Lista para estudos. 1) Na figura ao lado, o triângulo ABC é retângulo em B. O cosseno, seno e tangente do ângulo BÂC é?

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lista para estudos. 1) Na figura ao lado, o triângulo ABC é retângulo em B. O cosseno, seno e tangente do ângulo BÂC é?"

Transcrição

1 Professor: Carlos Eduardo Guariglia Seno, Cosseno e Tangente Lista para estudos Nota: Em alguns exercícios não seriam necessários os desenhos, pois são simples, porém acredito que dando alguns exemplos de desenho favoreço a vocês aprenderem a desenharem as leituras interpretadas em questões sem imagens. 1) Na figura ao lado, o triângulo ABC é retângulo em B. O cosseno, seno e tangente do ângulo BÂC é? 2) (G1 1996) O valor de a e c no triângulo ABC é: 3) (Pucmg 2007) Um avião levanta voo sob um ângulo de 30. Então, depois que tiver percorrido 500 m, conforme indicado na figura, sua altura h em relação ao solo, em metros, será igual a:

2 4) (Uel 1997) Trafegando num trecho plano e reto de uma estrada, um ciclista observa uma torre. No instante em que o ângulo entre a estrada e a linha de visão do ciclista é 60, o marcador de quilometragem da bicicleta acusa 103,50 km. Quando o ângulo descrito passa a ser 90, o marcador de quilometragem acusa 104,03 km. Qual é, aproximadamente, a distância da torre à estrada? (Se necessitar, use 2 1,41; 3 1,73; 6 2,45.) a) 463,4 m b) 535,8 m c) 755,4 m d) 916,9 m e) 1071,6 m 5) Milena, diante da configuração representada a seguir, pede ajuda a você para calcular o comprimento da sombra x do poste, mas, para isso, ela informa que o senα= 0,6. Calcule o comprimento da sombra x.

3 6) As medidas dos lados dos triângulos a seguir são dadas em cm. O valor de x + y vale? 7) Para levar sua mulher até o alto do pedestal, ou trazê-la até o chão, o vicking usa uma escada medindo 2,4 m. Os degraus da escada têm 6 cm de altura e estão igualmente espaçados 18 cm um do outro. Nem todos os degraus estão representados na figura. O degrau mais baixo equidista do chão e do segundo degrau. O degrau mais alto apoia-se no plano superior do pedestal. Sabendo que a escada faz um ângulo Ɵ com o chão e sabe-se que: sen Ɵ = 4 5 cos Ɵ = 3 5 tg Ɵ = 4 3 a) A escada é composta por quantos degraus? b) Calcule a altura h do pedestal. 8) (cftmg 2011) Um foguete é lançado de uma rampa situada no solo sob um ângulo de 60º, conforme a figura. A altura em que se encontra o foguete, após ter percorrido 12km, vale?

4 9) Na execução da cobertura de uma casa, optou-se pela construção de uma estrutura, composta por barras de madeira, com o formato indicado na figura abaixo. Desprezando a espessura das barras de madeira, e supondo que α = 15º, podemos dizer que: a) v = w cos(15º) e u = w sen(15º)/4. b) v = w sen(15º) e u = w/[4tg(15º)]. c) v = w/[2cos(345º)] e u = w tg(195º)/4. d) v = w/[2cos(345º)] e u = w sen(165º)/4. 10) (Enem 2010) Um balão atmosférico, lançado em Bauru (343 quilômetros a Noroeste de São Paulo), na noite do último domingo, caiu nesta segunda-feira em Cuiabá Paulista, na região de Presidente Prudente, assustando agricultores da região. O artefato faz parte do programa Projeto Hibiscus, desenvolvido por Brasil, Franca, Argentina, Inglaterra e Itália, para a medição do comportamento da camada de ozônio, e sua descida se deu após o cumprimento do tempo previsto de medição. Disponível em: Acesso em: 02 maio Na data do acontecido, duas pessoas avistaram o balão. Uma estava a 1,8 km da posição vertical do balão e o avistou sob um ângulo de 60 ; a outra estava a 5,5 km da posição vertical do balão, alinhada com a primeira, e no mesmo sentido, conforme se vê na figura, e o avistou sob um ângulo de 30. Qual a altura aproximada em que se encontrava o balão? a) 1,8 km b) 1,9 km c) 3,1 km d) 3,7 km e) 5,5 km 11) Em um setor circular de raio r foram traçados os triângulos ADO e BEO, conforme figura a seguir.

5 A soma dos segmentos AD,DB,BE, e CE é igual a a) r 2 b) r c) 2r 3 d) 2r 12) Os triângulos a seguir possuem o mesmo ângulo α, com tg α = k. A medida da maior hipotenusa vale b e a dos segmentos AB e BC vale a. O valor de b em função de a e k é a) ak 2 b) 2ak 2 c) a (1 + k 2 ) d) 2a (1 + k 2 ) 13) (Unicamp 2010) Laura decidiu usar sua bicicleta nova para subir uma rampa. As figuras a seguir ilustram a rampa que terá que ser vencida e a bicicleta de Laura. a) Suponha que a rampa que Laura deve subir tenha ângulo de inclinação α, tal que cos(α) = 0,99. Suponha, também, que cada pedalada faça a bicicleta percorrer 3,15 m. Calcule a altura h (medida com relação ao ponto de partida) que será atingida por Laura após dar 100 pedaladas.

6 b) O quadro da bicicleta de Laura está destacado na figura à direita. Com base nos dados da figura, e sabendo que a mede 22 cm, calcule o comprimento b da barra que liga o eixo da roda ao eixo dos pedais. 14) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança que envolve mais de 500 funcionários treinados para identificar e combater focos de queimadas, e mais de 20 torres de vigilância que se espalham pelas plantações. Outra medida tomada é a criação de aceiros (valas que separam as áreas de eucaliptos e florestas nativas). A figura 1 a seguir ilustra a situação descrita. Seno 52 = 0,79 Seno 62 = 0,88 Seno 72 = 0,94 Seno 82 = 0,99 Cosseno 52 = 0,62 Cosseno 62 = 0,47 Cosseno 72 = 0,31 Cosseno 82 = 0,14 Tangente 52 = 1,3 Tangente 62 = 1,9 Tangente 72 = 3,0 Tangente 82 = 7,1 a) Determine a distância x (da torre de observação até o início do aceiro). b) Calcule o ângulo β. Considere as aproximações. c) Qual o ângulo de visão α de um observador que estiver no alto da torre? 15) (Ufg 2007) Para dar sustentação a um poste telefônico, utilizou-se um outro poste com 8 m de comprimento, fixado ao solo a 4 m de distância do poste telefônico, inclinado sob

7 um ângulo de 60, conforme a figura a seguir. Considerando-se que foram utilizados 10 m de cabo para ligar os dois postes, determine a altura do poste telefônico em relação ao solo. a) 250 b) 300 c) 400 d) ) (Ufpb 2007) Em um shopping, uma pessoa sai do primeiro pavimento para o segundo através de uma escada rolante, conforme a figura a seguir. A altura H, em metros, atingida pela pessoa, ao chegar ao segundo pavimento, vale? 17) (Ufla 2006) Um aparelho é construído para medir alturas e consiste de um esquadro com uma régua de 10 cm e outra régua deslizante que permite medir tangentes do ângulo de visada á, conforme o esquema da figura 1. Uma pessoa, utilizando o aparelho a 1,5 m do solo, toma duas medidas, com distância entre elas de 10 metros, conforme esquema da figura 2. Sendo l 1 = 30 cm e l 2 = 20 cm, calcule a altura da árvore.

8 18) Observando-se a figura e sabendo-se que y - x = 4 3, o valor da soma x + y será a) 2 3 b) 6 3 c) 8 3 d) ) (Uem 2004) Para obter a altura CD de uma torre, um matemático, utilizando um aparelho, estabeleceu a horizontal AB e determinou as medidas dos ângulos á = 30 e â = 60 e a medida do segmento BC = 5 m, conforme especificado na figura. Nessas condições, a altura da torre, em metros, vale? 20) (Ufpr 2004) Uma pessoa de 2 m de altura, passeando pela cidade, caminha em linha reta em uma rua horizontal, na direção da portaria de um edifício. A pessoa para para ver o topo desse edifício, o que a obriga a olhar para cima num ângulo de 30 graus com a horizontal. Após caminhar 49 m, para uma segunda vez para ver o topo do edifício e tem que olhar para cima num ângulo de 45 graus com a horizontal. Suponha que cada andar do edifício tenha 3 m de altura. Utilize 3 1,7. Nessa situação, é correto afirmar (some os valores das verdadeiras): 01) O edifício tem menos de 30 andares. 02) No momento em que a pessoa para pela primeira vez, ela está a 160 m da portaria do edifício.

9 04) Quando a pessoa para pela segunda vez, a distância em que ela se encontra da portaria é igual à altura do edifício. 08) Se, depois da segunda vez em que para, a pessoa caminhar mais 35 m em direção à portaria, para ver o topo do edifício será necessário erguer os olhos num ângulo maior do que 60 graus com a horizontal. 21) (Ufc 2003) Sejam α e β os ângulos agudos de um triângulo retângulo. Se sen α = sen β e se a medida da hipotenusa é 4 cm, a área desse triângulo (em cm 2 ) é: 22) (Uerj 2003) Um barco navega na direção AB, próximo a um farol P, conforme a figura a seguir. No ponto A, o navegador verifica que a reta AP, da embarcação ao farol, forma um ângulo de 30 com a direção AB. Após a embarcação percorrer m, no ponto B, o navegador verifica que a reta BP, da embarcação ao farol, forma um ângulo de 60 com a mesma direção AB. Seguindo sempre a direção AB, a menor distância entre a embarcação e o farol será equivalente, em metros, a: 23) (Ufrn 2002) Na representação a seguir, EF é diâmetro da circunferência; EG e FG são catetos do triângulo retângulo FGE, inscrito na circunferência trigonométrica; e FG é perpendicular a OX para qualquer á. O raio da circunferência é unitário. Nessas condições, podemos afirmar que, para qualquer á (0 < á < 90 ), a) FG EG = 2tg á

10 b) sen 2 á + cos 2 á = EF c) OH = cos (90 - á) d) FG = 2 sen á 24) (Ufv 2001) Seja AB o diâmetro de uma circunferência de raio r, e seja C um ponto da mesma, distinto de A e B, conforme figura a seguir. a) Sendo o ângulo A ˆB C=â, determine a área do triângulo ABC, em função de â e r. b) Esta área é máxima para qual valor de â. 25) Determine x no caso a seguir: 26) (Unirio 1996) Um disco voador é avistado, numa região plana, a uma certa altitude, parado no ar. Em certo instante, algo se desprende da nave e cai em queda livre, conforme mostra a figura. A que altitude se encontra esse disco voador? Considere as afirmativas: l - a distância d é conhecida; ll - a medida do ângulo á e a tg do mesmo ângulo são conhecidas.

11 Então, tem-se que: a) a l sozinha é suficiente para responder à pergunta, mas a ll, sozinha, não. b) a ll sozinha é suficiente para responder à pergunta, mas a l, sozinha, não. c) l e ll, juntas, são suficientes para responder à pergunta, mas nenhuma delas, sozinha, não é. d) ambas são, sozinhas, suficientes para responder à pergunta. e) a pergunta não pode ser respondida por falta de dados. 27) (Ufpr 2001) Um instrumento para medir o diâmetro de pequenos cilindros consiste em um bloco metálico que tem uma fenda com o perfil em V contendo uma escala, conforme ilustração a seguir. O cilindro é colocado na fenda e a medida de seu diâmetro, em centímetros, é o número que na escala corresponde ao ponto de tangência entre o cilindro e o segmento AB. Ao construir a escala de um instrumento desses, o número 2 corresponde a um certo ponto de AB. Sendo x a distância deste ponto ao ponto A, é correto afirmar: 2 01) x é igual a cm. θ tg ) x é igual a cm. tgθ 2 04) Se a medida de è for 90, então x será igual a 2cm. 08) Quanto menor for o ângulo θ, maior será a distância x.

Lista de Exercícios. b. Dado tg α =

Lista de Exercícios. b. Dado tg α = Lista de Exercícios 1. Nos triângulos retângulos representados abaixo, determine as medias x e y indicadas: a. 4. Calcule os valores de x e y nos triângulos retângulos representados a seguir. a. Dado sen

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO N 10 cm 10 cm M 10 cm 1 rad 2 cm 1 cm 2 cm θ a c α C 4 5 B 3 α A Como pode cair no enem F 1 (ENEM) Um balão atmosférico, lançado em Bauru

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA

COLÉGIO RESSURREIÇÃO NOSSA SENHORA COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 01/06/2016 Disciplina: Matemática LISTA 10 Trigonometria no triângulo retângulo Período: 2 o Bimestre Série/Turma: 2 a série EM Professor(a): Wysner Max Valor:

Leia mais

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas.

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas. Exercícios de Razões Trigonométricas a) No triângulo retângulo da figura abaixo, determine as medidas de x e y indicadas (Use: sen 65 = 0,91; cos 65 = 0,42 ; tg 65 = 2,14) b) Considerando o triângulo retângulo

Leia mais

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de

Leia mais

Olá! Fernanda e Lorena. Matemática. Somos do PET Engenharia Ambiental

Olá! Fernanda e Lorena. Matemática. Somos do PET Engenharia Ambiental Olá! Fernanda e Lorena Somos do PET Engenharia Ambiental Matemática Dúvidas nas questões de casa? Exercício 4 + Bruna estava empinando pipa. Quando ela soltou os 50 m de linha, o vento estava tão forte

Leia mais

LISTA DE EXERCÍCIOS 9º ano 4º bim

LISTA DE EXERCÍCIOS 9º ano 4º bim LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

Matemática. Alex Amaral e PC Sampaio (Allan Pinho) Trigonometria

Matemática. Alex Amaral e PC Sampaio (Allan Pinho) Trigonometria Trigonometria Trigonometria 1. Um balão atmosférico, lançado em Bauru (343 quilômetros a Noroeste de São Paulo), na noite do último domingo, caiu nesta segunda-feira em Cuiabá Paulista, na região de Presidente

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

Matemática - 2C16/26 Lista 2

Matemática - 2C16/26 Lista 2 Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança

Leia mais

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA TRIÂNGULO RETÂNGULO 1. Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de

Leia mais

a) Qual a medida, em graus, do ângulo de 1 radiano? b) Qual a medida, em radianos, do ângulo de 1 grau?

a) Qual a medida, em graus, do ângulo de 1 radiano? b) Qual a medida, em radianos, do ângulo de 1 grau? COLÉGIO SHALOM 2 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. TRABALHO DE RECUPERAÇÃO E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

Trigonometria no triângulo retângulo

Trigonometria no triângulo retângulo COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Trigonometria no triângulo retângulo Questão 01 A figura a seguir é um prisma

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

MATEMÁTICA. Geometria Plana. Relações Trigonométricas no Triângulo Retângulo, Leis dos Senos e Cossenos. Parte3. Prof.

MATEMÁTICA. Geometria Plana. Relações Trigonométricas no Triângulo Retângulo, Leis dos Senos e Cossenos. Parte3. Prof. MATEMÁTICA Geometria Plana. Relações Trigonométricas no Triângulo Retângulo, Leis dos Senos e Cossenos. Parte3. Prof. Renato Oliveira 9) Considere os triângulos retângulos PQR e PQS da figura a seguir.

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

Matemática: Trigonometria Vestibulares UNICAMP

Matemática: Trigonometria Vestibulares UNICAMP Matemática: Trigonometria Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. a) Para θ

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

GOIÂNIA, / / PROFESSOR: Douglas Rezende. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

GOIÂNIA, / / PROFESSOR: Douglas Rezende. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: GOIÂNI, / / 2017 PROFESSOR: Douglas Rezende DISIPLIN: Matemática SÉRIE: 9 LUNO(a): No nhanguera você é + Enem ntes de iniciar a lista de eercícios leia atentamente as seguintes orientações: - É fundamental

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

Segmento: ENSINO MÉDIO. 03/2017 Turma: 2 A. Tipo de Atividade: LISTA DE EXERCÍCIOS

Segmento: ENSINO MÉDIO. 03/2017 Turma: 2 A. Tipo de Atividade: LISTA DE EXERCÍCIOS Segmento: ENSINO MÉDIO Disciplina: MATEMÁTICA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 03/2017 Turma: 2 A 1) Determine o valor de x, para que a seqüência (x,3x+2,10x+12) seja uma P.G. Determine

Leia mais

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão

Leia mais

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ENSINO FUNDAMENTAL 9º ano LISTA DE EXERCÍCIOS PT 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA PARTE 1 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ) Para

Leia mais

Trigonometria. Parte I. Página 1

Trigonometria. Parte I.  Página 1 Trigonometria Parte I 1 (Uerj 01) Um esqueitista treina em três rampas planas de mesmo comprimento a, mas com inclinações diferentes As figuras abaixo representam as trajetórias retilíneas AB= CD= EF,

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)

Leia mais

Trigonometria Básica e Relações Métricas

Trigonometria Básica e Relações Métricas 1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno

Leia mais

PA = 1,2 m. Após uma tacada na bola, ela se

PA = 1,2 m. Após uma tacada na bola, ela se 1. (Unifor 014) Sobre uma rampa de m de comprimento e inclinação de 0 com a horizontal, devem-se construir degraus de altura 0cm. Quantos degraus devem ser construídos? a) 4 b) c) 6 d) 7 e) 8. (Efomm 016)

Leia mais

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo

Leia mais

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo 3º tri PR2 -MTEMÁTI Ens. Fundamental 9º ano Prof. Marcelo LIS LIST DE ESTUDO REFORÇO 1 Trigonometria no Triângulo Retângulo Parte 1. No triângulo retângulo determine as medidas e indicadas. (Use: sen65º

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017

TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017 TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /017 1. Um aluno de engenharia civil (altura do aluno 1,70 m) decide calcular a altura de uma torre de transmissão localizada na avenida Paulista em São Paulo

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

Unidade 3 Geometria: semelhança de triângulos

Unidade 3 Geometria: semelhança de triângulos Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios 1. Encontre o valor do seno do ângulo α nos triângulos retângulos a seguir. a) c) b) d). Encontre o valor da tangente do ângulo α nos triângulos retângulos a seguir. a)

Leia mais

Questão 03) Questão 01)

Questão 03) Questão 01) Questão 01) Gab: D De um ponto do chão situado a 150 m de distância de um edifício, vê-se o topo do prédio sob um ângulo de 60º, como mostra a figura, desenhada sem escala. Se for adotado = 1, 7, o ponto

Leia mais

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:?

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:? Módulo 07. Exercícios Lista de exercícios do Módulo 07 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Calcule os logarítmos:. log. log 6 6. log 4 4. log. log 7 7 6. log 7.

Leia mais

Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Ano/Série: 9ª Data: / / LISTA DE GEOMETRIA

Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Ano/Série: 9ª Data: / / LISTA DE GEOMETRIA Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Ano/Série: 9ª Data: / / 2018. LISTA DE GEOMETRIA Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel

Leia mais

Faculdade Pitágoras Unidade Betim

Faculdade Pitágoras Unidade Betim Faculdade Pitágoras Unidade Betim Atividade de Aprendizagem Orientada Nº 4 Profª: Luciene Lopes Borges Miranda Nome/ Grupo: Disciplina: Cálculo III Tempo da atividade: h Curso: Engenharia Civil Data da

Leia mais

TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Questão 1) Uma pessoa cujos olhos estão a 1,80 m de altura em relação ao chão avista o topo de um edifício, segundo um ângulo de 30 com a horizontal. Percorrendo 80

Leia mais

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF Prof. Me. Luis esar Friolani Data: / / Nota: Disciplina: Matemática luno (a): Nº: 9 no/ef Objetivo: Desenvolver os conceitos sobre razões trigonométricas no triângulo retângulo valiar se o aluno é capaz

Leia mais

Lista de exercícios Função Trigonométrica

Lista de exercícios Função Trigonométrica Lista de exercícios Função Trigonométrica 1- Um alpinista deseja calcular a altura de uma encosta que vai escalar. Para isso, afasta-se, horizontalmente, 80 m do pé da encosta e visualiza o topo sob um

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

Ensino. cossec x sec x. cot gx 1. x, k. Utilizando-se as identidades. DEF, no qual DF 1. Aluno (a): Nº: Turma: 1ª série Bimestre: 2º

Ensino. cossec x sec x. cot gx 1. x, k. Utilizando-se as identidades. DEF, no qual DF 1. Aluno (a): Nº: Turma: 1ª série Bimestre: 2º Ensino Aluno (a): Nº: Turma: 1ª série Bimestre: º Disciplina: Matemática Razões Trigonométricas Professor (a): Capitão Barba Ruiva Data: / / cossec x sec x Questão 1 Seja M, com cot gx 1 kπ x, k. Utilizando-se

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

MATEMÁTICA SEGUNDO ANO - PARTE UM

MATEMÁTICA SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM TRIGONOMETRIA NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos:

Leia mais

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista

Leia mais

SEGUNDO ANO - PARTE UM

SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o

Leia mais

Razões Trigonométrica Prof. Diow. Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa.

Razões Trigonométrica Prof. Diow. Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. Razões Trigonométrica Prof. Diow Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. Cosseno de um ângulo agudo é a razão entre a medida do cateto

Leia mais

2. (Insper 2012) A figura mostra parte de um campo de futebol, em que estão representados um dos gols e a marca do pênalti (ponto P).

2. (Insper 2012) A figura mostra parte de um campo de futebol, em que estão representados um dos gols e a marca do pênalti (ponto P). 1. (Pucrj 013) Uma bicicleta saiu de um ponto que estava a 8 metros a leste de um hidrante, andou 6 metros na direção norte e parou. Assim, a distância entre a bicicleta e o hidrante passou a ser: a) 8

Leia mais

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é: Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1

Leia mais

EPUFABC Geometria I Profa. Natália Rodrigues. Lista 3 Aulas 7, 8, 9, 10.

EPUFABC Geometria I Profa. Natália Rodrigues. Lista 3 Aulas 7, 8, 9, 10. EPUFABC Geometria I Profa. Natália Rodrigues Lista 3 Aulas 7, 8, 9, 10. 1) Sabendo que a, b e c são paralelas, resolva: A. B. C D a b 2) No desenho Ao lado, as frentes para a rua A dos quarteirões I e

Leia mais

9ª ANO - QUESTÕES PARA O SITE MATEMÁTICA

9ª ANO - QUESTÕES PARA O SITE MATEMÁTICA MATEMÁTICA. (ifce 04) Uma rampa faz um ângulo de 0 com o plano horizontal. Uma pessoa que subiu 0 metros dessa rampa se encontra a altura de do solo. a) 6 metros. b) 7 metros. c) 8 metros. d) 9 metros.

Leia mais

TRABALHO E EXERCÍCIOS 3 o BIMESTRE

TRABALHO E EXERCÍCIOS 3 o BIMESTRE TRABALHO E EXERCÍCIOS o BIMESTRE Disciplina: Geometria Série: 9 o Turma: Amarelo Data: 20.09.18 Professor: Sérgio Tambellini Ensino: Médio Bimestre: o Valor: 7,5 ptos. Nome: n o : Nome: n o : Nome: n o

Leia mais

, o ponto do chão a partir do qual se vê o topo sob um ângulo de 45º ficará a uma distância do edifício

, o ponto do chão a partir do qual se vê o topo sob um ângulo de 45º ficará a uma distância do edifício 1. De um ponto do chão situado a 150 m de distância de um edifício, vê-se o topo do prédio sob um ângulo de 60º, como mostra a figura, desenhada sem escala. Se for adotado igual a a) 75,0 m. b) 105,0 m.

Leia mais

Tarefas 05, 06, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B

Tarefas 05, 06, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B Tarefas 05, 06, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B 0. (Upe-ssa 07) A medida da área do triângulo retângulo, representado a seguir, é de,5 cm. Qual é

Leia mais

Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane

Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane 1) Um terreno quadrado tem 289m 2 de área. Parte desse terreno é ocupada por um galpão quadrado e outra, por uma calçada de 3m de

Leia mais

SIMULADO DE MATEMÁTICA 9 ANO(2 bimestre)

SIMULADO DE MATEMÁTICA 9 ANO(2 bimestre) SIMULADO DE MATEMÁTICA 9 ANO(2 bimestre) 01- (SARESP) O teodolito é um instrumento utilizado para medir ângulos. Um engenheiro aponta um teodolito contra o topo de um edifício, a uma distância de 100 m,

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen65º = 0,91; cos65º = 0,42 e tg65º = 2,14) 2. Determine no

Leia mais

Disciplina: Matemática Data da entrega: 31/03/2015.

Disciplina: Matemática Data da entrega: 31/03/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções

Leia mais

Avaliação Diagnóstica de Matemática 3º ano do Ensino Médio

Avaliação Diagnóstica de Matemática 3º ano do Ensino Médio Avaliação Diagnóstica de Matemática 3º ano do Ensino Médio Nome: Aplicador: Escola: Elaboração/Montagem: Analista Pedagógico. Questão 1: Alguns testes de preferência por bebedouros de água foram realizados

Leia mais

MATEMÁTICA Questões de 1 a 20

MATEMÁTICA Questões de 1 a 20 MATEMÁTICA Questões de 1 a 0 Um corpo lançado do solo verticalmente para cima tem posição em função do tempo dada pela função f(t) = 40 t 5 t, onde a altura f(t) é dada em metros e o tempo t é dado em

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3 (UNIRIO) Exercício 4. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3 (UNIRIO) Exercício 4. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Qual o valor, em radianos, de um ângulo que mede 150o? (a) π 2 (b) 2π 3 (c) 5π 6 (d) π 3 Exercício 2 Qual o valor, em graus, de um ângulo que mede (a) 210 (b) 230 (c) 270 7π

Leia mais

Matemática. 9º ano BD. Lista Extra Professor Luan Lista Extra 01 (Semelhança de triângulos)

Matemática. 9º ano BD. Lista Extra Professor Luan Lista Extra 01 (Semelhança de triângulos) 9º ano Matemática Lista Extra Professor Luan Lista Extra 01 (Semelhança de triângulos) 06. Considerando a figura abaixo, determine a medida x indicada. 01. Determine as medidas dos elementos indicados

Leia mais

Formação Continuada em Matemática

Formação Continuada em Matemática Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 2º Bimestre 2013 Tarefa 2 Plano de trabalho: Relações Trigonométricas no Triângulo Retângulo Cursista: Vania Cristina

Leia mais

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas. LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo

Leia mais

Plano de Recuperação Semestral EM

Plano de Recuperação Semestral EM Série/Ano: 1º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales Período: 1 o Bimestre Série/Turma: 1 a série EM Professor(a): Cleubim Valor: Nota: Aluno(a): Razão e Proporção

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA A A` r B B` s C C` t A B P C S t r 1 r 2 x 6-5 15 3 r 3 B a β b ka B β kb A α c γ C A α kc γ C B B A C A C B a ka B A c C A kc C B B kc ka c

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

Lista de exercícios 02 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio. Disciplina: Matemática

Lista de exercícios 02 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio. Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental a apresentação de uma lista legível, limpa e organizada. Rasuras podem invalidar a lista. Nas questões que

Leia mais

Lista de exercícios do teorema de Tales &

Lista de exercícios do teorema de Tales & Valor 2,0 Componente Curricular: Professor(a): Turno: Data: Matemática Matutino / /2013 luno(a): Nº do luno: Série: Turma: 8ª (81)(82)(83) Sucesso! Lista de Exercícios Lista de exercícios do teorema de

Leia mais

Com interesse de ir além de um ensino tradicional, pois os alunos em sua maioria têm grandes dificuldades em diferenciar círculo de circunferência.

Com interesse de ir além de um ensino tradicional, pois os alunos em sua maioria têm grandes dificuldades em diferenciar círculo de circunferência. MARCUS VINICIUS DIONISIO DA SILVA - Angra dos Reis PLANO DE AULA ASSUNTO: 1. INTRODUÇÃO: Com interesse de ir além de um ensino tradicional, pois os alunos em sua maioria têm grandes dificuldades em diferenciar

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Série: 1ª Data: / / LISTA DE GEOMETRIA

Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Série: 1ª Data: / / LISTA DE GEOMETRIA Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Série: 1ª Data: / / 2018. LISTA DE GEOMETRIA Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel

Leia mais

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

LISTA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO - RESOLUÇÃO

LISTA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO - RESOLUÇÃO LISTA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO - RESOLUÇÃO Questão 1) Uma pessoa cujos olhos estão a 1,80 m de altura em relação ao chão avista o topo de um edifício, segundo um ângulo de 30 com a horizontal.

Leia mais

Professor Bill apresenta: Trigonometria no triângulo retângulo

Professor Bill apresenta: Trigonometria no triângulo retângulo Professor Bill apresenta: Trigonometria no triângulo retângulo 1. (G1 - ifce 014) Uma rampa faz um ângulo de 0 com o plano horizontal. Uma pessoa que subiu 0 metros dessa rampa se encontra a altura de

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web ª. LISTA DE GEOMETRIA PLANA POLIEDRO - 07. (G - cps 05) A inclinação das vias públicas é um problema para o transporte. Na cidade de Dunedin, na Nova Zelândia, está localizada a rua Baldwin que, em seu

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

1) Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e)

1) Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) 1) Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) 2) Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 3) Determine x e y, sendo r, s e t retas paralelas. 4) Uma reta paralela

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Lista de exercícios 04

Lista de exercícios 04 Lista de exercícios 04 Aluno (a) : Série: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/05/2015. A lista deverá apresentar

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Para medir a largura de um lago,

Leia mais