Tarefas 05, 06, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Tarefas 05, 06, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B"

Transcrição

1 Tarefas 05, 06, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B 0. (Upe-ssa 07) A medida da área do triângulo retângulo, representado a seguir, é de,5 cm. Qual é o valor aproximado do seno do ângulo θ? Considere =,. 0. (G - ifsp 06) Uma escada de 0 metros de comprimento está apoiada em uma parede que forma um ângulo de 90 graus com o chão. Sabendo que o ângulo entre a escada e a parede é de 0 graus, é correto afirmar que o comprimento da escada corresponde, da distância x do pé da escada até a parede em que ela está apoiada, a: 5% b) 00% 55% 7,5% 5,5% 05. (G - cftmg 06) O triângulo ABC é retângulo em ABC ˆ e os segmentos BD e AC são perpendiculares. 0,5 b) 0,5 0,6 0,7 0,85 0. (Efomm 06) Determine o perímetro do triângulo ABD, em cm, representado na figura abaixo: Assim, a medida do segmento DC vale 0. b) b) 5( + )( + ) (G - ifal 06) Um avião, ao decolar no aeroporto Zumbi dos Palmares, percorre uma trajetória retilínea formando um ângulo constante de 0 com o solo. Depois de percorrer.000 metros, na trajetória, a altura atingida pelo avião, em metros, é 00. b) (Unifor 0) Uma cama de hospital, equipada com um ajustador hidráulico, move-se de acordo com um controle manual de subir e descer. A altura y que a cama varia em função de θ é de: y = senθ b) y = senθ + y = tgθ + y = cosθ y = cosθ +

2 Matemática Avaliação Produtiva 07. (Unifor 0) Uma pessoa está a 80 m de um prédio e vê o topo do prédio sob um ângulo de 0, como mostra a figura abaixo. 09. (Uemg 0) Em uma de suas viagens para o exterior, Luís Alves e Guiomar observaram um monumento de arquitetura asiática. Guiomar, interessada em aplicar seus conhecimentos matemáticos, colocou um teodolito distante,0 m da obra e obteve um ângulo de 60, conforme mostra a figura: Se o aparelho que mede o ângulo está a,6 m de distância do solo, então podemos afirmar que a altura do prédio em metros é: 80, b) 8,6 8,0 8,5 8, 08. (Unifor 0) Sobre uma rampa de m de comprimento e inclinação de 0 com a horizontal, devem-se construir degraus de altura 0cm. Quantos degraus devem ser construídos? b) Sabendo-se que a altura do teodolito corresponde a 0 cm, a altura do monumento, em metros, é aproximadamente 6,86. b) 6,0. 5,.,. 0. (Uneb 0) A tirolesa é uma técnica utilizada para o transporte de carga de um ponto a outro. Nessa técnica, a carga é presa a uma roldana que desliza por um cabo, cujas extremidades geralmente estão em alturas diferentes. A tirolesa também é utilizada como prática esportiva, sendo considerado um esporte radical. Em certo ecoparque, aproveitando a geografia do local, a estrutura para a prática da tirolesa foi montada de maneira que as alturas das extremidades do cabo por onde os participantes deslizam estão a cerca de 5m e 8m, cada uma, em relação ao nível do solo, e o ângulo de descida formado com a vertical é de 80. Nessas condições, considerando-se o cabo esticado e que tg 0 = 0,76, pode-se afirmar que a distância horizontal percorrida, em metros, ao final do percurso, é aproximadamente igual a 50 b) (G - utfpr 0) Um caminhão, cuja carroceria está a uma altura de, m do chão está estacionado em um terreno plano. Desejase carregar uma máquina pesada neste caminhão e para isso será colocada uma rampa da carroceria do caminhão até o chão. O comprimento mínimo da rampa para que esta forme com o chão um ângulo máximo de 0 é, em metros, de: (Considere: sen 0 =, cos 0 = e tg 0 = ) 0,8. b),.,. 0,6. 0,6.

3 Exercícios Complementares. (Uepb 0) Os lados iguais de um triângulo isósceles têm comprimento cm e os ângulos congruentes medem 0. O perímetro deste triângulo em cm é + b) (Fuvest 0) Na figura, tem-se AE paralelo a CD, BC, paralelo a DE, AE =, α = 5º, β = 75º. Nessas condições, a distância do ponto E ao segmento AB é igual a 5. (G - utfpr 0) Uma escada rolante de 6 m de comprimento liga dois andares de uma loja e tem inclinação de 0. Determine, em metros, a altura entre estes dois andares. Use os valores: sen 0 = 0,5, cos 0 = 0,87 e tg 0 = 0,58.,8. b),. 5, (Ufrn 0) Numa escola, o acesso entre dois pisos desnivelados é feito por uma escada que tem quatro degraus, cada um medindo cm de comprimento por cm de altura. Para atender à política de acessibilidade do Governo Federal, foi construída uma rampa, ao lado da escada, com mesma inclinação, conforme mostra a foto a seguir. b). (G - ifpe 0) Um estudante do Curso de Edificações do IFPE tem que medir a largura de um rio. Para isso ele toma os pontos A e C que estão em margens opostas do rio. Em seguida ele caminha de A até o ponto B, distante 00 metros, de tal forma que os segmentos AB e AC são perpendiculares. Usando instrumento de precisão, a partir do ponto B ele visa o ponto C e em seguida o ponto A, determinando o ângulo CBˆA que mede 7º. Com isso ele determinou a largura do rio e achou, em metros: Dados: sen (7º) = 0,60, cos (7º) = 0,80 e tg (7º) = 0,75 Com o objetivo de verificar se a inclinação está de acordo com as normas recomendadas, um fiscal da Prefeitura fez a medição do ângulo que a rampa faz com o solo. O valor encontrado pelo fiscal estava entre 0 e 5. b) era menor que 0. foi exatamente 5. era maior que (Ufjf 0) Considere um triângulo ABC retângulo em C e α o ângulo BAC. ˆ Sendo AC = e sen( α ) =, quanto vale a medida da hipotenusa desse triângulo? 60 b) b) 0

4 Matemática Avaliação Produtiva 8. (Uel 0) Um indivíduo em férias na praia observa, a partir da posição P, um barco ancorado no horizonte norte na posição B. Nesta posição P, o ângulo de visão do barco, em relação à praia, é de 90, como mostrado na figura a seguir. 0. (Ufpe 0) Na ilustração abaixo, temos dois retângulos congruentes com base medindo cm, e altura 5 cm. Qual o inteiro mais próximo da distância, em cm, do ponto A até a horizontal? Dado: use a aproximação,7. Ele corre aproximadamente 000 metros na direção oeste e observa novamente o barco a partir da posição P. Neste novo ponto de observação P, o ângulo de visão do barco, em relação à praia, é de 5. Qual a distância PB aproximadamente? 000 metros b) 0 metros metros 7 metros metros 9. (G - cftmg 0) Um foguete é lançado de uma rampa situada no solo sob um ângulo de 60º, conforme a figura. Dados: sen 60º = ; tg 60º =. cos 60º = ; A altura em que se encontra o foguete, após ter percorrido km, é 600 dam b).000 m dm cm. (Ufpb 00) Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de uma superfície plana inclinada e lisa (ramp, por onde as crianças deslizam, e de uma escada que dá acesso à rampa. No parque de certa praça, há um escorrego, apoiado em um piso plano e horizontal, cuja escada tem m de comprimento e forma um ângulo de 5 com o piso; e a rampa forma um ângulo de 0 com o piso, conforme ilustrado na figura a seguir. De acordo com essas informações, é correto afirmar que o comprimento (L) da rampa é de: m b) m m m 5 m. (Pucrj 00) O valor de cos5 + sen0 é : cos60 + b) 0 +

5 Exercícios Complementares. (G - cps 00) Ter condições de acessibilidade a espaços e equipamentos urbanos é um direito de todo cidadão. A construção de rampas, nas entradas de edifícios que apresentam escadas, garante a acessibilidade principalmente às pessoas com deficiência física ou com mobilidade reduzida. Pensando nisso, na entrada de uma ETEC onde há uma escada de dois degraus iguais, cada um com 5 cm de altura, pretende-se construir uma rampa para garantir a acessibilidade do prédio a todos. Essa rampa formará com o solo um ângulo de 0, conforme a figura. Sendo assim, conclui-se que o comprimento da rampa será, em metros, 6. b) (Espm 00) Uma pessoa cujos olhos estão a,80 m de altura em relação ao chão avista o topo de um edifício segundo um ângulo de 0 com a horizontal. Percorrendo 80 m no sentido de aproximação do edifício, esse ângulo passa a medir 60. Usando o valor,7 para a raiz quadrada de, podemos concluir que a altura desse edifício é de aproximadamente: 59 m b) 6 m 65 m 69 m 7 m 5. (G - ifal 06) O valor da expressão sen 0 + tg 5 é cos sen ( 60 ). b) (G - ifce 0) O valor de cos (.80 ) é. b) (Espcex (Aman) 0) O valor numérico da sec0 5 expressão cos + ( tg0 ) é: b) 0 9. (G - cftmg 005) O número N = ( cos80 - sen0 + tg5 ) / (6 sen 5 ) pertence ao intervalo ] -, - [ b) [ -, - [ [ -, - ] ] -, 0 ] 0. (G - cftmg 005) O valor de y = cos 50 + sen 00 - tg 5 - cos 90 é. (Ufal 000) O seno de um arco de medida 0 é igual a - b) - / 0 /. (Unicamp 07) Considere o triângulo retângulo ABD exibido na figura abaixo, em que AB = cm, BC = cm e CD = 5 cm. Então, o ângulo θ é igual a 6. (Udesc 06) Assinale a alternativa que corresponde ao valor da expressão: 7 6cos cos sen tg b) b)

6 Matemática Avaliação Produtiva. (Uerj 07) Ao coletar os dados para um estudo topográfico da margem de um lago a partir dos pontos A, B e T, um técnico determinou as medidas AT = m; BT = m e AT B = 0, representadas no esquema abaixo. 6. (Unicamp 05) A figura a seguir exibe um pentágono com todos os lados de mesmo comprimento. A medida do ângulo θ é igual a 05. b) Calcule a distância, em metros, entre os pontos A e B, definidos pelo técnico nas margens desse lago.. (Upe-ssa 07) João está procurando cercar um terreno triangular que ele comprou no campo. Ele sabe que dois lados desse terreno medem, respectivamente, 0 m e 6 m e formam entre si um ângulo de 0. O terreno será cercado com três voltas de arame farpado. Se o preço do metro do arame custa R$ 5,00, qual será o valor gasto por João com a compra do arame? Dados: sen de 0 = cos de 0 = R$ 00,00 b) R$ 0,00 R$ 50,00 R$ 500,00 R$ 50,00 5. (Uece 06) A medida do cosseno do maior dos ângulos internos do triângulo cujas medidas dos lados são respectivamente 8 m, 0 m e 5 m é igual a 0,85. b) 0,. 0,7. 0, (Eear 07) Seja um triângulo inscrito em uma circunferência de raio R. Se esse triângulo tem um ângulo medindo 0, seu lado oposto a esse ângulo mede R b) R R R 8. (Ufg 0) Observe a figura a seguir, em que estão indicadas as medidas dos lados do triângulo maior e alguns dos ângulos. O seno do ângulo indicado por α na figura vale: 0 b)

7 Exercícios Complementares 9. (Ufjf 0) Uma praça circular de raio R foi construída a partir da planta a seguir: Os segmentos AB, BC e CA simbolizam ciclovias construídas no interior da praça, sendo que AB = 80 m. De acordo com a planta e as informações dadas, é CORRETO afirmar que a medida de R é igual a: b) 60 m 80 m 6 m 8 m sob influência do meio urbano é dada pela distância do ponto A ao ponto C. Essa distância, em km, é 8 6 b) ( + ) 6. (Ufpb 00) A prefeitura de certa cidade vai construir, sobre um rio que corta essa cidade, uma ponte que deve ser reta e ligar dois pontos, A e B, localizados nas margens opostas do rio. Para medir a distância entre esses pontos, um topógrafo localizou um terceiro ponto, C, distante 00m do ponto A e na mesma margem do rio onde se encontra o ponto A. Usando um teodolito (instrumento de precisão para medir ângulos horizontais e ângulos verticais, muito empregado em trabalhos topográficos), o topógrafo observou que os ângulos BĈ A e C Â B mediam, respectivamente, 0º e 05º, conforme ilustrado na figura a seguir. m 0. (Ufsm 0) A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua proximidade com a região metropolitana torna-o suscetível aos impactos ambientais causados pela atividade humana. Com base nessas informações, é correto afirmar que a distância, em metros, do ponto A ao ponto B é de: 00 b) A distância do ponto B ao ponto C é de 8 km, o ângulo A mede 5 e o ângulo C mede 75. Uma maneira de estimar quanto do Delta do Jacuí está 7

8 Matemática Avaliação Produtiva. (Ufpe 00) Uma ponte deve ser construída sobre um rio, unindo os pontos A e B, como ilustrado na figura a seguir. Para calcular o comprimento AB, escolhe-se um ponto C, na mesma margem em que B está, e medem-se os ângulos CBA = 57 e ACB = 59. Sabendo que BC mede 0m, indique, em metros, a distância AB. (Dado: use as aproximações sen(59 ) 0,87 e sen(6 ) 0,90) 7. (Ufsm 00) A soma das raízes da equação cos x + cos x = 0, no intervalo 0 < x <, é b) 7/ 5/ 8. (Pucrs 05) Na equação tan(x) = cot(x) em onde 0 < x <, o valor de x é b) 6. (Pucrj 06) Sabendo que cos(x) =, quais são os possíveis valores para cos(x)? e b) e e e 5 0 e. (Pucrs 06) Se então a equação cos(x) = cos( x) apresenta o conjunto solução b) [ ; ] [0; + ) ( ; 0] {, 0, } 5. (Pucrj 006) Os ângulos (em graus) θ entre 0 e 60 para os quais senθ = cosθ são: 5 e 90 b) 5 e 5 80 e 60 5, 90 e 80 90, 80 e (Pucrs 00) A solução da equação cos [x - ( /)] = 0, quando 0 x /, é / b) -/ 7 / / 0 g 8

Professor Bill apresenta: Trigonometria no triângulo retângulo

Professor Bill apresenta: Trigonometria no triângulo retângulo Professor Bill apresenta: Trigonometria no triângulo retângulo 1. (G1 - ifce 014) Uma rampa faz um ângulo de 0 com o plano horizontal. Uma pessoa que subiu 0 metros dessa rampa se encontra a altura de

Leia mais

Trigonometria Básica e Relações Métricas

Trigonometria Básica e Relações Métricas 1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno

Leia mais

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ENSINO FUNDAMENTAL 9º ano LISTA DE EXERCÍCIOS PT 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA PARTE 1 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ) Para

Leia mais

TRIÂNGULOS RETÂNGULOS

TRIÂNGULOS RETÂNGULOS . (Unesp 05) A figura representa a vista superior do tampo plano e horizontal de uma mesa de bilhar retangular ABCD, com caçapas em A, B, C e D. O ponto P, localizado em AB, representa a posição de uma

Leia mais

9ª ANO - QUESTÕES PARA O SITE MATEMÁTICA

9ª ANO - QUESTÕES PARA O SITE MATEMÁTICA MATEMÁTICA. (ifce 04) Uma rampa faz um ângulo de 0 com o plano horizontal. Uma pessoa que subiu 0 metros dessa rampa se encontra a altura de do solo. a) 6 metros. b) 7 metros. c) 8 metros. d) 9 metros.

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: 1. (G1 - cftmg 01) O percurso reto de um rio, cuja correnteza aponta para a direita, encontra-se representado pela figura abaixo. Um nadador deseja determinar a largura do rio nesse trecho e propõe-se

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA

COLÉGIO RESSURREIÇÃO NOSSA SENHORA COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 01/06/2016 Disciplina: Matemática LISTA 10 Trigonometria no triângulo retângulo Período: 2 o Bimestre Série/Turma: 2 a série EM Professor(a): Wysner Max Valor:

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

Razões Trigonométrica Prof. Diow. Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa.

Razões Trigonométrica Prof. Diow. Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. Razões Trigonométrica Prof. Diow Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. Cosseno de um ângulo agudo é a razão entre a medida do cateto

Leia mais

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas.

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas. Exercícios de Razões Trigonométricas a) No triângulo retângulo da figura abaixo, determine as medidas de x e y indicadas (Use: sen 65 = 0,91; cos 65 = 0,42 ; tg 65 = 2,14) b) Considerando o triângulo retângulo

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Unidade 3 Geometria: semelhança de triângulos

Unidade 3 Geometria: semelhança de triângulos Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e

Leia mais

Equipe de Matemática

Equipe de Matemática Lista - O.M. I ( límpiada de Matemática do Integral )-015 Série: 1º ano Questões: Equipe de Matemática 1. Em um ginásio de esportes, uma quadra retangular está situada no interior de uma pista de corridas

Leia mais

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é: Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

Matemática: Trigonometria Vestibulares UNICAMP

Matemática: Trigonometria Vestibulares UNICAMP Matemática: Trigonometria Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. a) Para θ

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

Disciplina: Matemática Data da entrega: 31/03/2015.

Disciplina: Matemática Data da entrega: 31/03/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos triângulos Resolução das atividades complementares Matemática M Trigonometria nos triângulos p. 4 ipotenusa de um triângulo retângulo mede 0 cm e o ângulo ˆ mede 60. Qual é a medida dos catetos? 5 cm; 5 cm y 60 o

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) 1 + 1 1 ) alcule: 1 1 a). 8. 8 b) ) alcule: a) 1 7 1 ( ) 64 9 1 b) 0 4) Resolva

Leia mais

Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane

Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane 1) Um terreno quadrado tem 289m 2 de área. Parte desse terreno é ocupada por um galpão quadrado e outra, por uma calçada de 3m de

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma: Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse

Leia mais

Lista de exercícios 04

Lista de exercícios 04 Lista de exercícios 04 Aluno (a) : Série: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/05/2015. A lista deverá apresentar

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

QUESTÕES TRIÂNGULO RETÂNGULO

QUESTÕES TRIÂNGULO RETÂNGULO QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais

Leia mais

Lista para estudos. 1) Na figura ao lado, o triângulo ABC é retângulo em B. O cosseno, seno e tangente do ângulo BÂC é?

Lista para estudos. 1) Na figura ao lado, o triângulo ABC é retângulo em B. O cosseno, seno e tangente do ângulo BÂC é? Professor: Carlos Eduardo Guariglia Seno, Cosseno e Tangente Lista para estudos Nota: Em alguns exercícios não seriam necessários os desenhos, pois são simples, porém acredito que dando alguns exemplos

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de LISTA DE EXERCÍCIOS P4 º BIM 0 PARTE POTÊNCIAS ) Calcule: a) 0, b) 0, c) 0, d),4 e), f) 8 8, ) (PUC-SP) Calcule: a) 4 c) 4 e) 4 b) 4 d) 4 f) 4 ) (FUVEST SP) Qual a metade de 4) Calcule: a) 0 b)? ) Calcule

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

AULA 01. (B) 577 m. (C) 705 m. (D) 866 m. (E) 1732 m. Dessa forma conclui-se que a largura AB do rio é

AULA 01. (B) 577 m. (C) 705 m. (D) 866 m. (E) 1732 m. Dessa forma conclui-se que a largura AB do rio é AULA 01 O ponto A representa um barco com fiscais do IBAMA, eles emitem um sinal de alerta que é recebido por duas bases de fiscalização, B e C, distantes entre si 70 km. Sabendo que os ângulos AB C e

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO Série: 9ºANO Turma: Disciplina: GEOMETRIA Professor: Mozart William EXERCÍCIO DE FIXAÇÃO II SEMESTRE 1) Num triângulo retângulo, a razão entre as projeções dos catetos sobre a hipotenusa é 16 9. Sabendo

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

Lista de exercícios 02 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio. Disciplina: Matemática

Lista de exercícios 02 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio. Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental a apresentação de uma lista legível, limpa e organizada. Rasuras podem invalidar a lista. Nas questões que

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br/capitcar 1 TRIGONOMETRIA A palavra Trigonometria

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens

Leia mais

LISTA DE EXERCÍCIOS 01

LISTA DE EXERCÍCIOS 01 MTEMÁTIC Professores rthur, Denilton, Elizeu e Rodrigo LIST DE EXERCÍCIOS 0 0. (UCSal) Na figura a seguir, suponha que um observador encontra-se no ponto, à distância C 4 metros do pé de uma torre, vendo

Leia mais

Professor: Pedro Itallo

Professor: Pedro Itallo Professor: Pedro Itallo 01 - (FAMERP SP) No caminho de ida de sua casa (C) para a escola (E), Laura passa pela farmácia (F), pela padaria (P), e depois segue para a escola, como indica a figura 1. Na volta

Leia mais

Lista de Exercícios 3 - Gabriel Mendes (1º Ano)

Lista de Exercícios 3 - Gabriel Mendes (1º Ano) Lista de Exercícios 3 - Gabriel Mendes (1º Ano) 1 - (Unicamp-SP) Uma pessoa de 1,65 m de altura observa o topo de um edifício conforme o esquema abaixo. Para sabermos a altura do prédio, devemos somar

Leia mais

RECUPERAÇÃO FINAL DE MATEMÁTICA PROFESSOR GILMAR BORNATTO

RECUPERAÇÃO FINAL DE MATEMÁTICA PROFESSOR GILMAR BORNATTO 1. (Unesp) Seja A = [a Œ] a matriz 2 x 2 real definida por a Œ = 1 se i j e a Œ = -1 se i > j. Calcule A. 2. (Unesp) Seja A=[a Œ] a matriz real 2 x 2 definida por a Œ=1 se i j e a Œ=-1 se i>j. Calcule

Leia mais

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e : Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 45 RELAÇÕES MÉTRICAS EM UM TRIÂNGULO QUALQUER

MATEMÁTICA - 3 o ANO MÓDULO 45 RELAÇÕES MÉTRICAS EM UM TRIÂNGULO QUALQUER MTEMÁTIC - 3 o NO MÓDULO 45 RELÇÕES MÉTRICS EM UM TRIÂNGULO QULQUER D O 2R a C C b h a m c -m Como pode cair no enem Um navegador devia viajar durante duas horas, no rumo nordeste, para chegar a certa

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

SEGMENTOS PROPORCIONAIS

SEGMENTOS PROPORCIONAIS 1. (Ufrgs) Considere as áreas dos hexágonos regulares A e B inscritos, respectivamente, em círculos de raios 1 e 4. A razão entre a área do hexágono A e a área do hexágono B é a) 1. 16 b) 1. 8 c) 1. 4

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA A A` r B B` s C C` t A B P C S t r 1 r 2 x 6-5 15 3 r 3 B a β b ka B β kb A α c γ C A α kc γ C B B A C A C B a ka B A c C A kc C B B kc ka c

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO N 10 cm 10 cm M 10 cm 1 rad 2 cm 1 cm 2 cm θ a c α C 4 5 B 3 α A Como pode cair no enem F 1 (ENEM) Um balão atmosférico, lançado em Bauru

Leia mais

Vetores. 2. (G1 - ifpe 2012) Qual o cosseno do ângulo formado pelos vetores A 4. i 3. j e

Vetores. 2. (G1 - ifpe 2012) Qual o cosseno do ângulo formado pelos vetores A 4. i 3. j e Vetores 1. (Uece 2014) Duas únicas forças, uma de 3 N e outra de 4 N, atuam sobre uma massa puntiforme. Sobre o módulo da aceleração dessa massa, é correto afirmar-se que a) é o menor possível se os dois

Leia mais

Matemática - 2C16/26 Lista 2

Matemática - 2C16/26 Lista 2 Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

Universidade Federal do Paraná Setor de Ciências da Terra - Departamento de Geomática Prof a Regiane Dalazoana

Universidade Federal do Paraná Setor de Ciências da Terra - Departamento de Geomática Prof a Regiane Dalazoana 1 Universidade Federal do Paraná Setor de Ciências da Terra - Departamento de Geomática Prof a Regiane Dalazoana CAPÍTULO 1 - REVISÃO MATEMÁTICA GA069 - TOPOGRAFIA I LISTA DE EXERCÍCIOS a) Transforme os

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

2. (G2 - utfpr 2014) A área do círculo, em cm 2, cuja circunferência mede 10π cm, é: a) 10 π. b) 36 π. c) 64 π. d) 50 π. e) 25 π.

2. (G2 - utfpr 2014) A área do círculo, em cm 2, cuja circunferência mede 10π cm, é: a) 10 π. b) 36 π. c) 64 π. d) 50 π. e) 25 π. Grupo de exercícios II - Geometria plana- 1. (G - ifsp 014) Um restaurante foi representado em sua planta por um retângulo PQRS. Um arquiteto dividiu sua área em: cozinha (C), área de atendimento ao público

Leia mais

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g)

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) 9º ano Matemática 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) Matemática Avaliação Produtiva 02. Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 03. Determine

Leia mais

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO. ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

Razões Trigonométricas no Triângulo Retângulo. Seno, Cosseno e Tangente

Razões Trigonométricas no Triângulo Retângulo. Seno, Cosseno e Tangente Razões Trigonométricas no Triângulo Retângulo Seno, Cosseno e Tangente 1. (Ufrn 01) A escadaria a seguir tem oito batentes no primeiro lance e seis, no segundo lance de escada. Sabendo que cada batente

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Triângulo Retângulo, Lei dos Senos e Cossenos, Polígonos Regulares. Leis dos

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. A figura a seguir ilustra um arco BC de

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. A figura a seguir ilustra um arco BC de GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma 1 o Bimestre de 016 Data / / Escola Aluno EM Questão 1 A figura a seguir

Leia mais

1. Converta para a forma decimal: (a) (b) (c) (d) (e)

1. Converta para a forma decimal: (a) (b) (c) (d) (e) UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática 1 a Lista de Exercícios - Ângulos Matemática Básica II - 2015.1 Professor Márcio Nascimento Fontes: Practice Makes Perfect - Trigonometry

Leia mais

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura.

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura. 1 Projeto Jovem Nota 10 1. (Uerj 2004) No triângulo ABC abaixo, os lados BC, AC e AB medem, respectivamente, a, b e c. As medianas AE e BD relativas aos lados BC e AC interceptam-se ortogonalmente no ponto

Leia mais

Semelhança de triângulos. 3 Exercícios para aula. 2 Casos de semelhança. 2.3 Lado proporcional, Lado proporcionl, Lado proporcional (L p, L p, L p )

Semelhança de triângulos. 3 Exercícios para aula. 2 Casos de semelhança. 2.3 Lado proporcional, Lado proporcionl, Lado proporcional (L p, L p, L p ) Semelhança de triângulos 1 Definição 2.3 Lado proporcional, Lado proporcionl, Lado proporcional (L p, L p, L p ) Dois triângulos são semelhantes se os ângulos internos forem ordenadamente congruentes e

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

Trigonometria. Parte I. Página 1

Trigonometria. Parte I.  Página 1 Trigonometria Parte I 1 (Uerj 01) Um esqueitista treina em três rampas planas de mesmo comprimento a, mas com inclinações diferentes As figuras abaixo representam as trajetórias retilíneas AB= CD= EF,

Leia mais

LISTA DE EXERCÍCIO GEOMETRIA PLANA

LISTA DE EXERCÍCIO GEOMETRIA PLANA QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. LISTA DE EXECÍCIO GEOMETIA PLANA Considere que

Leia mais

Ângulo entre ponteiros do relógio 2016

Ângulo entre ponteiros do relógio 2016 Ângulo entre ponteiros do relógio 2016 Exemplos: Calcule o valor do menor ângulo entre os ponteiros dos relógios. a) 4h b) 4h 10min c) 4h 12 min www.nsaulasparticulares.com.br Página 1 de 9 d) 4h 38 min

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a

Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a Professor: Pedro Ítallo 01 - (UFSCar SP) Em um terreno retangular com 0 m de comprimento por 15 m de largura, foi feito um gramado com área igual a 1 4 da área de um círculo de 10 m de raio, conforme mostra

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe

Leia mais

Geometria Plana 2015

Geometria Plana 2015 Geometria Plana 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t

Leia mais

DETERMINANTE Geometria Plana Lista 4 1. Considere um triângulo ABC retângulo em A, onde AB 21 e AC 20.

DETERMINANTE Geometria Plana Lista 4 1. Considere um triângulo ABC retângulo em A, onde AB 21 e AC 20. 1. Considere um triângulo ABC retângulo em A, onde AB 21 e AC 20. BD é a bissetriz do ângulo ABC. ˆ Quanto mede AD? a) 42 5 b) 21 20 c) 20 21 d) 9 e) 8 2. Pedro está construindo uma fogueira representada

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais