Análise Vetorial. Prof Daniel Silveira

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Análise Vetorial. Prof Daniel Silveira"

Transcrição

1 nálise Vetoil Pof Dniel Silvei

2 Intodução Objetivo Revisão de conceitos de nálise vetoil nálise vetoil fcilit descição mtemátic ds equções encontds no eletomgnetismo

3 Vetoes e Álgeb Vetoil Escles Vetoes Álgeb vetoil i-dimensionis Ti-dimensionis N-dimensionis Quto opeções Som de vetoes Poduto po escl Poduto escl Poduto vetoil

4 Vetoes e Álgeb Vetoil dição de vetoes Reg do plelogmo dição é comuttiv dição é ssocitiv ( C) ( ) C

5 Vetoes e Álgeb Vetoil Subtção de vetoes ( ) st invete o sentido do segundo veto e som

6 Vetoes e Álgeb Vetoil Multiplicção po escl 2 2 Multiplic o módulo e pode lte o sentido, ms não lte dieção ( s)( ) ( ) s( ) s s Divisão po escl Multiplicção pelo inveso do escl

7 Sistems de Coodends Ctesins Método mis simples p desceve um veto Sistem ti-dimensionl Tês eios fomndo ângulos etos ente si (, e ) Um ponto é ddo pelo vlo constnte de, e (coodends escles) Um veto é ddo pel som de sus componentes o longo dos 3 eios coodendos p(1,2,3)

8 Vetoes unitáios Vetoes de módulo unitáio n dieção de cd eio e no sentido cescente P obte componente do veto em cd eio, bst multiplic cd veto unitáio po um escl

9 Vetoes unitáios P defini um veto unitáio em qulque dieção, bst dividi cd componente do veto pelo módulo do mesmo O veto unitáio n dieção de seá: E: pontos (2,-3,1), (-4,-2,6) e C(1,5,-3) Veto C Veto unitáio n dieção Distânci ente e C Veto de té o ponto médio ente e C 2 2 2

10 Vetoes e Álgeb Vetoil Poduto escl θ cosθ O esultdo do poduto é um escl Pojeção de um veto n dieção do outo e multiplicção dos módulos Multiplicção do módulo de n dieção de pelo módulo de

11 Vetoes e Álgeb Vetoil Poduto escl utilindo coodends etngules pois sbemos que Poduto escl de um veto po ele mesmo 2 0 cos / cos 90 cos π o 1 0 cos

12 Vetoes e Álgeb Vetoil Eemplo: pti dos vetoes bio detemin F G 3 5 F G O ângulo ente eles componente escl de F n dieção de G pojeção de F n dieção de G 2

13 Vetoes e Álgeb Vetoil Poduto vetoil θ n senθ ( ) O esultdo do poduto é um veto pependicul o plno contendo os vetoes e, cujo sentido segue eg d mão dieit O módulo do veto esultnte é numeicmente igul à áe do plelogmo definido pelos dois vetoes

14 Vetoes e Álgeb Vetoil Poduto vetoil utilindo componentes ctesins sbemos que temos / sen 90 sen π o 0 0 sen ( ) ( ) ( )

15 Vetoes e Álgeb Vetoil Poduto vetoil n fom deteminnte E1.4) Ddo o tiângulo bio, detemine C Áe do tiângulo Veto unitáio pependicul o plno do tiângulo (6,-1,2) (-2,3,-4) C(-3,1,5)

16 Sistems de coodends Pof Dniel Silvei

17 Intodução Objetivo Revisão de sistems de coodends cilíndics e esféics Os sistems fcilitm cálculos em poblems que possuem geometi cilíndic ou esféic

18 Coodends cilíndics cicules Um ponto no espço tidimensionl é ddo po: Distânci do ponto o eio (ρ) Ângulo que ρ f com o eio (φ) ltu ()

19 Coodends cilíndics cicules Vetoes unitáios, ρ, φ Pependicules ente si Não são eios, são funções ds coodends Reg do tiedo dieito ρ φ

20 Coodends cilíndics cicules Relção ente coodends etngules e cilíndics ρ cosφ ρ senφ ou ρ φ tn 2 2 1

21 Coodends cilíndics cicules Elemento difeencil de volume Como ρ e têm dimensão de compimento, os elementos difeenciis são dρ e d, espectivmente componente difeencil n dieção de φ é ρd φ Elemento difeencil de volume dv ρdρdφd (φ em d)

22 Coodends cilíndics cicules Convesão de componentes escles ente coodends etngules e cilíndics Sej queemos obte P isto, bst pojet o veto em cd um ds dieções ds coodends cilíndics φ φ ρ ρ ρ ρ ρ ρ ρ φ φ φ φ φ

23 Coodends cilíndics cicules Convesão de componentes escles ente coodends etngules e cilíndics nlisndo os podutos escles ente vetoes unitáios, podemos esumi-los n seguinte Tbel Eemplo 1.3: Enconte ( ρ,φ, ) p o cmpo vetoil bio (,, )

24 Coodends cilíndics cicules E1.5) e E1.6) Dê s coodends ctesins do ponto o C( ρ 4,4; φ 115 ; 2) Dê s coodends cilíndics do ponto D( 3,1; 2,6; 3) Detemine distânci ente C e D Tnsfome p coodends cilíndics F no ponto P 10, 8,6 G 2 4 no ponto Q ρ,φ, ( ) ( ) ( ) ( ) Tnsfome p coodends etngules H no ponto P 5,2, 1 ρ φ ( )

25 Coodends esféics Um ponto no espço tidimensionl é ddo po: Distânci do ponto oigem ( ) Ângulo que f com o eio (θ) Ângulo que f com o eio (φ)

26 Coodends esféics Vetoes unitáios, θ, φ Pependicules ente si Não são eios, são funções ds coodends Reg do tiedo dieito θ φ

27 Coodends esféics Relção ente coodends etngules e esféics senθ cosφ senθ senφ cosθ ou φ tn 1 θ cos ( 0 θ π ) 2 2 2

28 Coodends esféics Elemento difeencil de volume Os compimentos difeenciis ns dieções, θ e φ são, espectivmente, d, dθ, senθdφ Elemento difeencil de volume dv 2 senθddθdφ (φ e θ em d)

29 Coodends esféics Convesão de componentes escles ente coodends etngules e esféics Sej queemos obte P isto, bst pojet o veto em cd um ds dieções ds coodends esféics φ φ θ θ φ φ φ φ φ θ θ θ θ θ

30 Coodends esféics Convesão de componentes escles ente coodends etngules e esféics nlisndo os podutos escles ente vetoes unitáios, podemos esumi-los n seguinte Tbel Eemplo1.4: Enconte G (,θ,φ) p o cmpo vetoil bio G (,, )

31 Coodends esféics E1.7) Dê s coodends ctesins do ponto o o ( 5; θ 20 ; φ 70 ) D Dê s coodends esféics do ponto C( 3; 2; 1) Detemine distânci ente C e D E1.8) ) Tnsfome p coodends esféics F 10 no ponto P 3,2,4 ( )

32 List de eecícios Cpítulo 1 (Ht) 1.1, 1.5, 1.7, 1.11, 1.13, 1.17, 1.19, 1.21, 1.25, 1.27, 1.30

Num sistema tridimensional um ponto pode ser localizado pela intersecção de três superfícies.

Num sistema tridimensional um ponto pode ser localizado pela intersecção de três superfícies. Sistems de cooden otogonis - 1 ELECTROMGNETISMO s leis do electomgnetismo são invintes em elção o sistem de cooden utilido. Muits vees solução de um poblem específico eque utilição de um sistem de cooden

Leia mais

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400

Leia mais

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO AULA 3 MECÂNICA VETOES - INTODUÇÃO N Físic usmos dois gupos de gndezs: s gndezs escles e s gndezs vetoiis. São escles s gndezs que ficm ccteizds com os seus vloes numéicos e sus espectivs uniddes. São

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Soluções do Capítulo 9 (Volume 2)

Soluções do Capítulo 9 (Volume 2) Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Coordenadas cartesianas Triedro direto

Coordenadas cartesianas Triedro direto Coordends crtesins Triedro direto Coordends crtesins Loclizção de pontos (P e Q) Coordends crtesins Elemento de volume diferencil Coordends crtesins Componentes,, z do vetor r Coordends crtesins Vetores

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

UNIVERSIDADE LUTERANA DO BRASIL

UNIVERSIDADE LUTERANA DO BRASIL UNIVERSIDADE LUTERANA DO BRASIL CADERNO UNIVERSITÁRIO GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR Pof. Moc Mnghello Pof. Joge Tdeu Vgs d Silv GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR. Intodução: EMENTA DA DISCIPLINA:

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

SÍNTESE. 1. Geometria analítica no plano. 2. Cálculo vetorial no plano. Inequações cartesianas de semiplanos

SÍNTESE. 1. Geometria analítica no plano. 2. Cálculo vetorial no plano. Inequações cartesianas de semiplanos j h i TEMA III Geometi Anlíti 1. Geometi nlíti no plno Inequções tesins de semiplnos > < > + + < + + Sejm A( 1, ) e B( 1, ) dois pontos do plno: Distâni ente A e B. ( 1 1 ) + ( ) h 1 + 1 Ponto médio do

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Matemática D Intensivo V. 1

Matemática D Intensivo V. 1 GRITO Mtemátic Intensivo V. ecícios 0) onstuímos et t, tl que t // s e t // : b t s et t divide o ângulo em dois ângulos e b. = 0 (ltenos intenos) b = = 0 = 7 Segue, b = (ltenos intenos). Logo, = 7. 0)

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO:

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO: QUESTÃO A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE II- COLÉGIO ANCHIETA-BA ELABOAÇÃO: POF. ADIANO CAIBÉ e WALTE POTO. POFA, MAIA ANTÔNIA C. GOUVEIA Sejm ABC e ADE dois tiângulos etângulos conguentes, com AB

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

9. Fontes do Campo Magnético

9. Fontes do Campo Magnético 9. Fontes do Cmpo Mgnético 9.1. A Lei de iot-svt 9.. A Foç Mgnétic ente dois Condutoes Plelos. 9.3. A Lei de Ampèe 9.4. O Fluxo Mgnético 9.5. A Lei de Guss do Mgnetismo. 9.6. O Cmpo Mgnético dum Solenóide.

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

Ondas Eletromagnéticas Interferência

Ondas Eletromagnéticas Interferência Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Módulo 1: Conteúdo programático Equação da quantidade de Movimento

Módulo 1: Conteúdo programático Equação da quantidade de Movimento Módulo 1: Conteúdo pogmático Equção d quntidde de Movimento Bibliogfi: Bunetti, F. Mecânic dos Fluidos, São Pulo, Pentice Hll, 007. Equção d quntidde de movimento p o volume de contole com celeção line

Leia mais

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB Pobles Resolvidos de ísic Pof. Andeson Cose Gudio Depto. ísic UES RESNICK, HALLIDAY, KRANE, ÍSICA,.ED., LTC, RIO DE JANEIRO, 996. ÍSICA CAPÍTULO CARGA ELÉTRICA E LEI DE COULOMB. ul deve se distânci ente

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

3. Lei de Gauss (baseado no Halliday, 4a edição)

3. Lei de Gauss (baseado no Halliday, 4a edição) 3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom que poss simplific os csos que envolvem elevdo gu

Leia mais

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 2008. FÍSICA 1 CAPÍTULO 3 VETORES

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 2008. FÍSICA 1 CAPÍTULO 3 VETORES Polems Resolvios e Físi Pof. Aneson Cose Guio Depto. Físi UFES HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 008. FÍSICA 1 CAPÍTULO 3 VETORES 16. N som A + = C, o veto A

Leia mais

T E X T O D E R E V I S Ã O C Á L C U L O D I F E R E N C I A L & I N T E G R A L P A R A A F Í S I C A 3 JOSÉ ARNALDO REDINZ (DPF/UFV) JULHO DE 2004

T E X T O D E R E V I S Ã O C Á L C U L O D I F E R E N C I A L & I N T E G R A L P A R A A F Í S I C A 3 JOSÉ ARNALDO REDINZ (DPF/UFV) JULHO DE 2004 T E X T O D E E V I S Ã O DE C Á L C U L O D I F E E N C I A L & I N T E G A L P A A A F Í S I C A JOSÉ ANALDO EDINZ (DPF/UFV) JULHO DE 4 PEFÁCIO Dunte o tempo em que ministmos disciplin Físic, voltd p

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

Cálculo III-A Módulo 3 Tutor

Cálculo III-A Módulo 3 Tutor Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo III-A Módulo Tutor Eercício 1: Clcule mss totl M, o centro d mss, de um lâmin tringulr, com vértices,,

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

Geometria Plana 04 Prof. Valdir

Geometria Plana 04 Prof. Valdir pé-vestiul e ensino médio QUILÁTS TÁVIS 1. efinição É o polígono que possui quto ldos. o nosso estudo, vmos onside pens os qudiláteos onveos. e i Sendo:,,, véties do qudiláteo; i 1, i, i 3, i 4 ângulos

Leia mais

Volta Redonda, 9 de julho de 2003

Volta Redonda, 9 de julho de 2003 Leis de Keple Volt Redond, 9 de julo de 3 Escol de Engeni Industil Metlúgic de Volt Redond UFF Disciplin: Cálculo Vetoil Assunto: Demonstção d segund e tecei Leis de Keple Componentes: Tum: V Aline de

Leia mais

arctg x y F q E q v B d F d q E q v B se y r sen sen

arctg x y F q E q v B d F d q E q v B se y r sen sen List Gomti Anlític Cálculo Vtoil Pof. D. Cláudio S. Stoi Poduto misto, Plnos ts, Mtis, Dtminnts Sistms Lins, Coodnds cilíndics sféics, Cônics Poduto misto, Plnos ts. Ach qução do plno contndo o ponto P

Leia mais

Matemática (e geometria) para CG

Matemática (e geometria) para CG Licencitur em Engenhri Informátic e de Computdores Computção Gráfic Mtemátic (e geometri) pr CG 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL Edwrd Angel, Cp. 3 Questão 1, exme de 06/06/11

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Introdução ao Método de Elementos Finitos

Introdução ao Método de Elementos Finitos Intodução ao Método de Elementos Finitos Jaime Atuo Ramíe Unidade 1 1 Método de Elementos Finitos Apesentação do cuso O que se estuda aqui? O que é peciso sabe? O que amos fae? 2 Apesentação do cuso O

Leia mais

3. Lei de Gauss (baseado no Halliday, 4a edição)

3. Lei de Gauss (baseado no Halliday, 4a edição) 3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom ue poss simplific os csos ue envolvem elevdo gu de

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas Um pouco de cálculo UM POUCO DE CÁLCULO. Intodução aos vetoes Eistem gandezas físicas que podem se especificadas fonecendo-se apenas um númeo. Assim, po eemplo, quando dizemos que a tempeatua de uma sala

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

TRABALHO E POTENCIAL ELÉTRICO

TRABALHO E POTENCIAL ELÉTRICO NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO TRABALHO E POTENCIAL ELÉTRICO 01.INTRODUÇÃO O conceito de enegi potencil foi intoduzido no Cpítulo Enegi Mecânic em conexão com foçs consevtivs como gvidde e

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA Enunciado: É dado um condutor de formato esférico e com cavidade (interna) esférica, inicialmente neutra (considere que esse condutor tenha espessura não-desprezível).

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

CFQ-4018 LABORATÓRIO DE ESTRUTURA DA MATÉRIA Turmas 421e 422 Licenciatura e Bacharelado em Física

CFQ-4018 LABORATÓRIO DE ESTRUTURA DA MATÉRIA Turmas 421e 422 Licenciatura e Bacharelado em Física unesp Univesidde Estdul Pulist "Júlio de Mesquit Filho" Cmpus de Gutinguetá - Fculdde de Engenhi Deptmento de Físic e Químic CFQ-018 LABOATÓIO DE ESTUTUA DA MATÉIA Tums 1e Licencitu e Bcheldo em Físic

Leia mais

Análise Vetorial. Sistemas de coordenadas

Análise Vetorial. Sistemas de coordenadas Análise Vetoial Sistemas de coodenadas Retangula (,, ), cilíndico (, φ, ) e esféico (, θ, φ) são os tês sistemas de coodenadas mais utiliados em eletomagnetismo. No sistema etangula, um ponto P é definido

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais

16 - Carga Elétrica e Lei de Coulomb

16 - Carga Elétrica e Lei de Coulomb PROBLEMAS RESOLVIDOS DE ÍSICA Pof. Andeson Cose Gudio Deptmento de ísic Cento de Ciêncis Ets Univesidde edel do Espíito Snto http://www.cce.ufes.b/ndeson ndeson@npd.ufes.b Últim tulizção: 8//6 4:8 H 6

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Ângulo entre Retas. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Ângulo entre Retas. Terceiro Ano - Médio Mteil Teóico - Módulo de Geometi Anĺıtic Ângulo ente Rets Teceio Ano - Médio Auto: Pof. Angelo Pp Neto Reviso: Pof. Antonio Cminh M. Neto Ângulo ente ets que pssm pel oigem Nest seção, definimos e clculmos

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070 PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.

Leia mais

Cálculo III-A Módulo 4

Cálculo III-A Módulo 4 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.

Leia mais

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim Escol de Engenhri Industril e etlúrgic de olt edond Pro Gustvo Benitez Alvrez Nome do Aluno (letr orm): Prov Escrit Nº 0/006 Não rsure est olh, pois cálculos relizdos nest, não serão considerdos Use olh

Leia mais

2- FONTES DE CAMPO MAGNÉTICO

2- FONTES DE CAMPO MAGNÉTICO - FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2012-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS 82 CPÍTULO 9 CINEMÁTIC DO MOVIMENTO ESPCIL DE CORPOS RÍGIDOS O estudo da dinâmica do corpo rígido requer o conhecimento da aceleração do centro de massa e das características cinemáticas do corpo denominadas

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

GABARITO. 2 Matemática D 06) 11 = = = 01. Correto. Do enunciado temos que: h = 4r. Portanto, V cilindro. Portanto, por Pitágoras:

GABARITO. 2 Matemática D 06) 11 = = = 01. Correto. Do enunciado temos que: h = 4r. Portanto, V cilindro. Portanto, por Pitágoras: Mtemáti D Extensivo V. 8 Exeíios 0) ) 96 dm b) ) (x) p x : () 5. + 8. 6 dm Potnto: V b... 6 96 dm b) Os vloes de x devem stisfze s seguintes equções. Sendo V. b. então π.. (x 5x + 8x) 6π dm Potnto x 5x

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Campo Elétrico Carga Distribuída

Campo Elétrico Carga Distribuída Aula _ Campo lético Caga Distibuída Física Geal e peimental III Pof. Cláudio Gaça Capítulo Campos léticos de distibuições contínuas de caga elética Fundamentos: (Lei de Coulomb Pincípio da Supeposição)

Leia mais

FÍSICA GERAL E EXPERIMENTAL I RESOLUÇÃO DA LISTA I

FÍSICA GERAL E EXPERIMENTAL I RESOLUÇÃO DA LISTA I FÍSICA GERAL E EPERIMENTAL I RESOLUÇÃO DA LISTA I UNIERSIDADE CATÓLICA DE GOIÁS Depataento de Mateática e Física Disciplina: Física Geal e Epeiental I (MAF ) RESOLUÇÃO DA LISTA II ) Consideando os deslocaentos,

Leia mais

4/10/2015. Física Geral III

4/10/2015. Física Geral III 4//5 Físic Gel III Aul Teóic (Cp. 7 pte /): ) Cpcitânci ) Cálculo d cpcitânci p cpcitoes de plcs plels, cilíndicos e esféicos 3) Associções de cpcitoes Pof. Mcio R. Loos Cpcito Um cpcito é um componente

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

2ª Lei de Newton. Quando a partícula de massa m é actuada pela força a aceleração da partícula tem de satisfazer a equação

2ª Lei de Newton. Quando a partícula de massa m é actuada pela força a aceleração da partícula tem de satisfazer a equação ª Lei de Newton ª Lei de Newton: Se foç esultnte ctunte num ptícul é difeente de zeo, então ptícul teá um celeção popocionl à intensidde d foç esultnte n diecção dess esultnte. P um ptícul sujeit às foçs

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções vetoiais I) Funções vetoiais a valoes eais: f: I R R t a f(t) (f 1 n (t), f (t),..., f n (t)) I intevalo da eta eal denominada domínio da função vetoial f {conjunto de todos os valoes possíveis

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

3.2 Coordenadas Cilíndricas

3.2 Coordenadas Cilíndricas Exemplo 3.6 Encontre DzdV para D a região do espaço limitada pelos gráficos x = 1 z 2, x =, entre os planos y = e y = 1. Solução: observe que pela descrição da região de integração D, é mais conveniente

Leia mais

Teorema da Divergência

Teorema da Divergência Instituto Superior Técnico epartamento de atemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema da ivergência Nestas notas apresentaremos o teorema da divergência em R 3 (Teorema de Gauss devido

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA. LISTA 3 Teorema de Tales

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA. LISTA 3 Teorema de Tales INSTITUTO PLIÇÃO RNNO RORIUS SILVIR Pofeo: Mello mdeo luno(): Tum: LIST Teoem de Tle Teoem de Tle hmmo de feie de plel um onjunto de et plel de um plno, ou ej, // // //. Ret plel otd po um tnvel: onidee

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Translação. Sistemas de Coordenadas. Translação. Transformações Geométricas 3D

Translação. Sistemas de Coordenadas. Translação. Transformações Geométricas 3D Translação Transformações Geométricas 3D Um ponto (objeto) é deslocado de uma posição para outra posição no mesmo espaço 3D Rosane Minghim Maria Cristina F. de Oliveira ICMC Universidade de São Paulo 26

Leia mais

Notas de Aula - Prof. Dr. Marco Antonio Pereira

Notas de Aula - Prof. Dr. Marco Antonio Pereira Ecol de Engenhi de Loen - UP - inétic Químic pítulo 7 Intodução etoe Químico 1 - Intodução cinétic químic e o pojeto de etoe etão no coção de que todo o poduto químico indutii. É, pinciplmente, o conhecimento

Leia mais