Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD

Tamanho: px
Começar a partir da página:

Download "Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD"

Transcrição

1 Teste de ióteses VÍCTOR UGO LACOS DÁVILAD

2 Teste De ióteses. Exemlo. Cosidere que uma idustria comra de um certo fabricate, ios cuja resistêcia média à rutura é esecificada em 6 kgf (valor omial da esecificação). Em um determiado dia, a idústria recebeu um grade lote de ios e a equie técica da idustria deseja verificar se o lote atede as esecificações. : O lote atede as esecificações : O lote ão atede as esecificações Seja a v.a X : resistêcia à rutura X~N(; 5) (ióteses ula) (ióteses alterativa) : = 6 : 6 (ióteses simles) (ióteses Comosta bilateral)

3 Defiição: Uma hióteses estatística é uma afirmação ou cojetura sobre o arâmetro, ou arâmetros, da distribuição de robabilidades de uma característica, X, da oulação ou de uma v.a. Defiição: Um teste de uma hióteses estatística é o rocedimeto ou regra de decisão que os ossibilita decidir or ou a, com base a iformação cotida a amostra. Suoha que a equie técica da idústria teha decidido retirar uma amostra aleatória de tamaho =6, do lote recebido, medir a resistêcia de cada io e calcular a resistêcia média X (estimador de ) X ~ N, 5 6 Para quais valores de X a equie técica deve rejeitar o e ortato ão aceitar o lote? 3

4 Defiição: Região crítica (Rc) é o cojuto de valores assumidos ela variável aleatória ou estatística de teste ara os quais a hiótese ula é rejeitada. Se o lote está fora de esecificação, isto é, : 6, esera-se que a média amostral seja iferior ou suerior a 6 kgf Suoha que equie técica teha decidido adotar a seguite regra:rejeitar o se X for maior que 6.5 kgf e ou meor que 57.5 kgf. X 6,5 ou X 57,5 R c Região de rejeição de o. R c R a 57,5 X 6,4 Região de aceitação de o. 4

5 Procedimeto (teste) Se Se x R c x R c Rejeita - se Aceita - se 5

6 Tios de Erros Erro tio I: Rejeitar quado de fato é verdadeiro. Erro tio II: Não rejeitamos quado de fato é falsa. Exemlo : Cosidere o exemlo. : Aceitar o lote : Não aceitar o lote Erro tio I: Não aceitar o lote sedo que ela está detro das esecificações. Erro tio II:Aceitar o lote sedo que ela está fora das esecificações. Situação Decisão o verdadeira o falsa Não rejeitar o Decisção correta Erro II Rejeitar o Erro I Decisão correta 6

7 P(Erro tio I)= (ível de sigificâcia) P( Rejeitar verdadeira) P( Erro II) P(Nãorejeitar P(Rejeitar é falso). falso). Poder do teste Exemlo 3: Cosiderado as hióteses do exemlo : : = 6 cotra : 6. P X P P P 6,5 ou X 57,5 : X 6 Sob X,5 : 6 P X 57,5 : /6 6 6,5 6 5 /6 P 6 5 /6 57,5 6 5 /6 Z PZ,75,75, 445 X, X ~ N(6,5 /6). 7

8 8

9 P( Aceitar verdadeiro) P 57,5 X 6,5 : 6 5 Para o cálculo de cosiderar :=63,5. Sob, X ~ N 63,5;. P,5 X 6,5 : 63,5 PX 6,5 PX 57,5 57,8 PZ 4,8,86,,86. P Z 6 9

10 Testes bilaterais e uilaterais Se a hiótese ula e alterativa de um teste de hióteses são: : : ode o é uma costate cohecida, o teste é chamada de teste bilateral. Em muitos roblemas tem-se iteresse em testar hiótese do tio: : : o teste é chamado de teste uilateral esquerdo. E quado : : o teste é chamada de teste uilateral direito.

11 Exemlo 4: Uma região do aís é cohecida or ter uma oulação obesa. A distribuição de robabilidade do eso dos homes dessa região etre e 3 aos é ormal com média de 9 kg e desvio adrão de kg. Um edocriologista roõe um tratameto ara combater a obesidade que cosiste de exercícios físicos, dietas e igestão de um medicameto. Ele afirma que com seu tratameto o eso médio da oulação da faixa em estudo dimiuirá um eríodo de três meses. Neste caso as hióteses que deverão ser testados são: : 9 : 9 ode é a média dos esos do homes em estudo aós o tratameto.

12 Exemlo 5: Um fabricate de uma certa eça afirma que o temo médio de vida das eças roduzidas é de horas. Suoha que os egeheiros de rodução têm iteresse em verificar se a modificação do rocesso de fabricação aumeta a duração das eças : : sedo o temo médio das eças roduzidas elo ovo rocesso.

13 Procedimeto básico de teste de hióteses O rocedimeto básico de teste de hióteses relativo ao arâmetro de uma oulação, será decomosto em 4 assos: (i) Defiição as hióteses: : : ou ou (ii) Idetificação distribuição. da estatística do teste e caracterização da sua (iii) Defiição da regra de decisão, com a esecificação do ível de sigificâcia do teste. (iv) Cálculo da estatística de teste e tomada de decisão. 3

14 Teste de hióteses ara uma média oulacioal Cosidere uma amostra aleatória de tamaho de uma oulação ormal com média (descohecida) e variâcia (cohecida) Iicialmete, cosidera-se o caso do teste uilateral esquerdo. Suoha que tem-se iteresse em verificar as seguites hióteses: ( i) : : (ii) A estatística do teste é a média amostral X. Se oulação é ormal (ou se amostra é grade 3, mesmo que a oulação ão é ormal) a distribuição de X é N, / e a variável aleatória sob X ~ N(,) Z 4

15 5 (iii) É razoável, rejeitar em favor de, se a média amostral X é demasiado equea em relação. A região crítica, etão oderia ser obtido, selecioado um k da média amostral, de maeira que Rc={ X k } ode k é tal que ) : ( k X P =. Ou seja sob k z P k X P / / / z X Rc z k z k (iv) Coclusão: se z X Rc x, rejeita-se em caso cotrário ão se rejeita.

16 Método alterativo Um método alterativo rático é trabalhar diretamete a escala Z ( i) : cotra : (ii) A estatística de teste Z X sob ~ N(,) (iii) A região crítica ara um ível de sigificâcia fixado Rc z R; Z z iv) se z obs Rc Z z, rejeitase em caso cotrário ão se rejeita. z 6

17 Exemlo Um comrador de tijolos acha que a qualidade dos tijolos está dimiuido. De exeriêcias ateriores, cosidera-se a resistêcia média ao desmoroameto de tais tijolos é igual a kg, com um desvio adrão de kg. Uma amostra de tijolos, escolhidos ao acaso, foreceu uma média de 95 kg. Ao ível de sigificâcia de 5%, ode-se afirmar que a resistêcia média ao desmoroameto dimiuiu? ( i) As hióteses de iteresse são : : : Kg Kg (ii) A estatística do teste é a média amostral X. Já que = 3, tem-se que sob X ~ N,. (iii) A região crítica, etão oderia ser obtido, selecioado um k da média amostral, de maeira que Rc={ X k } ode k é tal que P ( X k : ) ==,5. Ou seja sob 7

18 X P / k / P z k,5 k,64 k 98,36 Rc X 98,36 (iv) Do euciado tem-se x 95 Rc X 98,36 ível de 5% de sigificâcia., rejeita-se ao 8

19 Método alterativo ( i) : cotra : (ii) A estatística de teste X Z sob ~ N(,) (iii) A região crítica ara um ível de sigificâcia =,5 fixado Rc z R; R,64 iv) Do euciado temos: 5% de sigificâcia. z obs 95 5 R c rejeita-se. ao ível de 9

20 Procedimeto Geral A seguir é aresetado o rocedimeto geral de teste de hióteses ara uma média oulacioal cosiderado o rocedimeto alterativo descrito acima. ( i) : ( ou : U. Esquerdo ) (ii) A estatística de teste : : U. Direito (a) Quado a variâcia e cohecida ( ou ) : : Bilateral Z X ~ N sob (,)

21 (b) Quado a variâcia é descohecida e amostra equeas ) ( ~ t S X T sob (iii) A região crítica ara um ível de sigificâcia fixado c Z R z R Z c ; ) ( c T T z R T c ; ) ( c Z R z R Z c ; ) ( c T T z R T c ; ) ( c Z R z R Z c ; ) ( c T T z R T c ; ) ( (iv) Se a ET obs R C., rejeita-se o em caso cotrário ão se rejeita.

22 Os registros dos últimos aos de um colégio atestam ara calouros admitidos uma ota média 5 (teste vocacioal). Para testar a hióteses de que a média de uma ova turma é a mesma das turmas ateriores, retirou-se, ao acaso, uma amostra de otas, obtedo-se média 8 desvio adrão. Use =,5 ( i ) As hióteses de iteresse são : Exemlo Suodo que as otas dos ovos calouros tem distribuição ormal com média e desvio adrão : 5 : 5 (ii) A estatística de teste T X 5 S sob ~ t( )

23 (iii) A região crítica ara um ível de sigificâcia =,5 fixado Rc z T; T,93 iv) Do euciado temos: ao ível de 5% de sigificâcia. T obs 8 5, 67 R c ão rejeita-se. 3

24 Teste de hióteses ara uma roorção oulacioal O rocedimeto ara os testes de hióteses ara roorção oulacioal é basicamete igual ao rocedimeto ara o teste ara uma média oulacioal. Cosidere o roblema de testar a hiótese que a roorção de sucessos de um esaio de Beroulli é igual a valor esecifico,. Isto é, testar as seguites hióteses: ( i) : : U. Esquerdo ( ou ) : : U. Direito ( ou ) : : Bilateral (ii) A estatística de teste Z ˆ ( o o ) sob ~ N(,) 4

25 Exemlo Um estudo é realizado ara determiar a relação etre uma certa droga e certa aomalia em embriões de frago. Ijetou-se 5 ovos fertilizados com a droga o quarto dia de icubação. No vigésimo dia de icubação, os embriões foram examiados e 7 aresetaram a aomalia. Suoha que deseja-se averiguar se a roorção verdadeira é iferior a 5% com um ível de sigificâcia de,5. ( i ) As hióteses de iteresse são : : :,5,5 (ii) A estatística de teste Z ˆ,5,5(,5) 5 sob ~ N(,) 5

26 (iii) A região crítica ara um ível de sigificâcia =,5 fixado Rc z R; R,64 iv) Do euciado temos =5, ˆ, 4 rejeita-se. ao ível de 5% de sigificâcia. 7,4,5 z : obs, 7963 Rc 5 5,75 5 6

27 7 X X,, m Y,Y, N X, ~ m N Y m, ~ Poulação Poulação m N Y X, ~ Iferêcia Para Duas Amostras Iferêcia Para Duas Amostras

28 Suoha que X,,X é uma amostral aleatória de tamaho de uma oulação com característica X, que tem distribuição ormal com média e variâcia. Cosidere que Y,,Ym é uma amostra aleatória de tamaho m, de uma oulação com característica Y que tem distribuição ormal com média e variâcia, alem disso, X e Y são ideedetes. Suoha que tem-se iteresse em verificar se existe ou ão uma difereça sigificativa etre as médias oulacioais e. O rocedimeto básico de teste, este caso é a seguite: ( i) Teste de hióteses e itervalo de cofiaça ara : : U. Esquerdo ( ou ) : : U. Direito ( ou ) : : Bilateral ode é costate cohecida o caso =, temos hióteses ara a igualdade de médias oulacioais teste de 8

29 9 (ii) A estatística de teste (a) Quado, e são cohecidos (,) ~ N m Y X Z sob (b) Quado descohecidos ) ( ~ m t m S Y X T sob ) ( ) ( m S m S ode S

30 Exemlo : Estuda-se o coteúdo de icotia de duas marcas de cigarros (A e B), obtedo-se os seguites resultados. A: 7; ; 3; B: 8; ; ; ; 4 Admitido que o coteúdo de icotias das duas marcas tem distribuição ormal e que as variâcias oulacioais são iguais, com =,5, ode-se afirmar que existe alguma difereça sigificativa o coteúdo médio de icotia as duas marcas? Sejam X: O coteúdo de icotia da marca A X ~ N(, ) Y: : O coteúdo de icotia da marca B Y ~ N(, ) (i) Nosso iteresse é testar as seguites hióteses: : : : : 3

31 Boxlots do Coteúdo de Nicotia or Marca 4 Coteúdo Nicotia 3 9 4, m 5, X Y S S Marca A B A estatística de teste é dada or: (ii) T S X Y m ~ sob t( m ) 3

32 (iii) A região crítica, ara =,5, (arte achurada) rereseta os valores corresodete da distribuição t-studet com +m- =4+5-=7 graus de liberdade com mostra a figura Rc t t( 7); T,365 3

33 (iv) Dos dados do exemlo temos: S ( ) S ( m ) S m (4 )(6) (5 ) Daí temos, que estatística observada ou calculada é: T obs S X Y m ,64 Como T obs Rc Não se rejeita 33

34 34 X X,, m Y,Y, N ) (, ~ ˆ ) (, ~ ˆ N m N ) ( ) (, ~ ˆ ˆ

35 Teste de hióteses ara Suoha que tem-se duas amostras ideedetes de tamahos e m suficietemete grades (>3 e m>3), de duas oulações Beroulli, com robabilidades de sucessos e resectivamete. E sejam X: o úmero de sucessos a amostra de tamaho e Y: o úmero de sucessos a amostra de tamaho m. Portato, X~B(, e Y~ B(m,). á iteresse em verificar as seguites hióteses estatística: ( i) : : U. Esquerdo ( ou (ii) A estatística de teste ) : : U. Direito ( ou ) : : Bilateral Z ˆ ˆ ~ N(,) Sob ( ) m 35

36 ode ˆ x y x y ˆ m ˆ, ˆ ; m m m Os assos (iii) e (iv) são equivaletes ao rocedimeto de teste ara uma média oulacioal. Exemlo 3: Dois tios de solução de olimeto estão sedo avaliados ara ossível uso em uma oeração de olimeto a fabricação de letes itra-oculares usadas o olho humao deois de uma oeração de catarata. Trezetas letes foram olidas usado a rimeira solução de olimeto e, desse úmero 53 ão tiveram defeitos iduzidos elo olimeto. Outras 3 letes foram olidas, usado a seguda solução de olimeto sedo 96 letes cosideradas satisfatórios. á qualquer razão ara acreditar que as duas soluções diferem? Use =,. 36

37 X: o úmero de letes sem defeito das 3 olidas com a ª solução, X~B(3,) Y: o úmero de letes sem defeito das 3 olidas com a ª solução Y~B(3,). Nosso iteresse é testar as seguites hióteses: : : (ii) A estatística de teste Z ˆ ˆ ~ N(,) Sob ( ) m 37

38 (iii) A região crítica, ara =,, (arte achurada) rereseta os valores corresodete da distribuição orma adrão com mostra a figura Rc t Z; Z,58 (iv) Dos dados do exemlo temos: Z obs ˆ,8433; ˆ ; m 3; ˆ ˆ,8433,6533 5,36 ( ),7483(,57) m 3 3,7483 Como Z obs Rc rejeita - se 38

AULA: Inferência Estatística

AULA: Inferência Estatística AULA: Iferêcia Estatística stica Prof. Víctor Hugo Lachos Dávila Iferêcia Estatística Iferêcia Estatística é um cojuto de técicas que objetiva estudar uma oulação através de evidêcias forecidas or uma

Leia mais

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA Resumo Itervalos de Cofiaça ara médias e roorções com alicações a Egeharia. Ferado Mori Prof.fmori@gmail.com Itervallos de Cofiiaça ara Médiias e Proorções

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

Sistemas de Filas Simples

Sistemas de Filas Simples Sistemas de Filas Simles Teoria de Filas Processo de chegada: se os usuários de uma fila chegam os istates t, t, t 3,..., t, as variáveis aleatórias τ t - t - são chamadas de itervalos etre chegadas. As

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição Avaliação da Cofiabilidade de Ites com Testes Destrutivos - Alicação da Estimação da roorção em uma oulação Fiita Amostrada sem Reosição F. A. A. Coelho e Y.. Tavares Diretoria de Sistemas de Armas da

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA 1. (2,5) Um provedor de acesso à iteret está moitorado a duração do tempo das coexões

Leia mais

CAPÍTULO VIII - REGIMES DE TRABALHO

CAPÍTULO VIII - REGIMES DE TRABALHO 8. Regimes de trabalho. CAÍULO VIII - REGIMES DE RABALHO Há iúmeros tios de máquias cujos regimes de trabalho se caracterizam or aresetar eríodos curtos de oeração, seguidos de logos eríodos de reouso.

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

Aulas de Estatística / Prof. Jones Garcia da Mata / www.professorjones.hpg.com.br

Aulas de Estatística / Prof. Jones Garcia da Mata / www.professorjones.hpg.com.br # Variável aleatória Quado uma variável tem resultados ou valores que tedem a variar de uma observação ara outra em razão de fatores relacioados com a chace, ós chamamos de variável aleatória Defiimos

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

SOLUÇÕES e GASES- EXERCÍCIOS RESOLVIDOS

SOLUÇÕES e GASES- EXERCÍCIOS RESOLVIDOS rof. Vieira Filho SOLUÇÕES e GSES- EXERCÍCIOS RESOLVIDOS SOLUÇÕES. em-se 500g de uma solução aquosa de sacarose (C O ), saturada a 50 C. Qual a massa de cristais que se separam da solução, quado ela é

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

INFERÊNCIA ESTATÍSTICA

INFERÊNCIA ESTATÍSTICA Uiversidade Federal da Bahia Istituto de Matemática Departameto de Estatística Estatística IV (MAT027) e Itrodução à Estatística (MAT050) NOTAS DE AULA UNIDADE III INFERÊNCIA ESTATÍSTICA 1 1 INTRODUÇÃO

Leia mais

ESTUDO DA DISTRIBUIÇÃO ASSINTÓTICA DOS ESTIMADORES DOS PARÂMETROS DA DISTRIBUIÇÃO WEIBULL NA PRESENÇA DE DADOS SUJEITOS A CENSURA ALEATÓRIA

ESTUDO DA DISTRIBUIÇÃO ASSINTÓTICA DOS ESTIMADORES DOS PARÂMETROS DA DISTRIBUIÇÃO WEIBULL NA PRESENÇA DE DADOS SUJEITOS A CENSURA ALEATÓRIA ESTUDO DA DISTRIBUIÇÃO ASSINTÓTICA DOS ESTIMADORES DOS PARÂMETROS DA DISTRIBUIÇÃO WEIBULL NA PRESENÇA DE DADOS SUJEITOS A CENSURA ALEATÓRIA Almir MANTOVANI Maria Aarecida de Paiva FRANCO 2 RESUMO: O objetivo

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

ESTUDO DAS DIFICULDADES DOS ALUNOS DE CIÊNCIAS CONTÁBEIS DA FAFIC EM MATEMÁTICA

ESTUDO DAS DIFICULDADES DOS ALUNOS DE CIÊNCIAS CONTÁBEIS DA FAFIC EM MATEMÁTICA ESTUDO DAS DIFICULDADES DOS ALUNOS DE CIÊNCIAS CONTÁBEIS DA FAFIC EM MATEMÁTICA Prof. Ms. Rhodolffo Allysso Felix de Alecar Lima * Prof. Ms. José Flávio Portela Soares** Joelbso Moreira Alves Josefa Tavares

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica Cálculo das Probabilidades e Estatística I Departameto de Estatistica Versão - 2013 Sumário 1 Itrodução à Estatística 1 1.1 Coceitos básicos de amostragem..................................... 2 1.1.1

Leia mais

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir Objetivo Estimar uma roorção (descohecida) de elemetos em uma oulação, aresetado certa característica de iteresse, a artir da iformação forecida or uma amostra. Exemlos: : roorção de aluos da USP que foram

Leia mais

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS AT49-07 - CD 6-07 - PÁG.: APLICAÇÃO DO MÉTODO DE INTEGAÇÃO TAPEZOIDAL EM SISTEMAS ELÉTICOS J.. Cogo A.. C. de Oliveira IEE - EFEI Uiv. Taubaté Artigo apresetado o Semiário de Pesquisa EFEI 983 ESUMO Este

Leia mais

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que LISTA INCRÍVEL DE MATEMÁTICA DISCRETA II DANIEL SMANIA 1 Amostras, seleções, permutações e combiações Exercício 1 Quatos bytes (8 bits) existem de modo que ele coteha exatamete quatro 1 s? Exercício 2

Leia mais

1- REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudança do meio de propagação. refração do meio em que o raio se encontra.

1- REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudança do meio de propagação. refração do meio em que o raio se encontra. REFRAÇÃO - LENTES - REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudaça do meio de propagação. - Ídice de refração absoluto: é uma relação etre a velocidade da luz em um determiado meio

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Teste de Hipóteses e Intervalos de Confiança

Teste de Hipóteses e Intervalos de Confiança Teste de Hipóteses e Intervalos de Confiança Teste de Hipótese e Intervalo de Confiança para a média Monitor Adan Marcel 1) Deseja-se estudar se uma moléstia que ataca o rim altera o consumo de oxigênio

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

AVALIAÇÃO DA MEDIDA DE EVIDÊNCIA DE UMA MUDANÇA EM SÉRIES DE DADOS COM DISTRIBUIÇÃO POISSON

AVALIAÇÃO DA MEDIDA DE EVIDÊNCIA DE UMA MUDANÇA EM SÉRIES DE DADOS COM DISTRIBUIÇÃO POISSON AVALIAÇÃO DA MEDIDA DE EVIDÊNCIA DE UMA MUDANÇA EM SÉRIES DE DADOS COM DISTRIBUIÇÃO POISSON Flávio Bambirra Goçalves, e Frederico R. B. da Cruz Deartameto de Estatística ICEx - Uiversidade Federal de Mias

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste 7 o SEMESTRE 5/6 Data: Sábado, 7 de Jaeiro de 6 Duração: 9:3 às :3 Tópicos de Resolução. O úmero

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.)

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.) Testes χ 2 de ajustameto, homogeeidade e idepedêcia Testes χ 2 (cot.) Os testes χ 2 cosiderados este último poto do programa surgem associados a dados de cotagem. Mais cocretamete, dados que cotam o úmero

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA IM 317 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA IM 317 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA IM 37 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS PROF. DR. SÉRGIO

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO Rita Moura Fortes proeg.upm@mackezie.com.br Uiversidade Presbiteriaa Mackezie, Escola de Egeharia, Departameto de Propedêutica de Egeharia Rua da Cosolação,

Leia mais

Estatística II. Aula 6. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 6. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 6 Prof.: Patricia Maria Bortolo, D. Sc. Testes ara duas amostras Objetivos Nesta aula você arederá a usar o teste de hióteses ara comarar as difereças etre: As médias de duas oulações

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) gustavo_epr@yahoo.com.br José Ivo Ribeiro Júior (UFV) jivo@dpi.ufv.br RESUMO: Para comparar

Leia mais

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente; 2.1 Dê exemplo de uma seqüêcia fa g ; ão costate, para ilustrar cada situação abaixo: (a) limitada e estritamete crescete; (b) limitada e estritamete decrescete; (c) limitada e ão moótoa; (d) ão limitada

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

ESTUDOS DE CAPACIDADE PARA DADOS NÃO-NORMAIS

ESTUDOS DE CAPACIDADE PARA DADOS NÃO-NORMAIS ESTUDOS DE CAPACIDADE PARA DADOS NÃO-NORMAIS Alberto Wuderler Raos Deartaeto de Egeharia de Produção - EPUSP Caia Postal 6548 São Paulo SP Brasil 0544-970 awraos@us.br Abstract: This aer resets a ethod

Leia mais

RESISTORES E RESISTÊNCIAS

RESISTORES E RESISTÊNCIAS ELETICIDADE CAPÍTULO ESISTOES E ESISTÊNCIAS No Capítulo estudamos, detre outras coisas, o coceito de resistêcia elétrica. Vimos que tal costitui a capacidade de um corpo qualquer se opôr a passagem de

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE 1 Estatística descritiva (Eploratória) PRIMEIRO PASSO: Tabelas (distribuição de frequêcia) e Gráficos. SEGUNDO PASSO: Cálculo de medidas

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA INTRODUÇÃO MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 1 1 Itrodução à Egeharia Ecoômica A egeharia, iserida detro do cotexto de escassez de recursos, pode aplicar

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hipóteses Neste capítulo será estudado o segudo problema da iferêcia estatística: o teste de hipóteses. Um teste de hipóteses cosiste em verificar, a partir das observações de uma amostra,

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x. 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

Esta Norma estabelece o procedimento para calibração de medidas materializadas de volume, de construção metálica, pelo método gravimétrico.

Esta Norma estabelece o procedimento para calibração de medidas materializadas de volume, de construção metálica, pelo método gravimétrico. CALIBRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO NORMA N o 045 APROVADA EM AGO/03 N o 01/06 SUMÁRIO 1 Objetivo 2 Campo de Aplicação 3 Resposabilidade 4 Documetos Complemetes 5 Siglas

Leia mais

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger Tópicos de Mecâica Quâtica I Equações de Newto e de Hamilto versus Equações de Schrödiger Ferado Ferades Cetro de Ciêcias Moleculares e Materiais, DQBFCUL Notas para as aulas de Química-Física II, 010/11

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

CAPÍTULO 7 - Intervalos de confiança

CAPÍTULO 7 - Intervalos de confiança INF 16 CAPÍTULO 7 - Itervalo de cofiaça É uma maeira de calcularmo uma etimativa de um parâmetro decohecido. Muita veze também fucioa como um tete de hipótee. A idéia é cotruir um itervalo de cofiaça para

Leia mais

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO SUMÁRIO. INTRODUÇÃO... 3.. GENERALIDADES... 3.. METODOLOGIA DO TESTE DE HIPÓTESES... 3.3. AS HIPÓTESES... 3.4. A ESCOLHA DO TESTE ESTATÍSTICO... 4.5. CONCEITOS ADICIONAIS DO TESTE DE HIPÓTESES... 4.6.

Leia mais

Mini Hi-Fi Component System

Mini Hi-Fi Component System 3-864--31 (2 Mii Hi-Fi Comoet System Maual de Istruções Bedieugsaleitug P D T DHC-EX88MD DHC-MD717 1998 by Soy Cororatio ADVERTÊCIA Para evitar o risco de icêdio ou choque eléctrico, ão exoha o aarelho

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

Guia do Professor. Matemática e Saúde. Experimentos

Guia do Professor. Matemática e Saúde. Experimentos Guia do Professor Matemática e Saúde Experimetos Coordeação Geral Elizabete dos Satos Autores Bárbara N. Palharii Alvim Sousa Karia Pessoa da Silva Lourdes Maria Werle de Almeida Luciaa Gastaldi S. Souza

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Exame - Época Normal 006/00 Data: 14de Julhode 00 Tópicos de Resolução Duração: 3 horas 1. SejaΩumespaçoamostraleA,BeCacotecimetoscomasseguitescaracterísticasA

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

Hipótese Estatística:

Hipótese Estatística: 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,

Leia mais

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos DELC - Departameto de Eletrôica e Computação ELC 0 Estudo de Casos em Egeharia Elétrica Solução de Equações Difereciais Ordiárias Usado Métodos Numéricos Versão 0. Giovai Baratto Fevereiro de 007 Ídice

Leia mais

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda 1 Uma Metodologia de Busca Otimizada de Trasformadores de Distribuição Eficiete para qualquer Demada A.F.Picaço (1), M.L.B.Martiez (), P.C.Rosa (), E.G. Costa (1), E.W.T.Neto () (1) Uiversidade Federal

Leia mais

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6 Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais