernando Henrique Ferraz Pereira da Rosa Vagner Aparecido Pedro Junior 26 de setembro de 2004 E7p80. Considere a série A (M-ICV): Lista 1 1 (a) teste a existência de tendência,

Leia mais

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior ESTATÍSTICA INFERENCIAL Prof. Dr. Guanis de Barros Vilela Junior As Hipóteses A Hipótese Nula (H 0 ) é, em geral, uma afirmação conservadora sobre uma situação da pesquisa. Por exemplo, se você quer testar

Leia mais

16/6/2014. Teste Qui-quadrado de independência

16/6/2014. Teste Qui-quadrado de independência UNIVERSIDADE FEDERAL DA PARAÍBA TESTES NÃO- PARAMÉTRICOS Parte I Prof. Luiz Medeiros Departamento de Estatística Teste Qui-quadrado de independência Um dos principais objetivos de se construir uma tabela

Leia mais

Técnicas Multivariadas em Saúde. Comparações de Médias Multivariadas. Métodos Multivariados em Saúde - 2015. Roteiro. Testes de Significância

Técnicas Multivariadas em Saúde. Comparações de Médias Multivariadas. Métodos Multivariados em Saúde - 2015. Roteiro. Testes de Significância Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

Aula 4 Conceitos Básicos de Estatística

Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos Básicos de Estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa e interpreta informações numéricas para

Leia mais

Testes de hipóteses Sua aplicações e limites. Testes de hipóteses Sua aplicações e limites. A importância da Estatística

Testes de hipóteses Sua aplicações e limites. Testes de hipóteses Sua aplicações e limites. A importância da Estatística Testes de hipóteses Sua aplicações e limites Testes de hipóteses Sua aplicações e limites Seminários de métodos e análise de dados Enquadramento dos Testes de Hipóteses na Estatística Doutoramento em Psicologia

Leia mais

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

ERRO E TRATAMENTO DE DADOS ANALÍTICOS

ERRO E TRATAMENTO DE DADOS ANALÍTICOS Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Química Introdução a Analise Química - I sem/2013 Profa Ma Auxiliadora - 1 Disciplina QUIO94 - Introdução à Análise Química

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Métodos Não Paramétricos

Métodos Não Paramétricos Métodos Não Paramétricos Para todos os testes estatísticos que estudamos até este ponto, assumimos que as populações tinham distribuição normal ou aproximadamente normal. Essa propriedade era necessária

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais