LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y."

Transcrição

1 LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente após percorrer toda a rampa? (Dados: sen10 = 0,17; cós 10 = 0,98 e tg 10 = 0,18) 2) Um avião levanta voo em A e sobe fazendo um ângulo constante de 15º com a horizontal. A que altura estará e qual a distância percorrida quando sobrevoar uma torre situada a 2 km do ponto de partida?(dados: sem 15º = 0,26; cós 15º = 0,97 e tg 15º = 0,27.) 3) Do alto de uma torre de 50 m de altura, localizada em uma ilha, avista-se um ponto da praia sob um ângulo de depressão de 30º. Qual é a distancia da torre até esse ponto?(desconsidere a largura da torre.) 4) A partir de um ponto, observa-se o topo de um prédio sob um ângulo de 30º. Caminhando 23 m em direção ao prédio, atingimos outro ponto, de onde se vê o topo do prédio segundo um ângulo de 60º. TRIÂNGULOS QUAISQUER 1) Na figura ao abaixo calcule o valor da medida x. x ) No triângulo abaixo, determine as medidas x e y.

2 3) No triângulo da figura, calcule as medidas b e c. 4) Num triângulo ABC, b = 4 m, c = m e  = 30º. Calcule a medida a. 5) Calcule a medida c indicada na figura. Sabendo que a = 4, b =3 e 6) Se em um triângulo ABC o lado mede 3 cm, o lado mede 4 cm e o ângulo interno formado entre os lados e mede 60º, então o lado mede: a) cm b) cm cm d) cm e) cm 7) Um triângulo tem lados iguais a 4, 5 e 6. O cós-seno do maior ângulo é: a) d) b) e) 8) No triângulo ABC da figura, AB = 5 cm, BC = 16 cm e. A medida da medida relativa ao lado, em cm, é: a) 5,0 b) 5,5 6,0 A B C

3 d) 6,5 e) 7,0 9) A medida em cm, da diagonal maior de um paralelogramo cujos lados medem 6 cm e 8 cm e o menor ângulo mede 60º é igual a: a) d) b) e) 10) Em cada figura, obtenha o valor de x. a) x 8 B b) A x 75 6 C B 60 C A 105 x B 30º C 11) E m cada figura, O é o centro da circunferência circunscrita ao triângulo ABC. Calcule o valor de x. a) A B 30 O 2 X C

4 b) A 6 X B O 60 C 12) No triângulo ABC, os lados e MEDEM 8 cm e 6 cm, respectivamente, e o ângulo A vale 30. O seno do ângulo B vale: a) d) b) e) MEDIDAS DE ARCOS 13) Qual é o comprimento de um arco de medida 3 radianos, contidos em uma circunferência cujo diâmetro mede 20 metros? a) 15 m b) 40 m 30 m d) 50 m e) 60 m 14) Na circunferência a seguir, o raio mede 2 e o arco l = AB mede 3. Supondo π = 3,14, o valor aproximado, em graus, do ângulo α será: a) 78 b) O 2 α l = 3

5 d) 90 e) 94 15) Na figura, α = 1,5 rad, AC = 1,5 e o comprimento do arco AB é 3. Qual o comprimento do arco CD. D a) 1,33 b) 4,50 B 5,25 α d) 6,50 e) 7,25 A C 16) Um veiculo percorre uma pista circular de raio 300 m, com velocidade constante de 10 m/s, durante um minuto. Dentre os valores abaixo, o mais próximo da medida, em graus do arco percorrido é: a) 90 b) d) 75 e) ) O menor ângulo formado pelos ponteiros de um relógio as 14 horas e 20 minutos é: a) 8 b) 50 52, 72 d) 60 e) 62 18) Se o ponteiro menor de um relógio percorre um arco de, o ponteiro maior percorre um arco de: a) b) rad d) e)

