Probabilidades. José Viegas

Tamanho: px
Começar a partir da página:

Download "Probabilidades. José Viegas"

Transcrição

1 Probabilidades José Viegas Lisboa 001

2 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia do eveto A é P ( A) x Exemplo 1-1: Uma caixa cotem 0 bolas vermelhas e 5 bolas bracas. A probabilidade de tirar uma bola braca é P 5/5 Permutações e combiações 1.1 Permutações A permutação de ites é simplesmete o arrajo desses ites todos tomados em cojuto. Exemplo 1-: 3 ites ( A, B, C ) dão origem a seis diferetes permutações: ABC BCA CAB ACB BCA CBA Para ites o úmero de permutações é :!. (-1). (-) P Se dos ites só forem tomados r de cada vez para serem arrajados teremos permutações de, r a r : P r! ( r)! Por defiição 0! 1

3 Exemplo1-3: Permutações de A, B, C, D dois a dois. AB AC AD BA BC BD CA CB CD DA DB DC Exemplo1-4: Uma sala de aula é ocupada por uma turma de 15 aluos. Na primeira fila existem 6 carteiras. Quatas arrajos diferetes de aluos são possíveis a primeira fila? ( assumese que ehuma carteira fica vazia). 15 r 6 P 15! 9! Combiações Se a ordem ão tem importâcia tem-se combiações em vez de permutações. A combiação de ites, tomado r de cada vez, é uma selecção de r ites tirados de, sem ter em cota a ordem porque foram seleccioados. Exemplo1-5: Combiações de 4 objectos ( A, B, C, D ) tomados a. AB AC AD BC BD CD As combiações de ites, r a r, são: C r Pr! r! r!( r)! 3

4 Exemplo1-6: Um lote é costituído por 100 lâmpadas quatas amostras diferetes de 5 lâmpadas são possíveis.? C 100! 5!95! Regras de probabilidade A probabilidade cojuta de ocorrêcia de A e B escreve-se P ( A B ) A probabilidade de ocorrêcia de A ou B escreve-se P ( A + B ) P ( A + B ) P (A) + P (B) - P (A B) A probabilidade de ocorrêcia de o acotecimeto complemetar de A, ( ão A ) escreve-se P ( A ) P ( A ) + P ( A ) 1 Se, e só se, os evetos A e B forem idepedetes, tem-se: P (A B) P (A B) P (A) P (B A) P (B A) P (B) A probabilidade cojuta de ocorrêcia de dois acotecimetos A e B idepedetes é o produto das probabilidades idividuais P (A B) P(A). P(B) A probabilidade cojuta de ocorrêcia de dois acotecimetos A e B ão idepedetes é: P (AB) P (A) P (B A) P (B) P (A B) ou aida P (B A) P (AB) / P(A) 4

5 Se os acotecimetos A e B forem mutuamete exclusivos, isto é se ão puderem ocorrer em simultâeo, etão: P (AB) 0 E P (A+B) P (A) + P(B) A partir de P (AB) P (B) P (A B) pode deduzir-se o teorema de Bayes P ( A B) P( A) P( B A) P( B) Distribuições Estatísticas Se colocarmos um gráfico valores que variam como será o valor do diâmetro de uma peça maquiada, ou a altura de um grupo de aluos da 6ª classe sob a forma de histograma teremos Exemplo a partir duma amostra de valores em tabela. Distribuição por famílias. Passagem para o gráfico 5

6 Vamos seguidamete aalisar o valor em cotos gastos mesalmete em trasportes pela população de um bairro de Lisboa. No caso que seguidamete apresetamos, 30 valores foram registados e as suas frequêcias de ocorrêcia estão represetadas. Os valores registados foram de a 9 havedo uma grade icidêcia os valores de 5 a 7. Outra amostra aleatória de outros ovos 30 valores, da mesma população dará origem a ovo histograma que terá o etato uma forma semelhate. Se represetarmos em ovo histograma os valores verificados as duas amostras mas utilizado itervalos de 0,5 teríamos: 6

