Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011.

Tamanho: px
Começar a partir da página:

Download "Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011."

Transcrição

1 Rdição TémiT Pof. dgd P. M. Amoim Disipli: F 1 1º sem/11.

2 Iodução A eegi ssume vloes diseos. Tempo e espço são elivos. M Pl Albe isei

3 Méi Rdição Méi: 1 Loliável: esáoed em um dd egião do espço. Podeável: esássoid um mss. 3 Copusul: pode se ompeedid omo um ojuo de píuls. Diâmi: Leis de Newo Rdição: 1 Não-loliáveldisibuíd: ão pode se lolid esá disibuíd po odo o espço. Impodeável: ão épossível ssoi um mss el. 3 Odulói: pode se ompeedid omo sedo spod po um od. quções de Mwell

4 Rdição Témi É dição emiid po um opo devido àsu empeu: odo opo emie ese ipo de dição p o meio e dele bsove. m bis empeus mio de emissão esá fi do ifvemelho. Aumedo- gdivmee ele omeç emii lu visível de iíio lu vemelh pssdo segui p mel vede ul e em ls empeus lu b hegdo à egião do ulviole do espeo eleomgéio.

5 Rdição Témi Se um opo esámis quee que o meio: missão > Absoção ele esfi éigi o equilíbio émio. ode missão Absoção. A méi em esdo odesdo sólido ou líquido emie um espeo oíuo de dição. A elção ee empeu e espeo de dição emiid éuilid o piômeo óio de filmeo: foli-se lu d foe sob o filmeo d lâmpd e vi-se oee lâmpd éque o filmeo peç sumi imgem d foe. A libção uiddos + poeiômeos de peisão medid peis d empeu!

6 Copo Nego Um opo queido emie dição eleomgéi em um espeo oíuo om mio iesidde egião do ifvemelho IR. Méi e dição iegem e igem o equilíbio emodiâmio vés de os de eegi. Iesidde emissiv e: eegi emiid po uidde de áe e po uidde de empo. Absovidde ou bsobâi omo sedo fção d eegi iidee sobe supefíie de um opo que é bsovid po ele.

7 Copo Nego De um mei gel fom delhd do espeo de dição émi depede d omposição do opo. No eo epeiêi os mos que háum ipo de opo quee que emie espeos de áe uivesl. sses opos são hmdos de opos egos iso é opos ujs supefíies bsovem od dição émi iidee sobe eles. O modelo páio mis simples de um opo ego éo de um peque beu um objeo oo: qulque dição que e vi sedo efleid e bsovid s pedes e b po se omplemee bsovid. Se o objeo oo fo queido po um foe de lo o seu ieio háemissão de dição pelo oifíio opo ego.

8 Copo Nego O opo ego bsove od dição que ele iide iso é su bsoviddeéigul 1 1 e su efleividde éul deoedo dese úlimo fo seu ome ego. O opo ego ão em o àefleão ms pode e o àemissão. Todo bsovee é bom emisso. Logo o opo ego lém de bsovedo idel é mbém um emisso idel. Su emissividde éigul 1 e 1. Um opo ego idepedeemee do meil om que éofeiodo emie dições émis om mesm iesidde um dd empeu e p d ompimeo de od. Dí deoe o uso do opo ego p o esudo ds dições emiids. Avés do oifíio em-se emissão de dição po queimeo. Iesidde d dição pelo ompimeo de od....emplo 1- do isbeg

9 Rdição de Copo Nego Rdiâi:eegi ol emiid po uidde de empo po uidde de áe pelo opo queido um empeu T. R 1 S U T e [ RT ] W / Rdiâiespel R e R λ em emos d feqüêi e ompimeo de od l que quidde R de R λ dλsej empol om que eegi de um opo queido éidid po uidde de áe s feqüêis ee e +de os ompimeos de od λe λ+dλ: R R λ dr d dr dλ e e [ R [ R λ ] ] J m s m W Ws / m m H W 3 W / m m m

10 Rdição de Copo Nego A diâir T e s diâisespeis R λ e R esão eliodos d seguie mei: R T R d Rλdλ e Rλ A desidde de eegi espel u λ e u são dds po: u filmee s desiddes de eegi espeis u λ e u esão eliods om s diâisespeis R λ e R vés de: λ du λ u uλ λ d dλ 1 R λ uλ. 4 R λ

11 Resuldos epeimeis Repeido-se epeiêi p difeees empeus: Iesidde d dição pel feqüêi p 3 empeus disis....emplo 1-1 do isbeg 1 Aumedo-se empeu p um dd feqüêi iesidde d dição ume. A lei de Sef- olm plid o opo ego foee dição ol emiid: R T 4 σt ; σ W / m Aumedo-se empeu o pio d disibuição se deslo p fequêis mioes ou ompimeos de ods meoes. De odo om lei de deslomeo de Wie: λ T 3 Imá mk K 4

12 Teoi lássi d dição de vidde A hipóese fudmel do modelo Rleigh-Jeséque o mpo de dição esáem equilíbio emodiâmio om o opo ego que o emie. Com es hipóese Si Rleigh osideou o de eegi ee o opo queido um empeu T e os modos de osilção do mpo eleomgéio eisees deo d vidde opo ego podedo pli o Teoem d qüipição d egi o poblem d dição de opo ego. Teoem d qüipição de egi: em um sisem emodiâmio em equilíbio émio um empeu T om N gus de libedde d um deles oibui p o sisem om mesm quidde de eegi eleme T J/K.

13 Teoi lássi d dição de vidde Des fom eegi ol oid o mpo de dição om feqüêi ee e + éeão. U T Nes equção éo úmeo de modos omis de osilção gus de libedde do mpo de dição om feqüêi ee e +. Aqui éimpoe lemb que éum viável oíu o psso que epess um quidde dise! O poblem eão pss se osui um modelo p o álulo de. P ese álulo Si Rleigh osideou dição de opo ego omo sedo o mpo eleomgéio deo de um vidde úbi de es fei de meil oduo mpo eléio supefíie éulo um dd empeu T.

14 Teoi lássi d dição de vidde O mpo eleomgéio deo d vidde lém d equção de od deve obedee mbém odições de ooo dequds. A equção de od p o mpo eleomgéio vidde é 1 1 e P es geomei s odições de ooos que o mpo de dição deve obedee são:

15 Teoi lássi d dição de vidde Cosidedo que od eleomgéi sej ompos de ods hmôis o empo de feqüêi emos que: i i e e e ω ω Subsiuido es popos de solução equção de od eomos hmd qução de Helmhol: uj solução p o mpo eléio o so de geomei úbi é ddo po: ω / ω + + ω

16 Teoi lássi d dição de vidde se se se os os os os os os Ode e são ieios posiivos e ão ulos! Assim podemos epess s ompoees do veo de od fom: ˆ..ˆ ˆ. e j i

17 Teoi lássi d dição de vidde Poo emos que:. + + ω / Logo eomos que: T-se de um esfe s viáveis dises e. Além disso es esfe es ed oigem e em io igul /. A espessu d s esféi /. O úmeo de modos éumeimee igul o volume des s esféi oid o oe posiivo.

18 Teoi lássi d dição de vidde Sbemos que o volume des s esféi é su espessu: e io: No oe posiivo: V ' / / A oibuição ddo po Jes em 195 foi oside que o mpo eleomgéio em esdos de polição possíveis. Logo '

19 Teoi lássi d dição de vidde Tedo eão luldo o úmeo ol de modos de osilção do mpo eleomgéio Si Rleigh pôde eão deemi eegi do mpo de dição U: Com ese esuldo Si Rleigh deemiou eão desidde de eegi do mpo de dição du vidde úbi: Iegdo e ompdo om diâi espel: T T U d T V du du T R u R

20 Poblem d Teoi Clássi Ao epli po meio d eoi lássi os esuldos epeimeis obidos obsevou-se que p gdes ompimeos de od ou bis fequêis eisi e oodâi om os esuldos epeimeis. eo p ompimeos de od meoes ou fequêismioes hvi gde disodâi ee eoi e epeiêi: ásofe do ulviole. ρ T 8 3 T Não odi om epeiêi! Solução: modelo de Pl. FIM-Aul 3

REGIME TRANSIENTE. Métodos para Problemas de Valor Inicial. I. Métodos de Dois Níveis

REGIME TRANSIENTE. Métodos para Problemas de Valor Inicial. I. Métodos de Dois Níveis Agel Nieckele UC-Rio REGIME TRANIENTE Méodos p oblems de Vlo Iicil I. Méodos de Dois Níveis i. eplício ou Eule eplício ou Fowd Eule Eule p fee Tlo p fee: o f ; o f 3 3 4 4... 3 6 4 4! 0 po.. odem Agel

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

Transformadores. Ligações e Esfasamentos. Nos transformadores trifásicos existe uma diferença de fase entre os fasores. Manuel Vaz Guedes.

Transformadores. Ligações e Esfasamentos. Nos transformadores trifásicos existe uma diferença de fase entre os fasores. Manuel Vaz Guedes. Tfomdoe Ligçõe e Efmeo Muel Vz Guede FEUP Fuldde de Egehi Uiveidde do Poo o fomdoe ifáio exie um difeeç de fe ee o foe epeeivo d eão o eolmeo pimáio e d eão o eolmeo eudáio. Ee âgulo de difeeç de fe depede

Leia mais

Revisão: Lei da Inércia 1ª Lei de Newton

Revisão: Lei da Inércia 1ª Lei de Newton 3-9-16 Sumário Uidde I MECÂNICA 1- d prícul Moimeos sob ção de um forç resule cose - Segud lei de Newo (referecil fio e referecil ligdo à prícul). - As compoees d forç. - Trjeóri cosoe s orieções d forç

Leia mais

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo: I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz

Leia mais

Exame - Modelagem e Simulação - 30/01/2004. ( x Xc) + ( y Yc) = r, onde x e y são observações e X c, Y c e r são

Exame - Modelagem e Simulação - 30/01/2004. ( x Xc) + ( y Yc) = r, onde x e y são observações e X c, Y c e r são Eame - odelagem e Simulação - 0/0/004 ome: )[5] Supoha que voê queia ivesi $0000,00 a bolsa de valoes ompado ações em uma de ompahias e B s pevisões idiam que as ações de deveão e um luo de 50% se as odições

Leia mais

SÍNTESE. 1. Geometria analítica no plano. 2. Cálculo vetorial no plano. Inequações cartesianas de semiplanos

SÍNTESE. 1. Geometria analítica no plano. 2. Cálculo vetorial no plano. Inequações cartesianas de semiplanos j h i TEMA III Geometi Anlíti 1. Geometi nlíti no plno Inequções tesins de semiplnos > < > + + < + + Sejm A( 1, ) e B( 1, ) dois pontos do plno: Distâni ente A e B. ( 1 1 ) + ( ) h 1 + 1 Ponto médio do

Leia mais

Antenas de abertura. ANTENAS IST A. Moreira 1

Antenas de abertura. ANTENAS IST A. Moreira 1 tes de betu s tes de betu são usds s bds de UHF, SHF e HF, bds de fequêcis tmbém desigds po micoods ou ods cetimétics e milimétics s cofiguções mis comum dests tes são s que esultm d epsão de um gui de

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

CAPÍTULO 2. SEÇÃO 2.10 página 20 ( ) ( ) ( ) 3 ( ) ( ) ( ) 7 ( ) 8 ( ) ( ) , achar: 1. Se ( ) 1. = x x. a) ( ) 4 1. b) ( ) t t. t t.

CAPÍTULO 2. SEÇÃO 2.10 página 20 ( ) ( ) ( ) 3 ( ) ( ) ( ) 7 ( ) 8 ( ) ( ) , achar: 1. Se ( ) 1. = x x. a) ( ) 4 1. b) ( ) t t. t t. 8 CAPÍTULO SEÇÃO.0 pái 0. Se, c: ) 0 0 0. b) 0. c). d). e) 6. ).. Se, deemie: ) 0 8 8 0 0 0 9 Poo, 0 98 6 6 9 b) [ ] 9 c) 9 9. d). 8 88 8 8 8 9 8 0 e) 0 0 0 0 ( ) 0 ( ) ( ) ( ) ) [ ] ( ) ( ) ( ) [ ()]..

Leia mais

Ondas EM na interface de dielétricos

Ondas EM na interface de dielétricos Oda M a iefae de dieléio iuo de Fíia da USP Pof. Mafedo H. Tabaik quaçõe de Maxwell o váuo um meio om e ( ( Tabaik (3 4393-FUSP Tabaik (3 4393-FUSP ( quaçõe de Maxwell a foma iegal um meio om e d q d φ.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica PME MECÂNIC B ª Pov 3/5/6 Dução minuos (Não é pemiido o uso de clculdos). B C D 3 ª Quesão (3,5 ponos) fiu mos um disco homoêneo, de mss m e io, que i livemene em ono de seu ceno fixo com velocidde nul

Leia mais

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3 //, :: Mrizes Defiição Noção de u riz Mriz Qudrd Mriz Digol Mriz lih Mriz colu Mrizes iguis Eercício Mriz Trspos Proprieddes d riz rspos Mriz Opos Mriz Nul Mriz ideidde ou Mriz uidde dição de Mrizes Eercício

Leia mais

fator de compressibilidade

fator de compressibilidade //018 GASES REAIS of. Hley. Mtins Filho Desvios d idelidde N H Idel Rel Idel Rel Medid do desvio: fto de opessibilidde Z Z id n / n (1) 1 //018 sepções inteoleules édis (1 diâetos oleules), foçs ttivs

Leia mais

Plano de Aulas. Matemática. Módulo 18 Introdução à geometria espacial

Plano de Aulas. Matemática. Módulo 18 Introdução à geometria espacial lno de ul Memáic Módulo 18 Inodução à geomei epcil Reolução do eecício popoo Reomd do conceio ÍTULO 1 1 ) Não. b) Sim. O ê pono deeminm o plno que o conêm. c) Não peence. d) Infinio pono. O pono, e I e

Leia mais

B é uma matriz 2 x2;

B é uma matriz 2 x2; MTRIZES e DETERMINNTES Defiição: Mriz m é um bel de m, úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis) Eemplos: é um mriz ; B é um mriz ; Como podemos or os eemplos e respecivmee,

Leia mais

IFUSP PSub 03/12/2013

IFUSP PSub 03/12/2013 Físi IV p ngni léi IFSP - 9 PSub // pov ução inuos. Rsolv qusão n fol osponn. s o vso s nssáio. sv fo lgívl lápis ou in. É piio o uso lulo. Jusifiqu sus sposs. Não bs opi fóul o fouláio. Sj éio: pov é

Leia mais

Magnetostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Magnetostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Fuldde de Engenhi Mgnetostáti OpE - M 7/8 Pogm de Ópti e Eletomgnetismo Fuldde de Engenhi Análise Vetoil (evisão) uls Eletostáti e Mgnetostáti 8 uls mpos e Onds Eletomgnétis 6 uls Ópti Geométi 3 uls Fis

Leia mais

Transmissão de Calor. Resumo de formulas e tabelas de Condução

Transmissão de Calor. Resumo de formulas e tabelas de Condução Tasmissão de Cao esmo de fomas e abeas de Codção João Lís Tose de Azevedo Obo de 7 esisêcias émicas de paedes Geomeia Paede paa Casca ciídica Casca esféica Covecção em spefície [K/W] L ( De Di ) ( Di )

Leia mais

DINÂMICA DA CORDA VIBRANTE. A equação da onda unidimensional: por que deveríamos estudar o deslocamento de uma corda

DINÂMICA DA CORDA VIBRANTE. A equação da onda unidimensional: por que deveríamos estudar o deslocamento de uma corda DINÂMICA DA CORDA VIBRANTE A eqação da oda idimesioal: por qe deveríamos esdar o desloameo de ma orda Cosidere ma orda de omprimeo, levemee esiada: Na figra o desloameo em sido proposialmee eagerado...

Leia mais

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u.

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u. Grio lis e MAT A forç resle em iesie N ireção o prir o semi-eio posiio os A eloie resle é m/h m âglo e -6 o sese O ião ee segir ireção -6 o soese Ese proo iero represe o lor o esoqe represeo pelo eor m

Leia mais

4. lei de Gauss. lei de Gauss a ideia. r usar a sobreposição. muito importante!

4. lei de Gauss. lei de Gauss a ideia. r usar a sobreposição. muito importante! cmpo e potecil elécticos: cição cmpo e potecil elécticos: efeito se um ptícul cegd,, fo colocd um cmpo eléctico: F Um cg potul ci um cmpo e um potecil à su volt ˆ; ke k e us sobeposição estão elciodos:

Leia mais

O guia de ondas retangular é uma região do espaço delimitada por dois condutores em

O guia de ondas retangular é uma região do espaço delimitada por dois condutores em 5 Gui d ods gul O gui d ods gul é um gião do spço dlimid po dois oduos m b Figu 8 Gui d ods gul As soluçõs d qução d od p o sism d oodds gul á om obids iom s quçõs (38 (39, pliqumos ss soluçõs às odiçõs

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO M 100 MÂNI ov Sustitutiv 1 de deemo de 009 ução d ov: 100 minutos (não é pemitido uso de luldos) 1ª Questão (3,0 pontos) pl tinul de mss está lid às s e, d um de mss m, e à de mss m. Todos os sólidos são

Leia mais

CAPÍTULO 1. , e o vetor r representa a posição desta mesma partícula no instante t, indicado por. r P(t)

CAPÍTULO 1. , e o vetor r representa a posição desta mesma partícula no instante t, indicado por. r P(t) 1 CPÍTULO 1 CINEMÁTIC VETORIL D PRTÍCUL Feqüeemee eg lei e Newo é eci fom cláic qe elcio foç ele com celeção pícl. O eo ciemáic pícl em como objeio obe elçõe memáic ee ge poição, elocie e celeção, m eemio

Leia mais

Geometria Plana 04 Prof. Valdir

Geometria Plana 04 Prof. Valdir pé-vestiul e ensino médio QUILÁTS TÁVIS 1. efinição É o polígono que possui quto ldos. o nosso estudo, vmos onside pens os qudiláteos onveos. e i Sendo:,,, véties do qudiláteo; i 1, i, i 3, i 4 ângulos

Leia mais

O atrito de rolamento.

O atrito de rolamento. engengens. Obseve-se que s foçs de tito de olmento epesentds n figu (F e f ) têm sentidos opostos. (Sugeimos que voê, ntes de possegui, poue i um modelo que pemit expli s foçs de tito de olmento). "Rffiniet

Leia mais

Unidade 3 Geometria: triângulos

Unidade 3 Geometria: triângulos Sugeõe de ividde Unidde 3 Geomei: iângulo 8 MTEMÁTI 1 Memáic 1. No iângulo egui você deve deemin: ) medid do ângulo ; b) medid do ângulo ; c) medid do ângulo z; d) medid do ângulo eeno o ângulo z. 120

Leia mais

EXERCÍCIO: ONDAS INTERMITENTES

EXERCÍCIO: ONDAS INTERMITENTES EXERCÍCIO: ONDA INTERMITENTE Cosidee ua aoxiação de u uaeo seafoiado o aaidade igual a 750/h, e adia ua siuação e que a deada a hoa-io as aoxiações da ia iial é de ea de 600 /h, fluuado ee 25% e 75% e

Leia mais

Lista de Exercícios Cálculo de Volumes por Cascas Cilíndricas

Lista de Exercícios Cálculo de Volumes por Cascas Cilíndricas List de Eecícios Cálculo de olumes po Cscs Cilíndics ) Use o método ds cscs cilíndics p detemin o volume gedo pel otção o edo do eio y d egião limitd pels cuvs dds. Esoce egião e csc típic. ) y =, y =,

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. PME 2100 Mecânica A Segunda Prova 23 de outubro de 2007

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. PME 2100 Mecânica A Segunda Prova 23 de outubro de 2007 ES PITÉNI D UNIVESIDDE DE SÃ PU Deptmento de Engenh Mecânc PME Mecânc Segund Po 3 de outuo de 7 ª Questão: (3,5 Ptos) com eto de otção constnte Ω Ω g no plno hoontl em tono de. nclnd pode desl em um lu

Leia mais

Resoluções das Atividades

Resoluções das Atividades esoluções s tivies umáio óulo Geometi pln IV... óulo Geometi pln V... óulo Geometi pln VI...7 0 óulo emos que: Geometi pln IV tivies p l I. e e N são pontos méios N méi). II. ntão: 0 m e 80 m N + (se é

Leia mais

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4 UNIVERSIDDE FEDERL D PRÍB ENTRO DE IÊNIS EXTS E D NTUREZ DEPRTMENTO DE MTEMÁTI ÁLULO DIFERENIL E INTEGRLL II PLIÇÕES D INTEGRLL. oodends Poles O sstem de coodends que conhecemos p dentfc pontos noo plno

Leia mais

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO:

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO: QUESTÃO A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE II- COLÉGIO ANCHIETA-BA ELABOAÇÃO: POF. ADIANO CAIBÉ e WALTE POTO. POFA, MAIA ANTÔNIA C. GOUVEIA Sejm ABC e ADE dois tiângulos etângulos conguentes, com AB

Leia mais

Estados e suas equações

Estados e suas equações UI4_eo- ntunh Not e etuo uefíie teoinâi 5//7 g. / to e u equçõe águ óli ou líqui o C: = / te, /kg. o o e águ: /(.),4[. /(kgole.k)]7k/([kgole/kg]) /kg UI4_eo- ntunh Not e etuo uefíie teoinâi 5//7 g. / Oee

Leia mais

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400

Leia mais

b) AB = 28cm; razão = 4 c) AB = 36cm; razão = 5 e) AB = 72cm; razão = 5

b) AB = 28cm; razão = 4 c) AB = 36cm; razão = 5 e) AB = 72cm; razão = 5 S RESPOSTS ESTÃO NO FINL DOS EXERÍIOS. Segeo Popoioi. Qui pe de egeo ão ioeuávei? = ; D = 9 =. Logo ão oeuávei poque D 9 zão ee ele é u úeo iol. = ; D = = ; D = = ; D = 6. O egeo, D, EF e GH, e ode, ão

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO z Questão 1 (3,0 pontos). N figu o ldo, os vétices FGH deteminm um cubo de ldo. os vétices, e G desse cubo plicm-se s foçs indicds. ede-se: () detemin esultnte do sistem de foçs; (b) detemin o momento

Leia mais

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1 esoluções pítulo ojeções, ângulos e distâncis 0 Sendo pojeção otogonl do ponto soe o plno, tem-se o tiângulo, etângulo em, confome figu. t TIIS SL ÁG. 0 0 0 onte luminos 7 cm 8 cm estcndo o tiângulo, tem-se

Leia mais

3. Equações diferenciais parciais 32

3. Equações diferenciais parciais 32 . Eqções diferenciis prciis.. Definição de eqção diferencil prcil Definição: Chm-se eqção diferencil prcil m eqção qe coném m o mis fnções desconhecids de ds o mis vriáveis e s ss derivds prciis em relção

Leia mais

Matrizes - Teoria ...

Matrizes - Teoria ... Mrzs - Tor Mrz Rgulr Mrz Rgulr d ord por é u qudro fordo por los dsposos lhs olus ou s Rprsros u rz d lhs olus por Os los d rz srão dfdos por u lr o dos íds o prro íd d lh o sgudo íd olu à qu pr o lo Iguldd

Leia mais

GABARITO. 2 Matemática D 06) 11 = = = 01. Correto. Do enunciado temos que: h = 4r. Portanto, V cilindro. Portanto, por Pitágoras:

GABARITO. 2 Matemática D 06) 11 = = = 01. Correto. Do enunciado temos que: h = 4r. Portanto, V cilindro. Portanto, por Pitágoras: Mtemáti D Extensivo V. 8 Exeíios 0) ) 96 dm b) ) (x) p x : () 5. + 8. 6 dm Potnto: V b... 6 96 dm b) Os vloes de x devem stisfze s seguintes equções. Sendo V. b. então π.. (x 5x + 8x) 6π dm Potnto x 5x

Leia mais

PSI3483. Ondas Eletromagnéticas em Meios Guiados

PSI3483. Ondas Eletromagnéticas em Meios Guiados PSI3483 Ods letrogétis e Meios Guidos Guis de Ods - Coeito Gui de Ods Retgulr Gui de Ods Cilídrios PSI3483 - Ods leltrogétis e Meios Guidos - 17 Guis de ods struturs os De teril odutor Co seção trsversl

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -4-6 -8 - - -4-6 -8 - - Frequec Hz Hmmig iser Chebshev Fculdde de Egehri Sisems Lieres e Ivries Power Specrl Desi Ev B F CS CS B F CS Groud Revolue Bod Revolue Bod Power/frequec db/hz Sie Wve Joi Acuor

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA 1 ESL PLITÉI D UIVESIDDE DE SÃ PUL LIST DE EXEÍIS - PME100 - MEÂI DIÂMI LIST DE EXEÍIS MPLEMETES LIV TEXT (FÇ, MTSUMU 1 Tês bs unifomes de mss m são soldds confome most fiu. Detemin os momentos e podutos

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho

ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho LCTROTCNI TÓRIC Tspêis ds uls tóis Mi Iês os d Cvlo 4/5 LCTROTCNI TÓRIC Ods ltomgétis Lis d tsmissão Guis d od ilídios o Guis mtálios Pls plls Rtguls Ciuls o Guis dilétios Pls Fis Óptis GUIS D OND CILÍNDRICOS

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

O ROTACIONAL E O TEOREMA DE STOKES

O ROTACIONAL E O TEOREMA DE STOKES 14 O ROTACONAL E O TEOREMA DE STOKES 14.1 - O ROTACONAL A equção:. dl ( A) (14.1) ecion integ de inh do veto intensidde de cmpo mgnético fechdo L com coente tot envovid po esse cminho. o ongo de um cminho

Leia mais

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida O D ÓMUL O. D MOU MU & MU Moo ul Lço Oblíuo p = lo ul * opo l - MU y y y y y s y y y = lo é = ção spço = spço ul = o H s = Ilo po = üê * opo hozol - MU = spço (l) = píoo x os = spço Il = lo = lo l = lção

Leia mais

Principais fórmulas. Capítulo 3. Desvio padrão amostral de uma distribuição de frequência: Escore padrão: z = Valor Média Desvio padrão σ

Principais fórmulas. Capítulo 3. Desvio padrão amostral de uma distribuição de frequência: Escore padrão: z = Valor Média Desvio padrão σ Picipais fómulas De Esaísica aplicada, 4 a edição, de Laso e Fabe, 00 Peice Hall Capíulo Ampliude dos dados Lagua da classe úmeo de classes (Aedode paa cima paa o póimo úmeo coveiee Poo médio (Limie ifeio

Leia mais

Lista de Exercícios - Geometria Métrica Espacial

Lista de Exercícios - Geometria Métrica Espacial UNEMAT Univesidde do Esdo de Mo Gosso Cmpus Univesiáio de inop Fcudde de Ciêncis Exs e Tecnoógics Cuso de Engenhi Civi Discipin: Fundmenos de Memáic Lis de Execícios - Geomei Méic Espci ) A es de um cuo

Leia mais

Física Geral I F semestre, Aula 4 Movimento em duas e três dimensões

Física Geral I F semestre, Aula 4 Movimento em duas e três dimensões Físic Gel I F -18 semese, 1 Aul 4 Moimeno em dus e ês dimensões Moimeno em D e 3D Cinemáic em D e 3D Aceleção consne - celeção d gidde Moimeno cicul - moimeno cicul unifome - moimeno helicoidl Moimeno

Leia mais

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux. Aálse Memá I - Ao Levo 006/007 4- Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer

Problemas de Electromagnetismo e Óptica LEAN + MEAer Pobls d logniso Ópi AN MA 7 Ópi P 7 (Pobl 3 do píulo do livo nodução à Físi d Dis d Dus l) O spo d opinos d ond p luz visívl vi n d 4x -9 (viol) 75x -9 (vlho) n qu vlos vi fquêni d luz visívl? n 75x 4

Leia mais

ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14. Capítulo 1 GEOMETRIA. Geometria de posição. 2? a série Ensino Médio Livro?

ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14. Capítulo 1 GEOMETRIA. Geometria de posição. 2? a série Ensino Médio Livro? GOMTRI Reoluçõe píulo 1 Geomei de poição TIIS PR SL PÁG. 14 01 ) Pouldo, poi o pouldo ão conçõe que não neceim e compovd p que ejm conided veddei. b) Pono, e e plno. c) Teoem. 0 omo o polongmeno é infinio

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESCL PLITÉCNIC D UNIVESIDDE DE SÃ PUL venid Pofesso Mello Moes nº3 CEP05508-900 São Pulo SP Telefone: 0 88-5337 F 0 83-886 Deptento de Engenhi Meâni PME 00 MECÂNIC Piei Pov 04 de il de 006 Dução d Pov:

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica D x E RESOLUÇÃO i z k j 1ª Questão (3,5 pontos). O qudo, com fom de um tiângulo etângulo isósceles, é constituído po tês bs ticulds ente si e de peso despezível. O qudo é ticuldo em e ligdo em dois cbos

Leia mais

5 Modelo financeiro para os ativos

5 Modelo financeiro para os ativos Modelo financeio paa os aivos 51 5 Modelo financeio paa os aivos 5.1. Pemissas A eada de dados de uma pogamação esocásica é caaceizada como o valo que epesea cada fao de isco duae o peíodo de duação de

Leia mais

Turno Disciplina Carga Horária Licenciatura Plena em

Turno Disciplina Carga Horária Licenciatura Plena em Curso Turo Discipli Crg Horári Licecitur Ple em Noturo Mtemátic Elemetr III 60h Mtemátic Aul Período Dt Coordedor.. 0 6/0/006 ª. feir Tempo Estrtégi Recurso Descrição (Produção) Descrição (Arte) :0 / :

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ME100 Mecânc o Substtut 06 de Dezembo de 005 Dução: 100 mnutos Impotnte: não é pemtdo o uso de clculdos 1 (0 pontos) pso é o efeencl fo e colun psmátc (plel o eo z) está f neste pso. cento do dsco tmbém

Leia mais

Análise Vetorial. Prof Daniel Silveira

Análise Vetorial. Prof Daniel Silveira nálise Vetoil Pof Dniel Silvei Intodução Objetivo Revisão de conceitos de nálise vetoil nálise vetoil fcilit descição mtemátic ds equções encontds no eletomgnetismo Vetoes e Álgeb Vetoil Escles Vetoes

Leia mais

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º

Leia mais

TRANSFORMAÇÕES CONTÍNUAS

TRANSFORMAÇÕES CONTÍNUAS TRANSFORMAÇÕES CONTÍNUAS Tscçõs o mo U, 0 0 odo scção o mo odo voução U, 0 HU, 0 Hmoo, H, dd do mo U fução d H U, H 0 0 H gdo do guo ds scçõs o mo [ H, U, ] 0 0 H 0 H 0, 0 H cos do movmo: E, g, cosv-s

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA FUVEST-FASE POR PROFA MARIA ATÔIA C GOUVEIA M gu bo ccueêc de ceto em O e o tgec o ldo BCdo tâgulo ABC o poto D e tgec et AB o poto E Os potos A D e O

Leia mais

ÁLGEBRA LINEAR - 1. MATRIZES

ÁLGEBRA LINEAR - 1. MATRIZES ÁLGEBRA LINEAR - 1. MATRIZES 1. Conceios Básicos Definição: Chmmos de mriz um el de elemenos disposos em linhs e coluns. Por exemplo, o recolhermos os ddos populção, áre e disânci d cpil referenes à quros

Leia mais

II NÚMEROS RACIONAIS NÃO NEGATIVOS 3. FRAÇÕES DECIMAIS. PERCENTAGENS SIMPLIFICAÇÃO DE FRAÇÕES. FRAÇÃO IRREDUTÍVEL 42

II NÚMEROS RACIONAIS NÃO NEGATIVOS 3. FRAÇÕES DECIMAIS. PERCENTAGENS SIMPLIFICAÇÃO DE FRAÇÕES. FRAÇÃO IRREDUTÍVEL 42 ÍNDIE I NÚMEROS NTURIS 1. NÚMEROS NTURIS 4 2. DIÇÃO E SUTRÇÃO 6 3. MULTIPLIÇÃO 8 4. DIVISÃO 10 5. MÚLTIPLOS E DIVISORES 12 6. EXPRESSÕES LGÉRIS E PROLEMS 14 7. RITÉRIOS DE DIVISIILIDDE POR 2, 3, 4, 5,

Leia mais

Vibrações e Ruído UNIVERSIDADE DE LISBOA INSTITUTO SUPERIOR TÉCNICO. 1º Exame 2018/ de Janeiro de 2019 (sem consulta) x f (t) m, J.

Vibrações e Ruído UNIVERSIDADE DE LISBOA INSTITUTO SUPERIOR TÉCNICO. 1º Exame 2018/ de Janeiro de 2019 (sem consulta) x f (t) m, J. UIVERSIDADE DE LISBOA ISIUO SUPERIOR ÉCICO Vibrções e Ruído º Exme 8/9 - de Jneiro de 9 (sem onsul Problem (5 vl. x f ( m R θ m, J R Figur Considere o sisem de gru de liberdde moreido reresendo n figur,

Leia mais

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC MODELOS DE EQUILÍBRIO DE FLUXO EM REDES Pro. Sérgio Myerle Depo. Eng. Produção e Sisems UFSC/CTC Deinição Bási A rede é deinid por um gro ( N A onde: { } N...n G é um onjuno de nós { m} A... é um onjuno

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas Vesibula ª Fase Resolução das Quesões Discusivas São apesenadas abaixo possíveis soluções paa as quesões poposas Nessas esoluções buscou-se jusifica as passagens visando uma melho compeensão do leio Quesão

Leia mais

Movimento Ondulatório:

Movimento Ondulatório: ísia Meânia e Ondas Semana - ula 9 Moimeno Ondulaório: Equação das Ondas, unção de Onda, Eeio Doppler. Capíulo XV do Tipler. equação das ondas Ψ( x, ) Ψ( x, ) x é a eloidade de ase da onda unção de onda

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SOL OLITÉNI UNIVSI SÃO ULO venid ofesso Mello Moes, nº 3 008-900, São ulo, S Telefone: (0xx) 309 337 x: (0xx) 383 886 eptmento de ngenhi Mecânic M 00 MÂNI de setembo de 009 QUSTÃO (3 pontos): figu most

Leia mais

FÍSICA MODERNA I AULA 19

FÍSICA MODERNA I AULA 19 Uiversidde de São ulo Istituto de Físic FÍSIC MODRN I U 9 rof. Márci de lmeid Rizzutto elletro sl rizzutto@if.us.br o. Semestre de 0 Moitor: Gbriel M. de Souz Stos ági do curso: htt:discilis.sto.us.brcourseview.h?id=905

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Escol Secudái com º ciclo D. Diis º Ao de Mtemátic A Tem II Itodução o Cálculo Difeecil II Aul do plo de tblho º Resolve ctividde d pági 7, os eecícios ) e c), b) e c), 6 b) e c) d pági 8, ctividde d pági

Leia mais

Capítulo 2 Movimento Retilíneo

Capítulo 2 Movimento Retilíneo Cpíulo Moimeno Reilíneo. Deslocmeno, empo e elocidde médi Eemplo: Descreer o moimeno de um crro que nd em linh re Anes de mis nd, emos que: - Modelr o crro como um prícul - Definir um referencil: eio oriendo

Leia mais

GUARITA / FACHADA GUARITA / PLANTA COBERTURA

GUARITA / FACHADA GUARITA / PLANTA COBERTURA MP i:% MP i:% MP i:.0% ÚLMO ÁO LZ O VO: OMO FÊ L00 PLJMO LVMO O PL00 PLJMO PLJMO XÇÃO O OOL O POJO FLVOPP_Levantamento_ev0..0.0.0.0.0.0.0.00.0.0.0.0.0.0.0 MOLOG FÇÃO X V. OL FO.. PO LHO V G GÇ..0... L

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PM 300 MÂNI I Segund Po 5 de mo de 05 ução d Po: 0 mnuos (não é pemdo uso de clculdos) ª Quesão (0 ponos) No ssem mosdo n fgu o dsco de ceno fxo em o R e eo de oção consne. dsco ol sem escoeg em elção

Leia mais

Módulo 1: Conteúdo programático Equação da quantidade de Movimento

Módulo 1: Conteúdo programático Equação da quantidade de Movimento Módulo 1: Conteúdo pogmático Equção d quntidde de Movimento Bibliogfi: Bunetti, F. Mecânic dos Fluidos, São Pulo, Pentice Hll, 007. Equção d quntidde de movimento p o volume de contole com celeção line

Leia mais

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim 1. 1.1. Assínos vericis 0 0 1 ) lim f lim lim 4 6 1 i 6 1 1 6 14 i) é riz dos polinómios e 4 6 1. Uilizndo regr de Ruffini pr os decompor, conclui-se que: 1 e que 4 6 1 1 6 e e e e e lim f lim 0 e e 1

Leia mais

Climatologia dos índices de instabilidade K e Total Totals (TT) para o Sul e Sudeste do Brasil

Climatologia dos índices de instabilidade K e Total Totals (TT) para o Sul e Sudeste do Brasil Climologi dos ídices de isbilidde K e Tol Tols (TT) p o Sul e Sudese do Bsil Gusvo Escob, Kele Adde CPTEC/INPE, Cchoei Pulis, SP, Bsil. gusvo.escob@cpec.ipe.b, kele.dde@cpec.ipe.b ABSTRACT: This ppe peses

Leia mais

Transmissão de Calor e Massa I

Transmissão de Calor e Massa I Tasmissão de Cao e Massa esmo de fomas e abeas ci-se esa coecção: Cópia de abeas esmo do ivo Fdameas of Hea ad Mass Tasfe de copea e Wi. Gáficos e abeas de eficiêcia de aheas. Cópia de caas de asiee do

Leia mais

6 Cálculo Integral (Soluções)

6 Cálculo Integral (Soluções) 6 Cálculo Inegrl (Soluções). () Sej d {,..., n } um decomposição de [, ]. Podemos ssumir que d (cso conrário, om-se d d {}, e em-se S d ( f ) S d ( f ), s d ( f ) s d ( f )). Sej k, pr lgum k {,..., n

Leia mais

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7.

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7. CAPTULO 7 Execícios 7 Sejam F () (, sen, ) e G () (,, ) a) F () G () (, sen, ) (,, ) sen d) i j F () G () sen ( sen ) i ( 6) j ( sen ) F () G () ( sen, 6, sen ) Sejam () ij e x () i j i j () x () ( ) i

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

EXEMPLO 3 - CONTINUAÇÃO

EXEMPLO 3 - CONTINUAÇÃO AJUSTE A U POLINÔIO Se curv f for jusd um polômo de gru, eremos f * () 0 Segudo o mesmo procedmeo eror, chegremos o segue ssem ler: m L O L L 0 EXEPLO Os ddos bo correspodem o volume do álcool ídrco em

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -4-6 -8 - - -4-6 -8 - - Frequec khz Hmmig kiser Chebshev Fculdde de Egehri Sisems Lieres e Ivries Power Specrl Desi Ev B F CS CS B F CS Groud Revolue Bod Revolue Bod Power/frequec db/hz Sie Wve Joi Acuor

Leia mais

Adriano Pedreira Cattai. Universidade Federal da Bahia UFBA Semestre

Adriano Pedreira Cattai.   Universidade Federal da Bahia UFBA Semestre Cálculo II A, MAT Adrino Pedreir Ci hp://www.lunospgm.uf.r/drinoci/ Universidde Federl d Bhi UFBA Semesre 6. Inrodução No Teorem Fundmenl do Cálculo TFC, os ies de inegrção, e em, são números reis e f

Leia mais

Avaliação de Glebas. O empreendimento analisado transcorrerá em duas fases distintas, durante o período total de tempo t em meses:

Avaliação de Glebas. O empreendimento analisado transcorrerá em duas fases distintas, durante o período total de tempo t em meses: aliação de Gleba o: lfedo ima Moeia Gacia alização do ecelee abalho do E. Hélio de Caie iclido a aaem da coia feia (cf) e coeçõe deido à leilação aal. leilação aal omee emie o iício da oba de baização

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

EXERCÍCIOS RESOLVIDOS DE ELETROMAGNETISMO EQUAÇÕES DE POISSON E DE LAPLACE

EXERCÍCIOS RESOLVIDOS DE ELETROMAGNETISMO EQUAÇÕES DE POISSON E DE LAPLACE Págin 6. PÍTUO 6 UÇÕ POION P 6.) ej ptencil n espç lie (ácu) epess p 8 lts. ) etein cp elétic ( P ) e P ( - ); ) etein densidde luétic de cg ( ) e P; c) etein equçã d supefície equiptencil que pss p P;

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica SCLA PLITÉCICA A UIVRSIA SÃ PAUL eptmento de ngenhi Mecânic Mecânic I PM 3100 Pov n o Rec. t 0 / 0 / 018 ução d Pov: 10 minutos ão é pemitido o pote de clculdos, "tblets", celules e dispositivos similes.

Leia mais

3 Integral Indefinida

3 Integral Indefinida 3 Itegrl Idefiid 3. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre Cinemáica em uma dimensão o Posição, deslocameno velocidade, aceleração. o Movimeno com aceleração consane, o Queda livre Mecânica( Dinâmica! é! o! esudo! do! movimeno! de! um! corpo! e! da! relação!dese!movimeno!com!conceios!lsicos!como!força!

Leia mais

Exercícios propostos

Exercícios propostos Eecícios poposos 01 Esceva uma equação da ea nos casos a segui a) passa pelo pono P(, 1,) e em a dieção do veo u (,1,1 ) b) passa pelos ponos A(1,, 1) e B(0,,) 0 Veifique, em cada um dos iens abaio, se

Leia mais

& Q ^` % Q ^`. & Q.# .! 8 .! 10 % Q... .! 15 .! 12 % Q. .! 17 & Q -# .! 23 .! 27 .! 30. Ó Noite Santa

& Q ^` % Q ^`. & Q.# .! 8 .! 10 % Q... .! 15 .! 12 % Q. .! 17 & Q -# .! 23 .! 27 .! 30. Ó Noite Santa 1 ^` Ó Noi Snt Adolphe Am (Músic; Plcide Cppeu (Letr Arrnjdo por J Ashley Hll, 2007 2 3 4 5 % ^` Ó! 6 t sn! 7 de_es tre! ls bri! 8 % 9 s! Em que! 10 ceu! o bom! lhn s Je 11 sus! 12 dor 13 14 Sl v Tris

Leia mais