6 SENO E CO-SENO DE ARCO TRIGONOMÉTRICO 19) Calcule : 20) Determine o valor da expressão, para x =30. 21) Simplifique a expressão sen160 + sen180 + sen ) Calcule: S = cos0 + cos + cos + cos2 23) Resolva no intervalo 0 x < 2, as equações: a) sen x = 1 b) sen x = sen x = - d) cos x = -1 e) cos x = f) cos x = - 24) Resolva, no intervalo 0 x < 2, as inequações: a) sen x b) sen x sen x< 0 d) cos x > e) cos x f) cos x -1 25) Resolva no intervalo 0, a equação cos 2 - cós x = 0. 26) No intervalo 0, a maior raiz da equação é igual a: a) b) d)

7 e) 27) Se cos e é um ângulo do terceiro quadrante, então, o valor, de sen é igual a : a) d) b) e) 28) O valor da expressão é: a)1 b) 1 2 d) 2 e) 29) Resolva a equação do segundo grau na variável x: 30) O valor da expressão para sen é: a) e) - b) d) 31) Se senx cosx =, o valor de senxcosx é igual a: a) - e) b) - d) 32) A expressão é igual a:

8 a) e) b) d) 33) Resolva, no intervalo π a equação: 1 + senx cos 2 x = 0. TANGENTE DE UM ARCO 34) Se senx =, o valor de tg 2 x é: a) 0,6 0,8 e) 1 b) 0,7 d) 35) Resolva, no intervalo 0, as equações: a) tgx = b) tgx = tgx = -1 36) Resolva, no intervalo 0, a equação: 3tg 2 x 1= 0. 37) Resolva no intervalo 0, a equação: (tgx 1)(tgx = 0. 38) S senx = e 90 < x então y = vale: a) e) b) - d) 39) Se tgx = então sen 2 x é igual a: a) e) b) d) 40) Se tgx = e <, o valor de cosx senx é:

9 a) e) b) d) 41) Sendo cosx = e <, determine: a) senx cotgx e) cossecx b) tgx d) secx 42) Dados senx = e <, então, é igual a: a) 1,5 1,25 e) 0,75 b) d) 43) Se senx =, onde <, então o valor da expresão y =, é: a) 0 e) b) 1 d) TRIGONOMETRIA DOS NÚMEROS REAIS 44) Resolva em R a equação 2senx = 0. 45) As soluções reais da equação cosx = são: a) b) d) e)

10 46) Resolvendo a equação trigonométrica, acharemos as raízes: a) b) d) e) 47) Resolva as equações: a) sen2x = 0 b) cos3x = -1 tg2x = 48) O número de soluções da equação s a) 2 4 e) 6 b) 3 d) 49) A solução da equação cos a) e) 0 b) d) TRANSFORMAÇÕES TRIGONOMETRICAS 50) O valor de sen70 cos50 + sen50 cos70 é: a) 1 e) b) d)

11 51) Se senx =, então sen( a) e) b) d) 52) A expressão sen( para todo,equivalente a: a) 2senx senx + cosx e) 2cosx b) 2senx d) senx - cosx 53) Simplificando a expressão onde x obtem-se: a ) -cosx cosx e) cotgx b)- secx d) tgx 54) Sendo sena = senb = e 0 < a, b <, o valor de sen(a + b) é: a) 0 e) b) d) 55) Se então x pode ser: a) e) d) 56) A expressão (sen10 + cos80 )cos10 é equivalente a: a) sen5º d) cos20 b) sen10 e) cos10 sen20

12 57) O valor de (tg20 + cotg20 )sen40 é: a) 2 d) sen20º + cos20 b) 1 e) sen20º cos20º 0 58) A expressão, com senxcosx, é igual a: a) tgx d) cotg2x b) cotgx e) 0 tg2x 59) Simplificando a expressão para <, obtém-se: a) senx d) 1 b) 2 e) cosx 0 FUNÇÕES TRIGONOMETRICAS 60) Os valores que m pode assumir, para que exista o arco x satisfazendo a igualdade senx = são: a) d) 0 b) 2 e) 61) O conjunto imagem da função é: a) d) -3 b) 2 e) 62) O conjunto imagem da função é:

13 a) d) b) e) 63) Determinar o período das funções: a) d) b) ) NÚMEROS COMPLEXOS 64) Indicando o conjugado complexo de z por e a unidade imaginária por i, obtenha z em cada caso a seguir: a) z + 2 b) 2z + i. 65) Obtenha a forma trigonométrica de: a) 1 f) i b) 2 g) + i h) -1 d) 1 + i i) i e) j) 1 i 66) Obtenha a forma algébrica de: a) 2(cos20 + i.sen20 )(cos25 + i.sen25 ) b) (cós 10 + i.sen10 )(cos20 + i.sen20º)(cos30 + i.sen30 )

14 d) 67) Sendo obtenha a forma algébrica de: a) (cos + i.s b) (cos 2 68) Sendo z =, represente na forma trigonométrica os seguintes números complexos: a) z Resp.: b) Resp.: z 3 Resp.: 69) Passe para a forma algébrica os complexos: a) z = Resp.; z = b) z = ) Resp.; z = z = Resp.; z = 70) Calcule: a) 8 Resp.; z = b) Resp.; z = 71) Dado o número complexo z = calcule z 12. Resp.:

15 RESPOSTA DOS EXERCICIOS TRIÃNGULO RETÂNGULO 1) 5,1 m 2) 540m ; aproximadamente 2062m 3) R$ 10,00 4) TRIÃNGULOS QUAISQUER 1) 100 2) X = 2 ; y = 0,73 3) 4) m 5) m 6) 7) e 8) e 9) b 10) a) 4 b) ) a) 2 12) b b) 2 MEDIDAS DE ARCOS 13) c 14) c 15) c 16) b 17) b 18) e SENO E COSSENO DE UM ARCO TRIGONOMETRICO 19) 3

16 20) 3 21) 0 22) 1 23) a) { b) { { d) { e) { f){ 24) a) {x / b) {x / 0 ou {x / d) {x / 0 ou e) {x / f) { 25) {0,,, } 26) d 27) a 28) a 29) {sen 1, sen 30) a 31) c

17 32) c 33) 34) c 35) a) { b){ e) { 36) x = ou x = 37) { 38) d 39) c 40) e 41) a ) e) b) d) 42) a 43) d 44) x = 45) c 46) b 47) a) 2x= x =, { x = } b) Cos 3x = -1 3x = x = {x }

18 Tg2x = 2x = +, h {x +, h 48) b 49) a TRANSFORMAÇÕES TRIGONOMETRICAS 50) b 51) a 52) a 53) a 54) d 55) e 56) c 57) a 58) b 59) b FUNÇÕES TRIGONOMETRICAS 60) d 61) c 62) c 63) a) b) 2 d) NÚMEROS COMPLEXOS

19 64) a) 5 + 3i b) 65) a) 1(cos0 + i.sen0) b) 2(cos0 + i.sen0) 2(cos d) ( cos + i. sen e) 2(cós f) 1(cós g) 2(cós h) 1(cós i) 1(cos + i.sen j) ( cos + i. sen 66) a) b) d) ) 67) As demais respostas na lista.

20

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

Professor Dacar Lista de Revisão - Trigonometria

Professor Dacar Lista de Revisão - Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento 3 metros, sabendo que ele está contido em uma circunferência de diâmetro igual a 24 metros. 45 2. (UFPR) Em uma circunferência de 12 dm de comprimento,

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

Faculdade Pitágoras Unidade Betim

Faculdade Pitágoras Unidade Betim Faculdade Pitágoras Unidade Betim Atividade de Aprendizagem Orientada Nº 4 Profª: Luciene Lopes Borges Miranda Nome/ Grupo: Disciplina: Cálculo III Tempo da atividade: h Curso: Engenharia Civil Data da

Leia mais

1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Nome: nº Professor(a): Série: 1ª EM Data: / /2013 Turmas: 3101 / 3102 / 3103 Sem limite para crescer Bateria de Exercícios de Matemática II 1 Determine os valores de x e y, sabendo que os triângulos ABC

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)

Leia mais

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2 Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:

Leia mais

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011 Material Extra 011 MATEMÁTICA C PROFº LAWRENCE 01. (Cefet - MG) Um menino com altura de 1,0m empina um papagaio, em local apropriado, com um carretel de 10m de linha, conforme a figura abaixo. A altura

Leia mais

Tópico 2. Funções elementares

Tópico 2. Funções elementares Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

Exercícios Trigonometria

Exercícios Trigonometria Exercícios Trigonometria Temas Abordados: Funções Trigonométricas e Equações; Arcos na Circunferência; Redução ao Primeiro Quadrante; Razões Trigonométricas.. (Upe 0) Um relógio quebrou e está marcando

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

MATEMÁTICA TRIGONOMETRIA

MATEMÁTICA TRIGONOMETRIA MATEMÁTICA TRIGONOMETRIA 1. UFGO Considere segmentos de reta AE e BD, interceptando-se no ponto C, os triângulos retângulos ABC e CDE, e o triângulo BCE, conforme a figura abaixo. 1 Sabendo-se que as medidas

Leia mais

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG)

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG) (Unimontes-MG) (PUC-RS) Quando um relógio está marcando horas e minutos, o menor ângulo formado pelos seus ponteiros é de: Considere o relógio localizado na entrada do MCT. a) º0 b) º0 c) 7º d) º Considerando

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Agronomia / Arquitetura e Urbanismo / Engenharia Civil Prof. Luiz Miguel de Barros luizmiguel.barros@yahoo.com.br Revisão Aula 1 O que é topografia?

Leia mais

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. EP FISL Raciocínio Lógico - GEOMETRI ÁSI - TRIGONOMETRI webercampos@gmail.com 01 opyri'ght. urso gora eu Passo - Todos os direitos reservados ao autor. ÍNDIE Exercícios Resolvidos de GEOMETRI 0 Exercícios

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

1.Determine o raio do círculo de centro O. Dados: AB=3x-3 e AO=x-3 R. 12

1.Determine o raio do círculo de centro O. Dados: AB=3x-3 e AO=x-3 R. 12 Eercício de Círculo e Circunferência (Relações Métricas) 1.Determine o raio do círculo de centro O. Dados: =3-3 e O=-3 R. 12 o 2. Determine o valor de nos casos: a. s é perpendicular a. =3-5 = +7 R. 6

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA Escola Secundária de Francisco Franco Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA 1. Na figura está representado o círculo trigonométrico e um triângulo [OPR]. O ponto P desloca-se ao longo

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre 1 MATEMÁTICA II Aula 5 Trigonometria na Circunferência Professor Luciano Nóbrega 1º Bimestre 2 ARCOS e ÂNGULOS A medida de um arco é, por definição, a medida do ângulo central correspondente. As unidades

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

SISTEMA DE EQUAÇÕES DO 2º GRAU

SISTEMA DE EQUAÇÕES DO 2º GRAU SISTEMA DE EQUAÇÕES DO 2º GRAU Os sistemas a seguir envolverão equações do 2º grau, lembrando de que suas soluções constituem na determinação do par ordenado { (x, y )(x, y ) }. Resolver um sistema envolvendo

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura:

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura: REVISÃO RELAÇÕES TRIGONOMÉTRICAS E REDUÇÃO AO PRIMEIRO QUADRANTE DO CICLO TRIGONOMÉTRICO TURMA: ª SÉRIE DO ENSINO MÉDIO PROF. LUCAS FACTOR Trigonometria no Triangulo Retângulo Considere o triangulo retângulo

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

Treino Matemática Planificação de Sólidos e Trigonometria Básica

Treino Matemática Planificação de Sólidos e Trigonometria Básica 1.Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é.ao fazer um molde de um copo, em cartolina, na forma de cilindro

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

NDMAT Núcleo de Desenvolvimentos Matemáticos

NDMAT Núcleo de Desenvolvimentos Matemáticos 01) (UFPE) Uma ponte deve ser construída sobre um rio, unindo os pontos e B, como ilustrado na figura abaixo. Para calcular o comprimento B, escolhe-se um ponto C, na mesma margem em que B está, e medem-se

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

Técnico de Nível Médio Subsequente em Geologia. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega

Técnico de Nível Médio Subsequente em Geologia. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega Técnico de Nível Médio Subsequente em Geologia 1 ula 2 Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega 2 ELEMENTOS DE UM TRIÂNGULO RETÂNGULO a b ß c Lembre-se: soma das medidas dos ângulos

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes: TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema

Leia mais

Polígonos Regulares Inscritos e Circunscritos

Polígonos Regulares Inscritos e Circunscritos Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Assunto: Revisão Matemática Prof. Ederaldo Azevedo Aula 2 e-mail: ederaldoazevedo@yahoo.com.br Metro é uma unidade básica para representação de medidas de comprimento no Sistema Internacional(SI). Prefixos

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

Representação de sólidos

Representação de sólidos 110 Representação de sólidos Pirâmides e prismas regulares com base(s) contida(s) em planos verticais ou de topo Desenhe as projecções de uma pirâmide quadrangular regular, situada no 1. diedro e com a

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 7.01.011 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sua folha de respostas,

Leia mais

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ECONOMIA Profa. Maria Antônia C. Gouveia QUESTÃO 0 Laura caminha pelo menos km por dia. Rita também caminha todos os dias, e a soma das distâncias diárias

Leia mais

EXERCICIOS APROFUNDAMENTO MATEMATICA TRIGONOMETRIA

EXERCICIOS APROFUNDAMENTO MATEMATICA TRIGONOMETRIA 1. (Unifesp 015) O metano (CH 4) possui molécula de geometria tetraédrica (figura 1). Do ponto de vista matemático, isso significa que, em uma molécula de metano, os 4 átomos de hidrogênio localizam-se

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

Escola Secundária de Alcochete. 11.º Ano Matemática A Geometria no Plano e no Espaço II

Escola Secundária de Alcochete. 11.º Ano Matemática A Geometria no Plano e no Espaço II Escola Secundária de Alcochete 11.º Ano Matemática A Geometria no Plano e no Espaço II Equações Trigonométricas O que são? São equações que envolvem o uso de funções trigonométricas. Mas... Ainda não se

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

TRIGONOMETRIA III) essa medida é denominada de tangente de α e indicada

TRIGONOMETRIA III) essa medida é denominada de tangente de α e indicada MTEMÁTIC TRIGONOMETRI. TRIÂNGULO RETÂNGULO.. Definição Define-se como triângulo retângulo a qualquer triângulo que possua um de seus ângulos internos reto (medida de 90º). Representação e Elementos Catetos:

Leia mais

RESUMO TEÓRICO. Ângulos Notáveis. 30 o 45 o 60 o 120 o 135 o 150 o. sen. cos

RESUMO TEÓRICO. Ângulos Notáveis. 30 o 45 o 60 o 120 o 135 o 150 o. sen. cos 1 RESUMO TEÓRICO Ângulos Notáveis 0 o 45 o 60 o 10 o 15 o 150 o sen 1 1 cos 1 1 R sen C c sen B b sen A a ˆ ˆ ˆ cos c b c b a ATIVIDADES 1) Calcule a medida do lado BC a seguir: PARTE A ) Um paralelogramo

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

01) 45 02) 46 03) 48 04) 49,5 05) 66

01) 45 02) 46 03) 48 04) 49,5 05) 66 PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função

Leia mais

LISTA DE EXERCÍCIOS MATEMÁTICA

LISTA DE EXERCÍCIOS MATEMÁTICA LISTA DE EXERCÍCIOS MATEMÁTICA P E P - º BIMESTRE 9º ANO Aluno (a): Turno: Turma: Unidade Data: / /05 EXERCÍCIOS P Potenciação/Radiciação QUESTÃO 0 Calcule as seguintes potências: A. B. 0 6 C. (-) D. E.

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO.

TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1. (VUNESP-SP) Uma escada apoiada em uma parede, num ponto que dista m do solo, forma, com essa parede, um ângulo de 0.a distancia da parede ao pé da escada, em metros,

Leia mais

Trigonometria. MA092 Geometria plana e analítica. Resumo do problema. Um problema prático de distância

Trigonometria. MA092 Geometria plana e analítica. Resumo do problema. Um problema prático de distância Trigonometria MA092 Geometria plana e analítica do triângulo retângulo. Francisco A. M. Gomes UNICAMP - IMECC Setembro de 205 O que é trigonometria A trigonometria é um ramo da matemática no qual se estuda

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

AMEI Escolar Matemática 9º Ano Trigonometria do triângulo rectângulo

AMEI Escolar Matemática 9º Ano Trigonometria do triângulo rectângulo AMEI Escolar Matemática 9º Ano Trigonometria do triângulo rectângulo Conteúdos desta unidade: Razões trigonométricas de um ângulo agudo. Resolução de triângulos rectângulos; Relações entre as razões trigonométricas

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência

Leia mais

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Razões trigonométricas A palavra trigonometria significa medir triângulos. Na figura, α e β são ângulos agudos do triângulo rectângulo. [CB] é a hipotenusa.

Leia mais

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento

Leia mais

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

Universidade Estadual de Mato Grosso do Sul - UEMS 1 a LISTA DE EXERCÍCIOS DE MECÂNICA - NOTURNO. Sejam 3 vetores a, b e c dados por.

Universidade Estadual de Mato Grosso do Sul - UEMS 1 a LISTA DE EXERCÍCIOS DE MECÂNICA - NOTURNO. Sejam 3 vetores a, b e c dados por. Universidade Estadual de Mato Grosso do Sul - UEMS 1 a LISTA DE EXERCÍCIOS DE MECÂNICA - NOTURNO Questão 1 Sejam 3 vetores a, b e c dados por a = (2, 1, 3), b = ( 1, 1, 0) e c = (0, 2, 1). Determine: a)

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA Sistema ELITE de Ensino IME - 01/01 1 COMENTÁRIO DA PROVA 01. O polinômio P() = 5 + 10 0 + 81 possui raízes compleas simétricas e uma raiz com valor igual ao módulo das raízes compleas. Determine todas

Leia mais

3)Seno de alguns arcos importantes

3)Seno de alguns arcos importantes Aula 4-A -Funções trigonométricas no ciclo trigonométrico ) Função seno (definição) )Gráfico da função seno )Seno de alguns arcos imortantes 4) Equações e inequações 5) Resolução de exercícios ) Função

Leia mais

SÓ ABRA QUANDO AUTORIZADO.

SÓ ABRA QUANDO AUTORIZADO. UNIVERSIDADE FEDERAL DE MINAS GERAIS FÍSICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este Caderno de Provas contém seis questões, constituídas de itens e subitens,

Leia mais

Terceira lista de exercícios.

Terceira lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2016 Terceira lista de exercícios. Polígonos. Quadriláteros notáveis. Pontos notáveis do triângulo. 1. (Dolce/Pompeo) Determine o valor de xx nas figuras

Leia mais

TRIÂNGULO RETÂNGULO. (PINKER, Steven. Como a Mente Funciona. São Paulo: Companhia das Letras, 1998, p. 9.)

TRIÂNGULO RETÂNGULO. (PINKER, Steven. Como a Mente Funciona. São Paulo: Companhia das Letras, 1998, p. 9.) TRIÂNGULO RETÂNGULO TEXTO PARA A PRÓXIMA QUESTÃO: Qualquer livro intitulado Como a mente funciona deveria começar com uma nota de humildade; começarei com duas. Primeiro, não entendemos como a mente funciona

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

Exercícios cinemática Conceitos básicos e Velocidade média

Exercícios cinemática Conceitos básicos e Velocidade média Física II Professor Alexandre De Maria Exercícios cinemática Conceitos básicos e Velocidade média COMPETÊNCIA 1 Compreender as Ciências Naturais e as tecnologias a elas associadas como construções humanas,

Leia mais

r 5 200 m b) 1 min 5 60 s s t a 5

r 5 200 m b) 1 min 5 60 s s t a 5 Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 0 Um atleta desloca-se à velocidade constante de 7,8 m/s numa ista circular de raio 00 m. Determine as medidas, em radianos e

Leia mais