7 Agora utilizámos a frequêcia em %. Se aumetássemos o úmero de observações e reduzíssemos os itervalos de medida, tederíamos para uma curva que descreve a fução desidade de probabilidade f(x) para uma dada variável x. Em que + f ( x) dx 1 E a probabilidade de um valor estar etre x1 e x será: P < x < x ( x1 ) x x1 f ( x) dx Temos aida como muito importates dois aspectos da fução desidade de probabilidade que são: Valor médio valor em toro do qual a distribuição se agrupa Dispersão variabilidade em toro do valor médio E aida: Moda valor da maior frequêcia mediaa poto cetral da distribuição 7

8 Valor médio x i 1 xi µ + xf ( x) dx Dispersão É a extesão em que os valores da distribuição variam. É medida pela variâcia ( xi x) Var( x) E( x x) Variâcia para uma amostra de dimesão. i 1 A estimativa da variâcia da população a partir de uma amostra de tamaho é dada por: σ ( x x) i i 1 1 Sedo a variâcia de uma população fiita de N elemetos dada por: ( xi x) σ N i 1 E para uma distribuição cotíua: σ + ( x µ ) f ( x) dx Distribuições discretas e cotíuas.1 Distribuições discretas Se uma variável aleatória discreta X poder tomar valores x1, x,..., x, com probabilidades p1, p,..., p, em que p1 + p p 1, e pi 0 para qualquer i, 8

9 pode-se dizer que existe uma distribuição de probabilidade para x. As otações P(X x) ou P(x) são utilizadas para represetar a probabilidade de X ter um determiado valor x. Exemplo.1: Laçam-se duas moedas ão viciadas. Cosidera-se a variável aleatória X úmero de caras. Etão X pode Ter os valores 0, 1 ou. Os resultados possíveis do laçameto são: cara/cara cara/coroa coroa/cara coroa/coroa probabilidades ¼ ¼ ¼ ¼ P(X)1/4 P(X1)1/ P(X0)1/4 A soma destas probabilidades é igual a um e existe uma distribuição discreta para X. Biomial A distribuição biomial descreve uma situação que tem duas saídas, tais como passar ou ão passar, matedo-se a probabilidade costate para todas as tetativas, experiêcias. A fução probabilidade é dada por: f ( x)! p x q x!( x)! ( x)! x!( x)! C x Esta fução represeta a probabilidade x produtos bos e -x produtos maus uma amostra de produtos, quado a probabilidade de seleccioar um bom produto é p e a de seleccioar um mau produto é q. A média é dada por: µ p E o desvio padrão: σ pq E a probabilidade de obter r ou meos produtos bos virá: 9

10 F( r) r x 0 C x p x q ( x) Aplica-se o caso de a dimesão da amostra ser fiita e a dimesão da amostra ser pequea relativamete ao lote. Exemplo.: De uma liha de produção recolhem-se 5 peças, uma por hora. Sabedo-se que a % de peças defeituosas é de 10%, calcule a probabilidade de etre as 5 peças termos: a) Todas as peças boas b) Uma peça defeituosa c) Meos de duas peças defeituosas d) A média e o desvio padrão Distribuição de Poisso Os acotecimetos que ocorrem segudo uma distribuição de Poisso, acotecem a uma taxa de ocorrêcia costate. Só com uma de duas saídas determiável. Ex: - úmero de falhas um dado período de tempo - umero de defeitos um determiado comprimeto de arame A fução probabilidade é dada por: x µ f ( x) exp( µ ) x! ( x 0, 1,, 3,...) µ - taxa média de ocorrêcia µ λ t σ λ A distribuição de Poisso pode ser cosiderada como a extesão da distribuição Biomial, a qual é ifiito. Exemplo.3: Das 1 às 14 o úmero de automóveis que chegam a um parque de estacioameto é de 360. Qual a probabilidade de um miuto: a) Não chegar ehum automóvel? 10

11 b) Chegar um automóvel? c) Chegarem dois automóveis? d) Chegarem meos de dois automóveis? Exemplo.4: Um trem de aterragem tem 4 rodas. A experiêcia mostra que o rebetameto de rodas ocorre em média uma vez em cada 100 aterrages. Admitido que o rebetameto das rodas ocorre de forma estatisticamete idepedete, umas das outras, e que uma aterragem será segura se ão rebetarem mais de rodas. Qual a probabilidade de uma aterragem ão segura? Exemplo.5: Se a probabilidade de um item falhar é de 0,001, qual a probabilidade de se ecotrar 3 items com falha uma população de 000? Solução através da distribuição Biomial Solução através da distribuição Poisso. Distribuições cotíuas Diz-se que uma distribuição é cotíua quado a variável aleatória pode tomar qualquer valor detro de determiado itervalo. Distribuição Normal ou de Gauss A fução desidade de probabilidade da Normal é dada por: f ( x) 1 σ (π ) 1 x µ exp ( σ ) 1 µ - média ( parâmetro de localização ) moda, mediaa são coicidetes coma média dado que a fução de distribuição de probabilidade é simétrica. 11

12 Uma razão para a grade aplicação da Normal é o facto de, quado um valor está sujeito a muitos factores de variação, idepedetemete como estes factores são distribuídos, a distribuição composta resultate, aproxima-se muito da distribuição Normal. Este facto é cosequêcia do teorema do limite cetral A tabela em apêdice dá os valores para Φ (z) fução acumulada da distribuição ormal estadardizada, ( µ 0 ; σ 1 ) z represeta o úmero de desvios padrão de distâcia em relação ao valor médio. Qualquer distribuição ormal pode ser calculada a partir da distribuição ormal estadardizada, determiado a variável ormal estadardizada z, e achado o valor de Φ (z). µ z x σ Exemplo.6: O tempo de vida de uma lâmpada icadescete tem uma distribuição ormal de média 100H e desvio padrão σ 00H. a) Qual é a probabilidade desta lâmpada durar pelo meos 800H b) Qual é a probabilidade desta lâmpada falhar até às 900H Exemplo.7: Um rolameto tem um tempo de vida ormalmete distribuído com uma média de 6000h e um desvio padrão de 450h. Qual a probabilidade de um rolameto atigir as 7000h de fucioameto? Distribuição de Weibull 1

13 A distribuição de Weibull tem uma grade vatagem quado utilizada em trabalhos de fiabilidade, pois por modificação dos parâmetros da distribuição pode ajustar-se a muitas distribuições de tempos de vida típicos. A sua fução desidade de probabilidade em fução do tempo virá dada por: f ( t) exp ( ) η β 1 t t β η β β ( para t 0 ) f(t) 0 ( para t < 0 ) em que : β - parâmetro de forma µ - parâmetro de escala ou vida característica Exemplo.8: O tempo de vida de um rolameto uma dada istalação é represetado de forma satisfatória por uma distribuição de Weibull com β ½ e µ Calcule a probabilidade de o rolameto durar pelo meos 6000 horas. Calcule o tempo médio de vida. 13

14 3 Cofiaça estatística Na problemática da cofiaça estatística, o ível de cofiaça (1-α) é a percetagem em que o itervalo de cofiaça icluirá o verdadeiro valor observado, se se repetir a experiêcia várias vezes. O itervalo de cofiaça é o itervalo etre os limites superior e iferior do itervalo. Os itervalos de cofiaça são usados para se preverem os dados da população a partir dos dados de uma amostra. Quato maior for a amostra maior será a ossa ituição de que o valor estimado para a população esteja mais próximo do verdadeiro valor. Limites de cofiaça em distribuição Normal Se tivermos uma amostra de média x e pretedermos estimar a média da população com um grau de cofiaça ou ível de cofiaça de 95%, etão teremos : 14

15 σ σ P( x 1,96 µ x + 1,96 ) 0,95 P σ σ / µ x + zα / ) (1 α) ( x zα Sabe-se que se a população x segue uma distribuição ormal, os valores médios das amostras x também tem uma distribuição ormal de desvio padrão σ - desvio padrão da população σ. Exemplo 3.1: Uma amostra com 100 valores tem um valor médio de 7,56 e um desvio padrão de 1,10.Quais os limites do valor médio da população para um ível de cofiaça de 90% Limites de cofiaça em distribuição Expoêcial Em fiabilidade muitas vezes assumimos Ter uma taxa de avarias costate, este caso os valores tem uma distribuição expoecial egativa, que é uma distribuição assimétrica. Nestas distribuições aplicamos a distribuição do χ para estimarmos os limites de cofiaça. Demostra-se que os limites de cofiaça de dados gerados por um processo de Poisso, tais como os tempos de avaria, quado a taxa de avarias é costate são dados por: 15

16 θ i χ T α, ν θ s χ T 1 α, ν θ eθ i s limites de cofiaça superior e iferior para o MTBF T tempo total do teste α - ível de sigificâcia úmero de avarias ( ν ) quado o teste acaba com avaria ( ν + ) - quado o teste ão acaba com avaria Exemplo 3.: Dez uidades foram testadas 1000H, tedo ocorrido 3 avarias. Os testes foram etão iterrompidos. Assumido uma taxa de avarias costate, qual é o limite iferior do MTBF para um ível de cofiaça de 90%. 4 Testes de hipótese Uma hipótese estatística é uma afirmação ou hipótese feita sobre parâmetros de uma população. Esta afirmação ou hipótese deverá ser testada utilizado um determiado procedimeto. Método: 1. Especificar a hipótese ula ( Ho ), hipótese que se pretede testar e a hipótese alterativa ( H1). Determiar a estatística do teste para testar o parâmetro θ cosiderado 3. Especificar o ível de sigificâcia α para o teste 4. Retirar uma amostra e determiar a estimativa do parâmetro θ (θˆ). 5. Decisão θˆ - detro do itervalo de aceitação ão se rejeita Ho θˆ - fora do itervalo de aceitação rejeita-se Ho 16

17 Exemplo 4.1: Cosidere uma população Normal de variâcia-1. Sabedo que uma amostra de 5, obteve-se a média amostral de 1,4. Diga se pode cosiderar como média para a população o valor - 1,cosiderado um ível de sigificâcia de 5%. Exemplo 4.: Um rolameto de esferas tem um tempo de vida ormalmete distribuído, com uma média de 6000h e um desvio padrão de 450h. Utilizámos um ovo lubrificate uma amostra de 9 uidades, tedo obtido um tempo de vida médio de 6400h. Teria o ovo lubrificate provocado uma alteração do tempo de vida médio dos rolametos? 5 Bibliografia Guimarães, Rui e Cabral, José (1999), Estatística, McGraw-Hill Motgomery, Douglas e Ruger (1999), Aplllied Statistics ad Probability for Egieers 17

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste 7 o SEMESTRE 5/6 Data: Sábado, 7 de Jaeiro de 6 Duração: 9:3 às :3 Tópicos de Resolução. O úmero

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

FILAS DE ESPERA. Notas baseadas em Introduction to Operations Research de Hillier e Lieberman.

FILAS DE ESPERA. Notas baseadas em Introduction to Operations Research de Hillier e Lieberman. FILA DE EPERA otas baseadas em Itroductio to Operatios Research de Hillier e Lieberma. 77 ETRUTURA BÁICA DO ITEMA DE FILA DE EPERA Quado um determiado serviço é procurado por vários clietes, poder-se-ão

Leia mais

Lista de Exercícios #4. in Noções de Probabilidade e Estatística (Marcos N. Magalhães et al, 4ª. edição), Capítulo 4, seção 4.4, páginas 117-123.

Lista de Exercícios #4. in Noções de Probabilidade e Estatística (Marcos N. Magalhães et al, 4ª. edição), Capítulo 4, seção 4.4, páginas 117-123. Uiversidade de São Paulo IME (Istituto de Matemática e Estatística MAE Profº. Wager Borges São Paulo, 9 de Maio de 00 Ferado Herique Ferraz Pereira da Rosa Bach. Estatística Lista de Exercícios #4 i Noções

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.)

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.) Testes χ 2 de ajustameto, homogeeidade e idepedêcia Testes χ 2 (cot.) Os testes χ 2 cosiderados este último poto do programa surgem associados a dados de cotagem. Mais cocretamete, dados que cotam o úmero

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Demonstrações especiais

Demonstrações especiais Os fudametos da Física Volume 3 Meu Demostrações especiais a ) RLAÇÃO NTR próx. e sup. osidere um codutor eletrizado e em equilíbrio eletrostático. Seja P sup. um poto da superfície e P próx. um poto extero

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Exame - Época Normal 006/00 Data: 14de Julhode 00 Tópicos de Resolução Duração: 3 horas 1. SejaΩumespaçoamostraleA,BeCacotecimetoscomasseguitescaracterísticasA

Leia mais

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

TÉCNICAS DE AMOSTRAGEM PARA AUDITORIAS

TÉCNICAS DE AMOSTRAGEM PARA AUDITORIAS TRIBUAL DE COTAS DA UIÃO Secretaria-Geral de Cotrole Extero Secretaria-Aduta de Fiscalização TÉCICAS DE AMOSTRAGEM PARA AUDITORIAS ADFIS/SEGECEX 00 TRIBUAL DE COTAS DA UIÃO egócio Cotrole extero da admiistração

Leia mais

Análise de Dados. Introdução às técnicas de Amostragem Introdução à Estimação Introdução aos testes Métodos não paramétricos

Análise de Dados. Introdução às técnicas de Amostragem Introdução à Estimação Introdução aos testes Métodos não paramétricos Aálise de Dados Itrodução às técicas de Amostragem Itrodução à Estimação Itrodução aos testes Métodos ão paramétricos Maria Eugéia Graça Martis Faculdade de Ciêcias da Uiversidade de Lisboa Março 009 ÍNDICE

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing Profa. Regia Maria Sigolo Berardielli Estatística Gestão Fiaceira / Gestão de Recursos Humaos / Logística / Marketig REGINA MARIA SIGOLO BERNARDINELLI ESTATÍSTICA Esio a Distâcia E a D Revisão 09/008 LISTA

Leia mais

Guia do Professor. Matemática e Saúde. Experimentos

Guia do Professor. Matemática e Saúde. Experimentos Guia do Professor Matemática e Saúde Experimetos Coordeação Geral Elizabete dos Satos Autores Bárbara N. Palharii Alvim Sousa Karia Pessoa da Silva Lourdes Maria Werle de Almeida Luciaa Gastaldi S. Souza

Leia mais

Analisando o Risco de uma Carteira de Crédito via Simulações de Monte Carlo Resumo

Analisando o Risco de uma Carteira de Crédito via Simulações de Monte Carlo Resumo Aalisado o Risco de uma Carteira de Crédito via Simulações de Mote Carlo Resumo Neste trabalho, aalisamos a utiliação da metodologia CreditRis+ do Credit Suisse e sua adequação ao mercado brasileiro, com

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Egeharia - Campus de Guaratiguetá esquisa Operacioal Livro: Itrodução à esquisa Operacioal Capítulo 6 Teoria de Filas Ferado Maris fmaris@feg.uesp.br Departameto de rodução umário Itrodução

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teoria Elemetar da Probabilidade MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado o acaso iterfere a ocorrêcia de um ou mais dos resultados os quais tal processo

Leia mais

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : cojuto dos úmeros aturais; = {,,, } : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros reais : cojuto dos úmeros complexos i: uidade imagiária, i = z: módulo

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA IM 317 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA IM 317 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA IM 37 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS PROF. DR. SÉRGIO

Leia mais

MATEMÁTICA APLICADA À GESTÃO I

MATEMÁTICA APLICADA À GESTÃO I 00 MATEMÁTICA APLICADA À GESTÃO I TEXTO DE APOIO MARIA ALICE FILIPE ÍNDICE NOTAS PRÉVIAS ALGUNS CONCEITOS SOBRE SÉRIES6 NOTAS PRÉVIAS As otas seguites referem-se ao maual adoptado: Cálculo, Vol I James

Leia mais

29/05/2015. Distribuições de probabilidade

29/05/2015. Distribuições de probabilidade 9/5/5 UNIDADE III - Elemetos de probabilidades.. Itrodução à teoria das probabilidades...itrodução...coceitos fudametais...coceitos de probabilidade..4.teoremas para o cálculo de probabilidades..5.probabilidade

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt:

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt: Proposta de Resolução do Exame de Matemática Aplicada às Ciêcias Sociais Cód. 835-2ª 1ª Fase 2014 1.1 Comecemos por determiar a distribuição de represetates por aplicação do método de Hodt: Divisores PARTIDOS

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2 SUMÁRIO 1. CORRELAÇÃO... 1.1. Itrodução... 1.. Padrões de associação... 3 1.3. Idicadores de associação... 3 1.4. O coeficiete de correlação... 5 1.5. Hipóteses básicas... 5 1.6. Defiição... 6 1.7. Distribuição

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Equações Diferenciais Lineares de Ordem n

Equações Diferenciais Lineares de Ordem n PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))

Leia mais

Lista 2.1 Breves Revisões de Lógica; Noção de Norma e Distância; Breves Noções Topológicas em R n

Lista 2.1 Breves Revisões de Lógica; Noção de Norma e Distância; Breves Noções Topológicas em R n Faculdade de Ecoomia da Uiversidade Nova de Lisboa Apotametos Cálculo II Lista 2.1 Breves Revisões de Lógica; Noção de Norma e Distâcia; Breves Noções Topológicas em R 1. Símbolos e operadores lógicos:

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP Goiâia, 07 a 10 de outubro Mii Curso Tópicos em passeios aleatórios Ms. Valdivio Vargas Júior - Doutorado/IME/USP TÓPICOS EM PASSEIOS ALEATÓRIOS VARGAS JÚNIOR,V. 1. Itrodução Cosidere a seguite situação

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemática Ficha de Trabalho Probabilidades 12º ao FT4 Arrajos completos (arrajos com repetição) Na liguagem dos computadores usa-se o código biário que é caracterizado pela utilização de apeas dois algarismos,

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

defi departamento de física www.defi.isep.ipp.pt

defi departamento de física www.defi.isep.ipp.pt defi departameto de física Laboratórios de Física www.defi.isep.ipp.pt stituto Superior de Egeharia do Porto- Departameto de Física Rua Dr. Atóio Berardio de Almeida, 431 4200-072 Porto. T 228 340 500.

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

Aulas de Estatística / Prof. Jones Garcia da Mata / www.professorjones.hpg.com.br

Aulas de Estatística / Prof. Jones Garcia da Mata / www.professorjones.hpg.com.br # Variável aleatória Quado uma variável tem resultados ou valores que tedem a variar de uma observação ara outra em razão de fatores relacioados com a chace, ós chamamos de variável aleatória Defiimos

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Aexo PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Uiversidade de Évora, Departameto de Egeharia Rural.. Itrodução Nehum processo hidrológico é puramete determiístico, isto é, ão é possível determiar

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

Sistema Computacional para Medidas de Posição - FATEST

Sistema Computacional para Medidas de Posição - FATEST Sistema Computacioal para Medidas de Posição - FATEST Deise Deolido Silva, Mauricio Duarte, Reata Ueo Sales, Guilherme Maia da Silva Faculdade de Tecologia de Garça FATEC deisedeolido@hotmail.com, maur.duarte@gmail.com,

Leia mais

MINISTÉRIO DAS CIDADES, ORDENAMENTO DO TERRITÓRIO E AMBIENTE Instituto do Ambiente PROCEDIMENTOS ESPECÍFICOS DE MEDIÇÃO DE RUÍDO AMBIENTE

MINISTÉRIO DAS CIDADES, ORDENAMENTO DO TERRITÓRIO E AMBIENTE Instituto do Ambiente PROCEDIMENTOS ESPECÍFICOS DE MEDIÇÃO DE RUÍDO AMBIENTE MINISÉRIO DAS CIDADES, ORDENAMENO DO ERRIÓRIO E AMBIENE Istituto do Ambiete PROCEDIMENOS ESPECÍFICOS DE MEDIÇÃO DE RUÍDO AMBIENE Abril 2003 . Equadrameto O presete documeto descreve a metodologia a seguir

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples.

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples. FACULDADES NTEGRADAS ENSTEN DE LMERA Curso de Graduação em Egeharia Civil Resistêcia dos Materiais - 0 Prof. José Atoio Schiavo, MSc. NOTAS DE AULA Aula : Flexão Pura e Flexão Simples. Objetivo: determiar

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica Cálculo das Probabilidades e Estatística I Departameto de Estatistica Versão - 2013 Sumário 1 Itrodução à Estatística 1 1.1 Coceitos básicos de amostragem..................................... 2 1.1.1

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

TEORIAS, TÉCNICAS E SIMULAÇÕES EM PROCESSOS ALEATÓRIOS - Marco Antonio Leonel Caetano PROCESSOS FILAS

TEORIAS, TÉCNICAS E SIMULAÇÕES EM PROCESSOS ALEATÓRIOS - Marco Antonio Leonel Caetano PROCESSOS FILAS PROCESSOS FILAS VIII. - Itrodução Cogestioameto é um feômeo atural em sistemas reais. Um serviço tora-se cogestioado se há mais pessoas ( iformações ) do que o servidor ( ou servidores ) pode ateder. As

Leia mais

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6 Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo

Leia mais

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA Resumo Itervalos de Cofiaça ara médias e roorções com alicações a Egeharia. Ferado Mori Prof.fmori@gmail.com Itervallos de Cofiiaça ara Médiias e Proorções

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais