Duas Fases da Estatística

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Duas Fases da Estatística"

Transcrição

1 Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva (iferecial): a partir de uma amostra iferir sobre as características de uma população Fote Diagrama: Projecto ALEA Noçoes de Estatística

2 População vs. Amostra Podemos iferir (deduzir) determiadas características de uma população se extraímos uma amostra represetativa desta População: colecção de uidades idividuais (pessoas ou resultados experimetais) com uma ou mais características comus, que se pretedem estudar. Amostra: Cojuto de dados ou observações, recolhidos a partir de um subcojuto da população, que se estuda com o objectivo de tirar coclusões para a população de ode foi recolhida amostragem Images extraídas da referêcia 3 Amostragem Processo pelo qual se extraem dados de uma população Existem vários tipos de amostragem: Vamos usar apeas este tipo Amostragem Aleatória Simples: cada elemeto da amostra é retirado aleatoriamete de toda a população (com ou sem reposição) cada possível amostra tem a mesma probabilidade de ser recolhida Amostragem Estratificada: subdividir a população em, pelo meos, dois subgrupos distitos que partilham alguma característica e, em seguida, recolher uma amostra de cada um dos subgrupos (estratos) Amostragem por clusters: dividir a população em secções (clusters); seleccioar aleatoriamete algus desses clusters; escolher todos os membros dos clusters seleccioados. 4

3 Amostra Aleatória Note que usamos letras miúsculas pois estamos a defiir cocretizações (observações) de variáveis aleatórias acetato adaptado de referecia Note que usamos letras maiúsculas, pois estamos a defiir variáveis aleatórias e medidas em fução dessas variáveis 6 Parâmetro vs. Estatística Parâmetro Medida usada para descrever a distribuição da população a médiaµ e o desvio padrão são parâmetros de uma distribuição Normal - N(µ, ) a probabilidade de sucesso p é um parâmetro da distribuição Biomial - B(,p) Estatística Fução de uma amostra aleatória que ão depede de parâmetros descohecidos Média amostral: = i = i Variâcia amostral: Amplitude da amostra: S = = ( i i R = : : ) 7 3

4 Parâmetro vs. Estatística Proporção dos iquiridos de raça braca uma população e uma amostra π p exemplo extraído da referêcia 8 Estimação de Parâmetros População Amostra Distribuição da População Parâmetros (valor fixo) estimar Distribuição Amostral Estatísticas (fução da amostra) Estimação potual (estatísticas) por itervalo (itervalos de cofiaça) OBS: estatística: é a v.a. que estima (potualmete) um parâmetro (populacioal) as vezes é chamada simplesmete de estimador estimativa: é o valor do estimador obtido para uma amostra específica acetato adaptado de referecia 3 9 4

5 Itervalo de Cofiaça Um itervalo de cofiaça para um parâmetro θ, a um grau de cofiaça -, é um itervalo aleatório (L if, L sup ) tal que: P(L if < θ < L sup ) = -, (0,) ode deve ser um valor muito reduzido por forma a temos cofiaças elevadas Valores usuais para o grau de cofiaça: 95%, 99% e 90% 3 Itervalo de Cofiaça () I. para a média µ com variâcia cohecida Caso : população Normal Caso : população qualquer (>>30) aproximada pela Normal II. para a média µ com variâcia descohecida Caso : população Normal Caso : população qualquer (>>30) aproximada pela Normal III. para a difereça de médias de duas populações Normais Caso : duas amostras idepedetes, variâcias cohecidas Caso : duas amostras idepedetes, variâcias descohecidas Caso 3: amostras emparelhadas, variâcias descohecidas IV. para uma proporção 4 5

6 para µ com variâcia cohecida Caso : População Normal ~ N ( µ, ) µ descohecido, mas cohecido ~ N? ( µ, ) cetrado e reduzido: µ ~? N (0,) (Normal Padrão) Z P( z < Z < z) = µ P( z < < z) = P( z < µ < z ) = P( z < µ < + z ) = L if L sup - -z 0 z + z / z - / quatil de ordem / quatil de ordem -/ para µ a grau de cofiaça - N(0,) ) = z + z ( )( µ, acetato adaptado de referecia 3 5 Iterpretação do para µ Para uma amostra aleatória de tamaho 50 seguido uma distribuição Normal com média µ = 0 e variâcia = 4 ~ N (0, 4), determiamos o para µ com 95% de grau cofiaça: P(, 96 < µ < +,96 ) = 95% < < + = µ ) = ( , ) P( 0,5544 µ 0,5544) 95% %( 95 + µ=0 Iterpretação: 95% dos possíveis s obtidos a partir de uma amostra de tamaho 50, coterão de facto o verdadeiro valor da média µ=0 6 6

7 para µ com variâcia cohecida Caso : População Normal Exemplo: Uma v.a. qualquer tem uma distribuição Normal com média µ descohecida e variâcia = 6. Retira-se uma amostra de 5 valores e calcula-se a média amostral. Costrua um de 95% para µ supodo que =,7. ) = z + z ( )( µ, z 0,9750 =,96 ) = z + z 95 %( µ , =,7,96 = ( 95 % µ ) = 4,, (,7,568,,7 +,568 ) (.3, 4.68) P (,3 < µ < 4, 68) = 0, ,5% 95% 0.7,5% Java Applet em: 7 Determiado o Quatil de Ordem -/ Distribuição Normal Padroizada Tabela 3.a. Normal Distributio Para grau de cofiaça (-)x00 = 95% ível de sigificâcia =0.05 φ(z) = P(Z < z) = - / z = z - / quatil de ordem -/ φ(z) = P(Z < z) = - (0.05/ ) = buscar valor de z a tabela: φ(z) = z =.96 Grau de Cofiaça 90% 95% 99% Valor z % grau de cofiaça existem 0 possibilidades de 00 que o ão coteha a média populacioal 95% grau de cofiaça existem 5 possibilidades de 00 que o ão coteha a média populacioal 99% grau de cofiaça existe possibilidade de 00 que o ão coteha a média populacioal 8 7

8 & Grau de Cofiaça Como poderia obter itervalos de cofiaça mais estreitos, ou seja, com limites mais próximos a média verdadeira? Dimiuido o grau de cofiaça figura extraída da referêcia Dimiuido o grau de cofiaça de 99% a 95%, aumetamos o risco de estar errados: de % de risco passamos a 5% de risco, ou seja temos mais possibilidades (5/00 em vez de /00) de que o ão coteha a média populacioal. Ao aumetar o risco, o itervalo deve ser mais preciso 9 & Dimesão da Amostra Como poderia obter itervalos de cofiaça mais estreitos, ou seja, com limites mais próximos a média verdadeira? Aumetado a dimesão da amostra Tabela extraída da referêcia 0 8

9 para µ com variâcia cohecida Caso : População Geérica aproximada pela Normal Se uma distribuição qualquer tiver média µ (descohecida) e variâcia (cohecida) e se forem validas as codições do TLC (>>30) podemos obter um aproximado para a média µ para µ a grau de cofiaça - N (0,) ( µ ) z + z, - -z 0 z + quatil de ordem -/ z - / para µ com variâcia cohecida Resumo µ descohecido, mas cohecido º caso para µ a grau de cofiaça - ( ) = ± z µ quato maior z meos preciso ± z Se aumetarmos o grau de cofiaça a precisão dimiui porque aumeta o valor z se 90% z =.65 se 95% z =.96 se 99% z =.58 º caso ( ) ± z µ quato maior meor o erro padrão mais preciso A expressão é chamada erro padrão (stadard error) 9

10 para µ com variâcia descohecida Se o valor de é descohecido substituir por uma estimativa Estimadores potuais para o desvio padrão : desvio padrão amostral ão-corrigido = S = i= ( i ) desvio padrão amostral corrigido = S c = i= ( ) i Se descohecida podemos distiguir dois casos: Caso. população Normal usar distr.t de Studet µ N( µ, ) T = ~ t S ~ c Caso. q.q. distribuição aproximada pela Normal, amostras grades usar distribuição Normal padroizada µ q.q. com >> 30 Z = ~ N (0,) S a c Sc ) = t,, + t ( µ, Sc ( ) z + z µ, Sc Sc 3 para µ com variâcia descohecida Caso : População Normal Exemplo: Uma v.a. qualquer tem uma distribuição Normal com média µ e variâcia descohecidas. Retira-se uma amostra de 5 valores e calcula-se a média amostral e variâcia amostral. Costrua um de 95% para µ supodo que =,7 e S = 6 S ) = t, + t, ( )( µ, S Distribuição t de Studet com 4 graus de liberdade t 4 S 95 %(µ) = t0.9750,4, + t0.9750, 4 =,7,06 = 4,,7 +,06 5 (,7,648,,7 +,648 ) ( 95 % µ ) = S 4 5 (.05, 3.648),5% 95%,5% - -t 0 t + t 0,9750,? 4 =,06 4 0

11 Determiado t -/, - - quatil de ordem -/ de uma distribuição t-studet com - graus de liberdade Tabela 8. Studet s t-distributio Por defiição de quatil de ordem -/: z = z - / F(z) = P(Z < z) = - / Para grau de cofiaça 95% ível de sigificâcia =0.05 F(z) = P(Z < z) = - (0.05/ ) = F(z) = Para =5 4 graus de liberdade Determiar t , 4 usado Tabela 8: t , 4 =.06 5 para µ com variâcia descohecida Caso : População Normal Uma amostra aleatória de 0 cigarros foi aalisada para estimar a quatidade de icotia por cigarro, observado-se a média de, mg e variâcia amostral corrigida de Pressupodo que as observações têm distribuição Normal, determie um para o valor médio da quatidade de icotia por cigarro, grau de cofiaça de 99% Usado esta amostra determiamos um aproximado para µ a 99%: Sc ) = t, + t, ( ) ( µ, (µ) = t 99 % 0.995,9, Determiar t 0.995, 9 usado Tabela 8 t 0.995, 9 = %( µ ) =,,86 SC + t 0.995,9 0,04,, +,86 0 Sc SC 0,04 0 exercício 5, capítulo 4 Para grau de cofiaça 99%: (-) x 00% = 99% (-) =0.99 =0.0 Por defiição de quatil de ordem -/: F(z) = P(Z < z) = - (0.0/ ) = 0,995 F(z) = Para =0 9 graus de liberdade = (,,86 0,0447,, +,86 0,0447) 99 %( µ ) = (.07,.379) 6

12 para µ com variâcia descohecida Exemplo: População qualquer, amostra grade Igressos dos emigrates hispâicos em EU segudo ceso de 980 Origem cubaos mexicaos portoriquehos cubaos: mexicaos: porto-riq.: Nº pessoas amostra Redimeto Médio $6 368 $3 34 $ erro padrão = = Desvio Padrão Amostral $3 069 $9 44 $ erro padrão = = erro padrão = = para µ a grau de cofiaça 95% S 95 %( µ ).96, ( 95 % µ ) 6368 ± S ( 67, 6464 ) ( 95 % µ ) 334 ± ( 3098, 3586 ) ( 95 % µ ) 587 ±.96.5 ( 367, 807 ) 7 para µ com variâcia descohecida Exemplo: População qualquer, amostra grade Exemplo adaptado de referêcia 8

13 Iferêcia etre parâmetros de duas populações E µ P P ( ) = E ( Y ) = µ Y m Y Mesmo ão se cohecedo as médias µ e µ, seria possível verificar se elas são iguais a partir de seus valores amostrais? Se µ e µ são iguais, etão µ - µ = 0. Podemos a partir da difereça das médias amostrais da difereça das médias de duas populações Y iferir o valor acetato adaptado de referecia 3 9 Itervalo de Cofiaça para µ - µ Duas populações Normais. Amostras idepedetes Sejam,, e Y,, Y m duas amostras aleatórias costituídas por observações idepedetes e proveietes de duas populações Normais N(µ, ) e N(µ Y, Y ), respectivamete para µ µ a grau de cofiaça - Caso : variâcias cohecidas Caso : variâcias descohecidas mas iguais 30 3

14 Itervalo de Cofiaça para µ - µ Populações Normais. Amostras emparelhadas Sejam,, e Y,, Y duas amostras proveietes de populações Normais Amostras emparelhadas: se pares de observações ( i, Y i ) são depedetes sedo todos os restates pares ( i, Y j ), i j idepedetes Cosideram-se as difereças: Di = ( i Yi ) ~ N( µ D, D ) µ D = µ - µ Y difereça das médias populacioais D desvio padrão das difereças - descohecido mas pode ser estimado através das difereças D,, D D, D,...D a.a. com população Normal e variâcia descohecida D D µ D ~ N( µ D, D ) T = ~ t Sc D para µ D = µ -µ Y a grau de cofiaça - Sc D ) = D t +,, D t ( µ D, S cd desvio padrão amostral corrigido das difereças S CD 3 Itervalo de Cofiaça para Proporção = Cosidere que uma ura cotêm bolas vermelhas e azúis e que bolas são escolhidas ao acaso (com reposição), defiido-se como o úmero de bolas vermelhas etre as seleccioadas Y i i= Se p- descohecido, um estimador potual para p é a proporção amostral: Z p ˆ = cetrado e reduzido: pˆ p = p( p), Y i ~ Beroulli sedo p = P( i = ), a probabilidade de se seleccioar um bola vermelha p( p) pˆ ~ N( p, ) a p p( p) I.C. para Z com grau de cofiaça - P( z < Z < z) = ~ N(0,) a (se é grade, pelo TLC) N (0,) - -z 0 z + z / z - / quatil de ordem / quatil de ordem -/ ~ Biomial(,p) P( pˆ z pˆ( pˆ), pˆ + z pˆ( pˆ) ) = 3 4

15 Itervalo de Cofiaça para Proporção Seja p ˆ = a proporção de idivíduos com uma certa característica de iteresse uma amostra aleatória de dimesão, e p a proporção de idivíduos com essa característica a população. Um itervalo de cofiaça aproximado para p, a um grau de cofiaça -, é dado por: p) pˆ z pˆ( pˆ), pˆ + z ( )( pˆ( pˆ) 33 para uma proporção Exemplo: Proporção de acessos a págias de Iteret acioais Em 00 acessos a págias de iteret escolhidos ao acaso 30 são as págias acioais. Determie um a 95% para a proporção de acessos a págias acioais - úmero de acessos á págias de iteret acioais p proporção de acessos a págias acioais (em geral) Usado esta amostra determiamos um aproximado para p a 95%: p ( pˆ z S p pˆ ( ) ( ), + z S ) pˆ ( pˆ ) p com p ˆ = e S p = º. Determiar z -/ para =0,05 z 0,9750 =,96 ( 95%) ( p) ( pˆ z0.9750s p, pˆ + z S p ) ( p) pˆ,96 S, pˆ +, p ˆ = = = ( 0,3,96 0,0458, 0,3 +,96 0,0458) ( 0,3 0,08988, 0,3 + 0,08988) ( 95%) ( p) = ( ) º. Determiar as estimativas ^ p e S p S p 3º. Substituir a fórmula: = pˆ( pˆ) = 0,3 0,7 = 0, (95%) 95 %( p) exercício 6, capítulo 4 ~ Biomial(00,p) p descohecido p S p ( 0.0, ) 34 5

16 Formulário F O R M U L Á R I O 35 Referêcias Livro: Grade Maratoa de Estatística o SPSS Adreia Hall, Cláudia Neves e Atóio Pereira Capítulo 4. Itervalos de Cofiaça Acetatos dispoíveis o-lie usados a elaboração destes acetatos: Estatística Iferecial e Itervalos de Cofiaça, Amostragem Adreia Hall URL: Chapter : Samplig ad Samplig Distributio, Chapter : Estimatio Prof. J. Schwab, Uiversity of Texas at Austi disciplia: Data Aalysis I (sprig 004) URL: Estimação Camilo Daleles Reó, Istituto Nacioal de Pesquisas Espaciais, Brasil disciplia:estatística: Aplicação ao Sesoriameto Remoto (008) URL: Estimação por Itervalos Aa Pires, IST Lisboa disciplia: Probabilidades e Estatística URL: :

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

AULA: Inferência Estatística

AULA: Inferência Estatística AULA: Iferêcia Estatística stica Prof. Víctor Hugo Lachos Dávila Iferêcia Estatística Iferêcia Estatística é um cojuto de técicas que objetiva estudar uma oulação através de evidêcias forecidas or uma

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA 1. (2,5) Um provedor de acesso à iteret está moitorado a duração do tempo das coexões

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD Teste de ióteses VÍCTOR UGO LACOS DÁVILAD Teste De ióteses. Exemlo. Cosidere que uma idustria comra de um certo fabricate, ios cuja resistêcia média à rutura é esecificada em 6 kgf (valor omial da esecificação).

Leia mais

INFERÊNCIA ESTATÍSTICA

INFERÊNCIA ESTATÍSTICA Uiversidade Federal da Bahia Istituto de Matemática Departameto de Estatística Estatística IV (MAT027) e Itrodução à Estatística (MAT050) NOTAS DE AULA UNIDADE III INFERÊNCIA ESTATÍSTICA 1 1 INTRODUÇÃO

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica Cálculo das Probabilidades e Estatística I Departameto de Estatistica Versão - 2013 Sumário 1 Itrodução à Estatística 1 1.1 Coceitos básicos de amostragem..................................... 2 1.1.1

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Exame - Época Normal 006/00 Data: 14de Julhode 00 Tópicos de Resolução Duração: 3 horas 1. SejaΩumespaçoamostraleA,BeCacotecimetoscomasseguitescaracterísticasA

Leia mais

Capítulo 1. Teoria da Amostragem

Capítulo 1. Teoria da Amostragem Capítulo 1 Teoria da Amostragem 1.1 Itrodução A amostragem e em particular os processos de amostragem aplicam-se em variadíssimas áreas do cohecimeto e costituem, muitas vezes, a úica forma de obter iformações

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste 7 o SEMESTRE 5/6 Data: Sábado, 7 de Jaeiro de 6 Duração: 9:3 às :3 Tópicos de Resolução. O úmero

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

As dificuldades na representação gráfica

As dificuldades na representação gráfica II2 A Regressão Liear Múltipla Por vezes, é ecessário mais do que uma variável preditora para modelar a variável resposta de iteresse Exemplo: Num estudo sobre uma população experimetal de cloes da casta

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

Equações Diferenciais (ED) Resumo

Equações Diferenciais (ED) Resumo Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA Resumo Itervalos de Cofiaça ara médias e roorções com alicações a Egeharia. Ferado Mori Prof.fmori@gmail.com Itervallos de Cofiiaça ara Médiias e Proorções

Leia mais

ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALANÇO DE ONDAS LONGAS EM PIRACICABA, SP

ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALANÇO DE ONDAS LONGAS EM PIRACICABA, SP ESTIMATIVA DA EMISSIVIDADE ATMOSFÉRICA E DO BALAÇO DE ODAS LOGAS EM PIRACICABA, SP Kare Maria da Costa MATTOS (1) ; Marcius Gracco Marcoi GOÇALVES (1) e Valter BARBIERI () (1) Aluos de Pós-graduação em

Leia mais

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda 1 Uma Metodologia de Busca Otimizada de Trasformadores de Distribuição Eficiete para qualquer Demada A.F.Picaço (1), M.L.B.Martiez (), P.C.Rosa (), E.G. Costa (1), E.W.T.Neto () (1) Uiversidade Federal

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

Análise de Dados. Introdução às técnicas de Amostragem Introdução à Estimação Introdução aos testes Métodos não paramétricos

Análise de Dados. Introdução às técnicas de Amostragem Introdução à Estimação Introdução aos testes Métodos não paramétricos Aálise de Dados Itrodução às técicas de Amostragem Itrodução à Estimação Itrodução aos testes Métodos ão paramétricos Maria Eugéia Graça Martis Faculdade de Ciêcias da Uiversidade de Lisboa Março 009 ÍNDICE

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que LISTA INCRÍVEL DE MATEMÁTICA DISCRETA II DANIEL SMANIA 1 Amostras, seleções, permutações e combiações Exercício 1 Quatos bytes (8 bits) existem de modo que ele coteha exatamete quatro 1 s? Exercício 2

Leia mais

Equações Diferenciais Lineares de Ordem n

Equações Diferenciais Lineares de Ordem n PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO

ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO ATIVIDADE DE CÁLCULO, FÍSICA E QUÍMICA ZERO Rita Moura Fortes proeg.upm@mackezie.com.br Uiversidade Presbiteriaa Mackezie, Escola de Egeharia, Departameto de Propedêutica de Egeharia Rua da Cosolação,

Leia mais

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger Tópicos de Mecâica Quâtica I Equações de Newto e de Hamilto versus Equações de Schrödiger Ferado Ferades Cetro de Ciêcias Moleculares e Materiais, DQBFCUL Notas para as aulas de Química-Física II, 010/11

Leia mais

COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL

COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL COMPOSIÇÕES DE FUNÇÕES GERATRIZES E A FÓRMULA EXPONENCIAL Grade parte do poder de fuções geratrizes vêm de composição delas! Observação. Sejam F (x) = 0 G(x) = 0 f x g x duas séries formais. A composição

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS

APLICAÇÃO DO MÉTODO DE INTEGRAÇÃO TRAPEZOIDAL EM SISTEMAS ELÉTRICOS AT49-07 - CD 6-07 - PÁG.: APLICAÇÃO DO MÉTODO DE INTEGAÇÃO TAPEZOIDAL EM SISTEMAS ELÉTICOS J.. Cogo A.. C. de Oliveira IEE - EFEI Uiv. Taubaté Artigo apresetado o Semiário de Pesquisa EFEI 983 ESUMO Este

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

CONTROLE DA QUALIDADE DE PADRÕES ESCALONADOS UTILIZADOS NA VERIFICAÇÃO DE MÁQUINAS DE MEDIR POR COORDENADAS

CONTROLE DA QUALIDADE DE PADRÕES ESCALONADOS UTILIZADOS NA VERIFICAÇÃO DE MÁQUINAS DE MEDIR POR COORDENADAS CONTROLE DA QUALIDADE DE PADRÕES ESCALONADOS UTILIZADOS NA VERIFICAÇÃO DE MÁQUINAS DE MEDIR POR COORDENADAS José Carlos Valete de Oliveira Aluo do mestrado profissioal em Sistemas de Gestão da Uiversidade

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x. 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos DELC - Departameto de Eletrôica e Computação ELC 0 Estudo de Casos em Egeharia Elétrica Solução de Equações Difereciais Ordiárias Usado Métodos Numéricos Versão 0. Giovai Baratto Fevereiro de 007 Ídice

Leia mais

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II Física Aplicada à Egeharia Civil MOMENTOS DE NÉRCA Neste capítulo pretede-se itroduzir o coceito de mometo de iércia, em especial quado aplicado para o caso de superfícies plaas. Este documeto, costitui

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Influência do ruído aéreo gerado pela percussão de pavimentos na determinação de L n,w

Influência do ruído aéreo gerado pela percussão de pavimentos na determinação de L n,w Ifluêcia do ruído aéreo gerado pela percussão de pavimetos a determiação de,w iogo M. R. Mateus CONTRAruído Acústica e Cotrolo de Ruído, Al. If.. Pedro, Nº 74-1º C, 3030 396 Coimbra Tel.: 239 403 666;

Leia mais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) gustavo_epr@yahoo.com.br José Ivo Ribeiro Júior (UFV) jivo@dpi.ufv.br RESUMO: Para comparar

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição Avaliação da Cofiabilidade de Ites com Testes Destrutivos - Alicação da Estimação da roorção em uma oulação Fiita Amostrada sem Reosição F. A. A. Coelho e Y.. Tavares Diretoria de Sistemas de Armas da

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico Uiversidade Aberta do Nordeste e Esio a Distâcia são marcas registradas da Fudação Demócrito Rocha. É proibida a duplicação ou reprodução deste fascículo. Cópia ão autorizada é Crime. Matemática e suas

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia.

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia. Resolução -Vestibular Isper 0- Aálise Quatitativa e Lógica Por profa. Maria Atôia Coceição Gouveia.. A fila para etrar em uma balada é ecerrada às h e, quem chega exatamete esse horário, somete cosegue

Leia mais

Nota prévia. Notas de Apoio de Complementos de Probabilidades e Estatística. Manuel Cabral Morais. Secção de Probabilidades e Estatística

Nota prévia. Notas de Apoio de Complementos de Probabilidades e Estatística. Manuel Cabral Morais. Secção de Probabilidades e Estatística Nota prévia Notas de Apoio de Complemetos de Probabilidades e Estatística Mauel Cabral Morais Atrevo-me a dizer que a leccioação e o desempeho d@s alu@s da disciplia de Complemetos de Probabilidades e

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

TÉCNICAS DE AMOSTRAGEM PARA AUDITORIAS

TÉCNICAS DE AMOSTRAGEM PARA AUDITORIAS TRIBUAL DE COTAS DA UIÃO Secretaria-Geral de Cotrole Extero Secretaria-Aduta de Fiscalização TÉCICAS DE AMOSTRAGEM PARA AUDITORIAS ADFIS/SEGECEX 00 TRIBUAL DE COTAS DA UIÃO egócio Cotrole extero da admiistração

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

2. Teoria das Filas. 2.1. Características estruturais dos sistemas de fila

2. Teoria das Filas. 2.1. Características estruturais dos sistemas de fila 2. Teoria das Filas Segudo Fogliatti (2007), a teoria das filas osiste a modelagem aalítia de proessos ou sistemas que resultam em espera e tem omo objetivo determiar e avaliar quatidades, deomiadas medidas

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc.

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Capítulo 8 Estimativa do Itervalo de Cofiaça Statistics for Maagers Usig Microsoft Excel, 5e 2008 Pearso Pretice-Hall, Ic. Chap 8-1 Objetivos: Neste capítulo, você aprederá: Costruir e iterpretar estimativas

Leia mais

Diferentes testes para verificar normalidade de uma amostra aleatória

Diferentes testes para verificar normalidade de uma amostra aleatória Diferetes testes para verificar ormalidade de uma amostra aleatória Ferado Lucambio Departameto de Estatística Uiversidade Federal do Paraá Curitiba/PR 81531 990 Brasil email: lucambio@ufpr.br Maio de

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais