TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017
|
|
- Valdomiro Mota Guterres
- 3 Há anos
- Visualizações:
Transcrição
1 TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE / Um aluno de engenharia civil (altura do aluno 1,70 m) decide calcular a altura de uma torre de transmissão localizada na avenida Paulista em São Paulo capital, num plano horizontal. Com um canudo de papel e um transferidor, ele estima que o ângulo formado entre a linha horizontal que passa tangente à sua cabeça e a linha que liga a sua cabeça ao topo da torre é de 15 o. Andando 90 m em direção à torre, o ângulo passa a ser de 0 o. Encontre o valor da altura desta torre. = 1, 7 a) 78,0m b) 41,70 m c) 46,70 m d) 51,0m e) 5,70 m. Do topo de uma montanha se avistam os pontos A e B de uma planície. As linhas de visão do topo aos pontos A e B formam entre si um ângulo de 0 o. A linha de visão do topo com o ponto A tem inclinação de 0 o, em relação à horizontal. Se AB = km, qual a altura da montanha? a),75 km b),8 km c),9km d),0km e),1km.se um avião da aeronáutica, em teste, decola com velocidade de 400 km/h, formando um ângulo de 60º com a horizontal viaja em linha reta. A altitude desse avião após meia hora de vôo é: a) 50 km b) 60 km c) 75 km d)90 km e) 100 km 4.Um engenheiro civil estava projetando uma escada com 5 degraus de mesma altura de acordo com a figura abaixo,para finalização completa deste projeto é necessário calcular o comprimento total do corrimão. O comprimento total deste corrimão é: a), metros b),1 metros c)1,9 metros d) 1,8 metros e)1,5 metros
2 5.Para determinar a distância de um barco até a praia,um navegante utilizou o seguinte procedimento: a partir de um ponto A,mediu o ângulo visual fazendo mira em um ponto fixo P da Praia. Mantendo o barco no mesmo sentido, ele seguiu até um ponto B de modo que fosse possível ver o mesmo ponto P da praia, no entanto sob um ângulo visual A figura abaixo ilustra essa situação:. Dados: sen 0, 6 Sen( ). sen. cos Cos( ) 1. sen tg Tg( ) 1 tg Ao chegar no ponto B,verificou que o barco havia percorrido a distância AB = m. Com base neste dados e mantendo a mesma trajetória a menor distância do barco até o ponto P será: a) 180 m b)400 m c) 60 m d) 710 m e).840 m 6.Um topógrafo foi chamado para obter a altura de um edifício. Para fazer isto, ele colocou um teodolito a 00 metros do edifício e mediu um ângulo de 0, como indicado na figura a seguir. Sabendo que a luneta do teodolito está a 1,5 metros do solo, pode-se concluir que, dentre os valores adiante, o que melhor aproxima a altura do edifício, em metros, é: Use os valores: sen0 = 0,5 cos0 = 0,866 tg0 = 0,577 a) 11 b) 115 c) 117 d) 10 e) 14 7.Duas escadas foram encostadas em um muro, conforme mostra a figura. Dados: sen 65º = 0,90 ; cos 65º = 0,4 e tg 65º =,10 sen 7º = 0,45 ; cos 7º = 0,89 e tg 7º = 0,50 A altura total do muro é: a) 5,0 m b) 5,5 m c) 6,0 m d) 6,5 m e) 7,0 m
3 8. Um estudante de engenharia vê um prédio construído em um terreno plano, sob um ângulo de 0. Aproximando-se do prédio mais 4 metros, passa a vê-lo sob um ângulo de 60 (conforme a figura). Desprezando a altura do estudante, calcule a altura (H) desse prédio. a) 1 m b) 1 m c) 18m d) 4 m e) 4 m 9.Uma ponte levadiça sobre um rio tem comprimento de 50 m e abre-se a partir de seu centro para dar passagem a algumas embarcações,provocando um vão AB, conforme figura baixo.considerando que os pontos A e B tem alturas iguais.se o tempo gasto para girar a ponte em 1 o equivale a 0 segundos. Qual será o tempo necessário para elevar os pontos A e B a uma altura de 1,5 metros,com relação à posição destes quando a ponte está abaixada? a) 1 h b) 45 min c) 0 min d) 0 min e) 15 min 10. Considere um poste de luz perpendicular ao plano da calçada. Uma aranha está nesta calçada, a metros do poste e, começa se aproximar dele.nesse,mesmo instante uma formiga começa a subir no poste. A velocidade da aranha é de 10 cm/s e da formiga é de 6,5 cm/s. Após 8 segundos do início dos movimentos, calcule a menor distância entre a aranha e a formiga. a),56 m b),00 m c) 1,89 m d) 1,0 m e) 1,10 m 11. Observando um relógio analógico (relógio com ponteiros) é possível concluir que quando o ponteiro dos minutos dá uma volta completa (60 minutos) o ponteiro das horas sofre certo deslocamento angular. Qual o ângulo descrito pelo ponteiro das horas quando o ponteiro dos minutos percorre 60 minutos no relógio? a) 10 o b) 0 o c) 15 o d) 0 o e) 60 o 1.Um barco navega na direção AB, próximo a um farol P, conforme a figura a seguir. No ponto A, o navegador verifica que a reta AP, da embarcação ao farol, forma um ângulo de 0 com a direção AB. Após a embarcação percorrer m, no ponto B, o navegador verifica que a reta BP, da embarcação ao farol, forma um ângulo de 60 com a mesma direção AB. Seguindo sempre a direção AB, a menor distância entre a embarcação e o farol será equivalente, em metros, a:
4 a) 500 b) 500 c) d) e ) Dentro dos estudos da trigonometria encontramos um capítulo todo especial sobre as variações das funções trigonométricas,ou seja o comportamento das funções nos 4 quadrantes do ciclo trigonométrico.observe o ciclos trigonométrico descritos abaixo e marque o item correto: O a) sen( 180 x) senx b) A função seno possui seu valor máximo em 0º e o valor mínimo em 180º. O c) cos( 90 x) senx d) A função cosseno possui seu valor máximo em 90º e o valor mínimo em 70º. sen e) O valor da expressão sen sen sen é igual ao raio da circunferência trigonométrica. 14.O maior relógio de torre de toda a Europa é o da Igreja St. Peter, na cidade de Zurique, Suíça, que foi construído durante uma reforma do local, em (O Estado de S.Paulo. Adaptado.) O mostrador desse relógio tem formato circular, e o seu ponteiro dos minutos mede 4,5 m. Considerando pi =,1, a distância que a extremidade desse ponteiro percorre durante 0 minutos é, aproximadamente, a) 10 m b)9 m c) 8 m d) 7 m e) 6 m 15. A figura abaixo representa o trecho de uma rua em que se tem uma rampa com inclinação de 5 graus. Uma pessoa subiu essa rampa, em linha reta, caminhando do ponto P (início da rampa) até o ponto T (topo da rampa) com velocidade constante de 0,8 metros por segundo. Sabe-se que a altura do topo da rampa em relação ao seu início é 9 metros. Considerando a aproximação sen 5 = 0,09, o tempo que a pessoa gastou para percorrer a rampa toda foi: a) superior a 1 minuto, mas inferior a 1 minuto e 0 segundos. b) superior a 1 minuto e 0 segundos, mas inferior a minutos e 0 segundos. c) superior a minutos e 0 segundos, mas inferior a minutos. d) Superior a minutos e 0 segundos, mas inferior a 4 minutos e) superior a 4 minutos.
5 16. Em uma chácara nas proximidades da estrada da Chapada dos Guimarães, há uma represa de criação de peixes (pacú e pintado).um funcionário desta chácara deseja calcular a largura (BC) desta represa de acordo com a figura abaixo. Sabendo que a distância do ponto A até o ponto B é de 00 metros, que o ângulo B AC ^ = 0 e o ângulo BC ^ A = 90, marque o item correto : a) A largura da represa é 00 metros b) A largura da represa é 400 metros c) A largura da represa é 100 metros d) A largura da represa é 100 metros e) A largura da represa é 00 metros 17. Um especialista em fotografar situações inéditas, em certa ocasião,estava a 5 metros de uma árvore,quando ela começou a cair para o lado em que ele estava.posicionou sua máquina fotográfica rente ao chão e fotografou a cena,conforme a figura a seguir. A Altura da árvore,em metros, antes de começar a cair era de, aproximadamente: a) 15 b) 18 c) 0 d) 5 e) Um aluno de engenharia civil (altura do aluno 1,80 m) decide calcular a altura de uma torre localizada em uma avenida, num plano horizontal. Com um canudo de papel e um transferidor, ele estima que o ângulo formado entre a linha horizontal que passa tangente à sua cabeça e a linha que liga a sua cabeça ao topo da torre é de 0 o. Andando 80 m em direção à torre, o ângulo passa a ser de 60 o. Encontre o valor da altura desta torre. = 1, 7 a) 41 m b) 55,8 c) 65,m d) 71m e) 80,8m 19. Considere um depósito para combustível na forma de um cilindro, como mostra a figura abaixo 1. A função V( x) 80.[ x sen( x)], para valores de x no intervalo [ 0; ], permite calcular o volume, em metros cúbicos, do combustível existente neste depósito cilíndrico, em razão da amplitude do arco ABC (igual à amplitude do ângulo x mostrado na figura ). A capacidade total deste depósito (completamente cheio) com essas características é, em m³, aproximadamente igual a: Atenção: use, 14
6 a)50,54 b)48,4 c)50,4 d) 601, e) 6, 0. Dois homens carregam um cano de diâmetro desprezível, paralelamente ao chão, por um corredor de metros de largura, que encontra ortogonalmente,outro corredor de 1 metro de largura.na passagem de um corredor para o outro, as extremidades do cano tocaram as paredes dos corredores e outro ponto do cano tocou a parede onde os corredores se encontram, formando um ângulo conforme a figura abaixo. Sendo = 60, determine em metros o comprimento do cano. 1, 0 a) 4,5 metros b) 6 metros c) 8 metros d) 8,5 metros e) maior que 8, 5 metros GABARITOS: 1.C.D.E 4.B 5.E 6.C 7.E 8.B 9.E 10.D 11.D 1.B 1.C 14.B 15.B 16.D 17.C 18.D 19.C 0.C
TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2016
TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2016 1. Um aluno de engenharia civil (altura do aluno 1,70 m) decide calcular a altura de uma torre de transmissão localizada na avenida Paulista em São Paulo
MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.
MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas
Lista de Exercícios. b. Dado tg α =
Lista de Exercícios 1. Nos triângulos retângulos representados abaixo, determine as medias x e y indicadas: a. 4. Calcule os valores de x e y nos triângulos retângulos representados a seguir. a. Dado sen
COLÉGIO RESSURREIÇÃO NOSSA SENHORA
COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 01/06/2016 Disciplina: Matemática LISTA 10 Trigonometria no triângulo retângulo Período: 2 o Bimestre Série/Turma: 2 a série EM Professor(a): Wysner Max Valor:
Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E
Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)
Lista de exercícios Função Trigonométrica
Lista de exercícios Função Trigonométrica 1- Um alpinista deseja calcular a altura de uma encosta que vai escalar. Para isso, afasta-se, horizontalmente, 80 m do pé da encosta e visualiza o topo sob um
LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.
LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente
CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.
LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos
Atividade extra. Exercício 1. Exercício 2. Exercício 3 (UNIRIO) Exercício 4. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Qual o valor, em radianos, de um ângulo que mede 150o? (a) π 2 (b) 2π 3 (c) 5π 6 (d) π 3 Exercício 2 Qual o valor, em graus, de um ângulo que mede (a) 210 (b) 230 (c) 270 7π
Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas.
Exercícios de Razões Trigonométricas a) No triângulo retângulo da figura abaixo, determine as medidas de x e y indicadas (Use: sen 65 = 0,91; cos 65 = 0,42 ; tg 65 = 2,14) b) Considerando o triângulo retângulo
Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.
Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno
Resolução de Questões do ENEM
Resolução de Questões do ENEM Aula ao Vivo 1. As torres Puerta de Europa são duas torres inclinadas uma contra a outra, construídas numa avenida de Madri, na Espanha. A inclinação das torres é de 15 com
TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA
TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo
1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:
Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados
2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:
1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao
Razões Trigonométrica Prof. Diow. Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa.
Razões Trigonométrica Prof. Diow Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. Cosseno de um ângulo agudo é a razão entre a medida do cateto
EXERCÍCIOS COMPLEMENTARES I DISCIPLINA: MATEMÁTICA II PROFESSORES: DATA: / / DATA PARA ENTREGA: / / (A) 2,5 (B) 7,5 (C) 10 (D) 15 (E) 30
COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA: MATEMÁTICA II PROFESSORES: DATA: / / ALUNO(A): DATA PARA ENTREGA: / / SÉRIE: 1º ANO (E.M.) A RESOLUÇÃO DEVERÁ CONSTAR NESTA
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de
Matemática. Alex Amaral e PC Sampaio (Allan Pinho) Trigonometria
Trigonometria Trigonometria 1. Um balão atmosférico, lançado em Bauru (343 quilômetros a Noroeste de São Paulo), na noite do último domingo, caiu nesta segunda-feira em Cuiabá Paulista, na região de Presidente
9ª ANO - QUESTÕES PARA O SITE MATEMÁTICA
MATEMÁTICA. (ifce 04) Uma rampa faz um ângulo de 0 com o plano horizontal. Uma pessoa que subiu 0 metros dessa rampa se encontra a altura de do solo. a) 6 metros. b) 7 metros. c) 8 metros. d) 9 metros.
Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:?
Módulo 07. Exercícios Lista de exercícios do Módulo 07 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Calcule os logarítmos:. log. log 6 6. log 4 4. log. log 7 7 6. log 7.
TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS
1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a
SIMULADO DE MATEMÁTICA 9 ANO(2 bimestre)
SIMULADO DE MATEMÁTICA 9 ANO(2 bimestre) 01- (SARESP) O teodolito é um instrumento utilizado para medir ângulos. Um engenheiro aponta um teodolito contra o topo de um edifício, a uma distância de 100 m,
A Determine o comprimento do raio da circunferência.
Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados
LISTA DE EXERCÍCIOS 9º ano 4º bim
LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}
TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM
ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA TRIÂNGULO RETÂNGULO 1. Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de
PA = 1,2 m. Após uma tacada na bola, ela se
1. (Unifor 014) Sobre uma rampa de m de comprimento e inclinação de 0 com a horizontal, devem-se construir degraus de altura 0cm. Quantos degraus devem ser construídos? a) 4 b) c) 6 d) 7 e) 8. (Efomm 016)
COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM
COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão
Aula 8 TRIGONOMETRIA E SUAS APLICAÇÕES. Lei dos senos: Lei dos cossenos:
Estado do Rio de Janeiro - Prefeitura Municipal de Macaé Pré-Vestibular Social SEMED (Pré-ENEM) - A UNIVERSIDADE MAIS PERTO DE VOCÊ Disciplina: Matemática II Professor: Antonio Carlos Barros Aula 8 APLICAÇÃO
a) Qual a medida, em graus, do ângulo de 1 radiano? b) Qual a medida, em radianos, do ângulo de 1 grau?
COLÉGIO SHALOM 2 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. TRABALHO DE RECUPERAÇÃO E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade
MATEMÁTICA. Geometria Plana. Relações Trigonométricas no Triângulo Retângulo, Leis dos Senos e Cossenos. Parte3. Prof.
MATEMÁTICA Geometria Plana. Relações Trigonométricas no Triângulo Retângulo, Leis dos Senos e Cossenos. Parte3. Prof. Renato Oliveira 9) Considere os triângulos retângulos PQR e PQS da figura a seguir.
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados
Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A 2ª CERTIFICAÇÃO. PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A ª CERTIFICAÇÃO PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG. (Unisinos) As funções seno e cosseno de qualquer ângulo x satisfazem
AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.
ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado
Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)
1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos
COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO
COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão
Trigonometria. Parte I. Página 1
Trigonometria Parte I 1 (Uerj 01) Um esqueitista treina em três rampas planas de mesmo comprimento a, mas com inclinações diferentes As figuras abaixo representam as trajetórias retilíneas AB= CD= EF,
Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.
Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes
Lista de exercícios 04
Lista de exercícios 04 Aluno (a) : Série: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/05/2015. A lista deverá apresentar
TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO
TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Questão 1) Uma pessoa cujos olhos estão a 1,80 m de altura em relação ao chão avista o topo de um edifício, segundo um ângulo de 30 com a horizontal. Percorrendo 80
Relações Métricas nos Triângulos. Joyce Danielle de Araújo
Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;
TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS
TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?
Ensino. cossec x sec x. cot gx 1. x, k. Utilizando-se as identidades. DEF, no qual DF 1. Aluno (a): Nº: Turma: 1ª série Bimestre: 2º
Ensino Aluno (a): Nº: Turma: 1ª série Bimestre: º Disciplina: Matemática Razões Trigonométricas Professor (a): Capitão Barba Ruiva Data: / / cossec x sec x Questão 1 Seja M, com cot gx 1 kπ x, k. Utilizando-se
ENTREGAR ESSE ROTEIRO DIRETAMENTE AO PROFESSOR DA DSCIPLINA
Disciplina: MATEMÁTICA Segmento: Ensino Médio Série: º Ano Turma: Valor: 5,0 Pontos Assunto: Roteiro de Estudos Para Recuperação da I Etapa/018 Aluno (a): Nº: Nota: Professor (a): W. Leão Querido (a) aluno(a),
BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Para medir a largura de um lago,
Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:
Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1
PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA
PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,
TRABALHO E EXERCÍCIOS 3 o BIMESTRE
TRABALHO E EXERCÍCIOS o BIMESTRE Disciplina: Geometria Série: 9 o Turma: Amarelo Data: 20.09.18 Professor: Sérgio Tambellini Ensino: Médio Bimestre: o Valor: 7,5 ptos. Nome: n o : Nome: n o : Nome: n o
Matemática. Resolução das atividades complementares. M2 Trigonometria nos triângulos
Resolução das atividades complementares Matemática M Trigonometria nos triângulos p. 4 ipotenusa de um triângulo retângulo mede 0 cm e o ângulo ˆ mede 60. Qual é a medida dos catetos? 5 cm; 5 cm y 60 o
Matemática - 2C16/26 Lista 2
Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança
SEGUNDO ANO - PARTE UM
MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o
Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual foi, em reais, o montante gerado por essa aplicação?
18 Atividade extra UNIDADE VAMOS POUPAR DINHEIRO! Fascículo 6 Matemática Unidade 18 Função do Segundo Grau Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual
LISTA DE EXERCÍCIOS 01
MTEMÁTIC Professores rthur, Denilton, Elizeu e Rodrigo LIST DE EXERCÍCIOS 0 0. (UCSal) Na figura a seguir, suponha que um observador encontra-se no ponto, à distância C 4 metros do pé de uma torre, vendo
LISTA TRIGONOMETRIA ENSINO MÉDIO
LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.
1. Converta para a forma decimal: (a) (b) (c) (d) (e)
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática 1 a Lista de Exercícios - Ângulos Matemática Básica II - 2015.1 Professor Márcio Nascimento Fontes: Practice Makes Perfect - Trigonometry
CADERNO DE EXERCÍCIOS 9
MATEMÁTICA Capítulo 1 Triângulo Retângulo e Triângulo Qualquer Nível 01 Os observadores A e B vêem um balão sob ângulos de 0º e 45º, como mostra a figura. Sabendo-se que a distância entre eles é de 100m,
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. A figura a seguir ilustra um arco BC de
GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma 1 o Bimestre de 016 Data / / Escola Aluno EM Questão 1 A figura a seguir
Trigonometria Básica e Relações Métricas
1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno
UNIVERSIDADE FEDERAL DO PARÁ CURSO DE LICENCIATURA EM MATEMÁTICA DO PARFOR LISTA DE EXERCÍCIOS DE TRIGONOMETRIA E NÚMEROS COMPLEXOS
UNIVERSIDADE FEDERAL DO PARÁ CURSO DE LICENCIATURA EM MATEMÁTICA DO PARFOR LISTA DE EXERCÍCIOS DE TRIGONOMETRIA E NÚMEROS COMPLEXOS 1. Do alto de uma torre de 50 m de altura,localizada numa ilha, avista-se
2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado
Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista
R.: R.: c) d) Página 1 de 8-17/07/18-15:06
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Em um triângulo retângulo, a
Professor Bill apresenta: Trigonometria no triângulo retângulo
Professor Bill apresenta: Trigonometria no triângulo retângulo 1. (G1 - ifce 014) Uma rampa faz um ângulo de 0 com o plano horizontal. Uma pessoa que subiu 0 metros dessa rampa se encontra a altura de
CICLO TRIGONOMÉTRICO
TRIGONOMETRIA CICLO TRIGONOMÉTRICO DEFINIÇÃO O Círculo Trigonométrico ou ciclo Trigonométrico é um recurso criado para facilitar a visualização das proporções entre os lados dos triângulos retângulos.
COLÉGIO TERESIANO CAP/PUC 2ª SÉRIE / ENSINO MÉDIO / /2012. Aluno (a): N Turma: (A) (B) (C)
COLÉGIO TERESIANO CAP/PUC ESTUDO DIRIGIDO º BIMESTRE ª SÉRIE / ENSINO MÉDIO / /0 Professor (a): ANNA RITA Disciplina: MATEMÁTICA Aluno (a): N Turma: (A) (B) (C) ª PARTE: CONCEITOS BÁSICOS Faça um resumo
Lista para estudos. 1) Na figura ao lado, o triângulo ABC é retângulo em B. O cosseno, seno e tangente do ângulo BÂC é?
Professor: Carlos Eduardo Guariglia Seno, Cosseno e Tangente Lista para estudos Nota: Em alguns exercícios não seriam necessários os desenhos, pois são simples, porém acredito que dando alguns exemplos
PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5
ENSINO FUNDAMENTAL 9º ano LISTA DE EXERCÍCIOS PT 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA PARTE 1 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ) Para
Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é
. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m
05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,
MATEMÁTICA PROF. WALBERCLAY QUESTÃO 03
MATEMÁTICA PROF. WALBERCLAY QUESTÃO 01 Uma das etapas do campeonato mundial de surf da WCT é em Gold Coast, na Austrália. O Brasil tem seus representantes presentes nessa competição. QUESTÃO 03 No intervalo
Lista de Exercícios 3 - Gabriel Mendes (1º Ano)
Lista de Exercícios 3 - Gabriel Mendes (1º Ano) 1 - (Unicamp-SP) Uma pessoa de 1,65 m de altura observa o topo de um edifício conforme o esquema abaixo. Para sabermos a altura do prédio, devemos somar
MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO
MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO N 10 cm 10 cm M 10 cm 1 rad 2 cm 1 cm 2 cm θ a c α C 4 5 B 3 α A Como pode cair no enem F 1 (ENEM) Um balão atmosférico, lançado em Bauru
Plano de Recuperação Semestral EM
Série/Ano: 1º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos
LISTA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO - RESOLUÇÃO
LISTA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO - RESOLUÇÃO Questão 1) Uma pessoa cujos olhos estão a 1,80 m de altura em relação ao chão avista o topo de um edifício, segundo um ângulo de 30 com a horizontal.
Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos
INSTITUTO GAY-LUSSAC Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos Questão 1. Um automóvel percorre 6,0km para
Rua 13 de junho,
NOME: 1. (G1 - cftmg 01) O percurso reto de um rio, cuja correnteza aponta para a direita, encontra-se representado pela figura abaixo. Um nadador deseja determinar a largura do rio nesse trecho e propõe-se
Matemática: Trigonometria Vestibulares UNICAMP
Matemática: Trigonometria Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. a) Para θ
Roteiro Recuperação Geometria 3º trimestre- 1º ano
Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num
3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo
3º tri PR2 -MTEMÁTI Ens. Fundamental 9º ano Prof. Marcelo LIS LIST DE ESTUDO REFORÇO 1 Trigonometria no Triângulo Retângulo Parte 1. No triângulo retângulo determine as medidas e indicadas. (Use: sen65º
Matemática. Relações Trigonométricas. Professor Dudan.
Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática
TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA
TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB
Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Série: 1ª Data: / / LISTA DE GEOMETRIA
Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Série: 1ª Data: / / 2018. LISTA DE GEOMETRIA Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel
ATIVIDADE DE RECUPERAÇÃO - GEOMETRIA
GRUPO EDUCACIONAL PRO CAMPUS Aluno(a) 9º Ano - Ensino Fundamental TURMA MANHÃ Prof. ALAN Rua Rui Barbosa, 724 Centro/Sul Fone: (86) 2106-0606 Teresina PI Site: E-mail: procampus@procampus.com.br ATIVIDADE
Professor: Pedro Itallo
Professor: Pedro Itallo 01 - (FAMERP SP) No caminho de ida de sua casa (C) para a escola (E), Laura passa pela farmácia (F), pela padaria (P), e depois segue para a escola, como indica a figura 1. Na volta
Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane
Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane 1) Um terreno quadrado tem 289m 2 de área. Parte desse terreno é ocupada por um galpão quadrado e outra, por uma calçada de 3m de
COOPERATIVA EDUCACIONAL DE PORTO SEGURO
OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75
Trigonometria no triângulo retângulo
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Trigonometria no triângulo retângulo Questão 01 A figura a seguir é um prisma
, o ponto do chão a partir do qual se vê o topo sob um ângulo de 45º ficará a uma distância do edifício
1. De um ponto do chão situado a 150 m de distância de um edifício, vê-se o topo do prédio sob um ângulo de 60º, como mostra a figura, desenhada sem escala. Se for adotado igual a a) 75,0 m. b) 105,0 m.
tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem
Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão
Colégio XIX de Março Educação do jeito que deve ser
Colégio XIX de Março Educação do jeito que deve ser 08 ª PROVA PARCIAL DE MATEMÁTIA Aluno(a): Nº Ano: 9º Turma: Data: 8/08/08 Nota: Professor(a): Gustavo e Claudia Valor da Prova: 40 pontos Orientações
TRIGONOMETRIA. Ponto Móvel sobre uma curva
TRIGONOMETRIA A palavra Trigonometria é formada por três radicais gregos: tri (três), gonos (ângulos) e metron (medir). Daí vem seu significado mais amplo: Medida dos Triângulos, assim através do estudo
Topografia. Revisão Matemática. Aula 2. Prof. Diego Queiroz. Vitória da Conquista, Bahia. Contato: (77)
Topografia Revisão Matemática Prof. Diego Queiroz Contato: (77) 9165-2793 diego.agron@gmail.com Aula 2 Vitória da Conquista, Bahia Tópicos abordados Unidades de Medida; Trigonometria Plana; Relações Métricas
2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.
Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados
03/2016 Turma: 2 A. 1) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo:
Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 03/2016 Turma: 2 A 1) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo:
AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm)
LISTA GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 8. Na figura, a reta r é tangente às circunferências de centros A e B e raios cm e cm, respectivamente, nos pontos C e D, e a distância entre os centros
Matemática GEOMETRIA PLANA. Professor Dudan
Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A
Matemáticas Revisão de trigonometria. a) 4 b) 5 c) 6 d) 7 e) 8. assinale o que
Matemáticas Revisão de trigonometria Professor Luiz Amaral E- 1. (Uepg 01) Em um triângulo, as medidas dos lados, em cm, são números inteiros consecutivos e o ângulo maior é igual ao dobro do ângulo menor.
2. (Insper 2012) A figura mostra parte de um campo de futebol, em que estão representados um dos gols e a marca do pênalti (ponto P).
1. (Pucrj 013) Uma bicicleta saiu de um ponto que estava a 8 metros a leste de um hidrante, andou 6 metros na direção norte e parou. Assim, a distância entre a bicicleta e o hidrante passou a ser: a) 8