Medidas de Associação.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Medidas de Associação."

Transcrição

1 Meis e Assoição. O álulo e meis propris frequêni e um oenç é bse pr omprção e populções, e, onsequentemente, pr ientifição e eterminntes oenç. Pr fzer isto e mneir mis efiz e informtiv, s us frequênis que vão ser omprs poem ser ombins num únio prâmetro que estime ssoição entre um exposição e o riso e esenvolver oenç. Isto poe ser feito trvés e: Meis e ssoição quntifim relção entre um exposição e um onsequêni. (Dizem-nos quão mis suseptível está um grupo e esenvolver oenç o que outro) Meis e impto quntifim o impto munç e exposição num o grupo. (Inim-nos num esl bsolut quão mior é frequêni e um oenç num grupo ompro om outro). Nest ul vmos pens borr s meis e ssoição. Pr jur no álulo e meis e ssoição, os os epiemiológios são muits vezes presentos num tbel 2 por 2, tmbém hm e tbel e ontingêni: Doentes Não oentes Expostos B Não expostos D A - Riso Reltivo: (pr os estuos e oorte) estim mgnitue ssoição entre exposição e oenç; ini probbilie e esenvolver oenç no grupo exposto reltivmente àqueles que não estão expostos; é efinio omo rzão entre iniêni oenç no grupo os expostos (I e ) e iniêni oenç no grupo os não expostos (I o ). RR Ie Io /( + b) /( + ) um RR e 1,4 signifi que os expostos têm 1,4 vezes mis riso e esenvolver oenç que os não expostos (que é o mesmo que izer 40% mis probbilie e esenvolver oenç). O álulo o riso reltivo, visto que é um rzão entre 2 risos ou iniênis umultivs, epene o períoo e tempo no qul os risos form lulos. Este vlor poe mur epeneno o tempo e observção; o riso reltivo pós ez nos poe ser bstnte CC

2 iferente quele lulo pós 1 no. Não nos poemos esqueer e ter um tempo e seguimento relevnte: por exemplo, se estivermos omprr txs e mortlie e 2 populções e o tempo e seguimento for muito grne, vmos ter 100% e mortlie tnto no grupo os expostos omo no grupo os não expostos, e o RR seri e 1,0. (pr os estuos e sos-ontrolos) Não poemos lulr iniênis em estuos e sos-ontrolos porque não temos populção em riso no iníio o estuo, exepto em estuos e sos-ontrolos tipo populionis ( populção bse é equivlente à populção em riso). Assim, fórmul pli pr o álulo o RR num estuo e oorte não poe ser pli os os e um estuo e sos e ontrolos. O riso reltivo poe, no entnto, ser estimo pelo álulo e um rzão entre os exposição entre os sos e o os exposição entre os ontrolos: B - Os rtio (OR) estimtiv o Riso Reltivo O OR tnto poe ser lulo num estuo e oorte omo num estuo e sos e ontrolos. Um Os Rtio vi ser rzão entre 2 Os. Um os (não onfunir om os rtio!) lul-se seguinte mneir: Os probbilie e um onteimento oorrer probbilie e não oorrer Como num estuo e oorte nós prtimos exposição veno epois quntos é que esenvolvem oenç tnto nos expostos omo nos não expostos, o OR vi ser rzão entre o os e esenvolver oenç nos expostos e o os e esenvolver oenç nos não expostos. os e esenvolver oenç nos expostos Os rtio oorte os e esenvolver oenç nos não expostos Os: Utilizno nomenltur s tbels e ontingêni, poemos ver omo lulr esses Os oenç expostos + b Os oenç não expostos b b + b + + Assim, OR oorte b b CC

3 Já num estuo e sos e ontrolos o nosso ponto e prti é oenç; ssim o OR vi ser rzão entre os Os e sos nos expostos e os Os e ontrolos nos expostos. Os rtio sos e ontrolos Os exposição os sos Os exposição os ontrolos Os exposição sos b + Os b b + exposição ontrolos + b + OR sos e ontrolos b b Ou sej, no finl, tnto num estuo e oorte, omo num estuo e sos e ontrolos obtemos mesm equção. Conluímos ssim que, pr lulr um Os Rtio bst utilizr fórmul: OR b o que, num tbel e ontingêni, equivle fzer rzão entre o prouto os ruzmentos. Note-se porém que pens ostummos lulr o OR num estuo e sos e ontrolos, visto que num estuo e oorte temos possibilie e lulr o Riso reltivo. A interpretção o Os Rtio é igul à interpretção o RR. Se exposição não estiver relion om oenç, OR 1; se exposição estiver relion positivmente om oenç, OR > 1; se exposição estiver negtivmente relion om oenç, OR < 1. Já referimos que o OR obtio num estuo e sos e ontrolos é um estimtiv o RR. Ms quno é que est estimtiv represent um bo proximção? Quno se verifim s seguintes onições: Os sos estuos são representtivos no que iz respeito à exposição omprtivmente toos os sos e oenç populção qul os sos form retiros; Os ontrolos estuos são representtivos no que iz respeito à exposição omprtivmente toos s pessos sem oenç populção qul os sos form retiros; CC

4 A oenç ser estu não oorre frequentemente. Isto porque há +b pessos exposts. Como mior prte s oençs om s quis estmos lir oorrem pouo frequentemente, muito pous pessos n populção expost vão esenvolver e fto oenç; onsequentemente, é muito pequeno ompro om b e poemos proximr +b b (+b b). Similrmente, muito pous pessos não exposts (+) esenvolvem oenç, e poemos proximr + (+ ). Assim poemos lulr o RR seguinte mneir: Ao resolver est equção obtemos: + b b. + b que é o OR. Assim, quno oorrêni oenç é pouo frequente. O OR é um proximção muito bo o RR. Resolução os exeríios: 1) ) Estuo e oorte prospetivo. b) Doentes Não oentes Totl Expostos Não expostos Totl ) A melhor mei e ssoição, visto que se trt e um estuo e oorte, é o riso reltivo. Iniêni nos expostos (E): I E 299 / ,2 % Iniêni nos Não Expostos (NE): I NE 107 / ,4% CC

5 Riso Reltivo: RR 0,062 / 0,044 1,41 RR -1 41% ou sej, o riso ument 41% nos expostos. ) Os rtio, ms num estuo e oorte não fz sentio visto que temos um mei melhor, o riso reltivo. Só se ostum lulr o Os rtio num estuo e sos e ontrolos. 2) ) Estuo trnsversl. (Not: o esenho não é sos e ontrolos ms vmos nlisá-lo omo tl) b) Hipertenso Não Hipertenso Totl Cfé Não Cfé Totl ) Os rtio (250 x 450) / (350 x 550) / ,58 58 % Seguno este resulto, os onsumiores e fé têm proximmente um riso 40% inferior (100%-58%) e ter Hipertensão o que os não onsumiores. Isto poer-nos-i inir que o onsumo e fé é protetor reltivmente à hipertensão. R CAFÉ 250 / 600 0,31 31 % R NÃO CAFÉ 350 / 600 0,44 44% ) É um situção em que exposição se poe lterr evio à onsequêni (quem é hipertenso eix e beber fé) erro e uslie invers. Poem tmbém existir ftores onfuniores que influeniem est relção. ex; fé Sl HTA O sl é um ftor onfunior. CC

6 3) Atenção que est tbel não está omo estmos hbitu vê-l! Csos (+) Controlos (-) Não bebeores (-) Bebeores (+) b Normlmente temos os expostos em im e os não expostos em bixo. Assim, pr lulr o OR NÃO poemos ruzr os números e mneir igul o que ostummos fzer. Utilizr seguinte fórmul: b Números que fvoreem ssoição (oenç - exposição) Números que vão ontr ssoição ) b) Os rtio (245 / 53) / (244 / 66) (0 15 grms por i) (245 x 66) / (53 x 244) 1,25 Doente Não Doente Exposto Não Exposto OR (0 15) (45 x 66) / (53 x 86) 0,65 (16 30 grms por i) Doente Não Doente Exposto Não Exposto OR (16 30) (70 x 66) / (53 x 76) 1,15 (> 30 grms por i) Doente Não Doente Exposto Não Exposto OR (> 30) (130 x 66) / (53 x 82) 1,97 CC

7 ) Pr s lsses e onsumo < 30g, o IC 95% inlui unie. Logo, estes os não se revestem e signifiâni esttísti. Apens pr onsumos > 30g/i é que se poe firmr um ssoição positiv entre o onsumo e oenç (riso umento). 1,97 1,15 0, ) Ambs s vriáveis são ontínus. Poerímos tegorizá-ls ms há mneirs e s relionr sem ser neessári tegorizção. Poemos lulr o oefiiente e orrelção ou o oefiiente e regressão, ms o que nos permite quntifir relção é o oefiiente e regressão.. Coefiiente e orrelção A orrelção é us pr meir forç relção liner entre us vriáveis. Este oefiiente é normlmente represento pel letr r. O oefiiente e orrelção vri entre -1 e 1. O vlor 0 (zero) signifi que não há relção liner, o vlor 1 ini um relção liner perfeit e o vlor -1 tmbém ini um relção liner perfeit ms invers, ou sej, quno um s vriáveis ument outr iminui. Qunto mis próximo estiver e 1 ou -1, mis forte é ssoição liner entre s us vriáveis. Not: um orrelção 0 ou próxim e 0 não impli obrigtorimente que s us vriáveis não estão relions ms pens que s us vriáveis não estão relions e um form liner. 1 Peso o reém-nsio r 2 Peso o reém nsio r Ingestão protei Ingestão protei 3 Peso o reém nsio r 1 orrelção próxim e 1 2 orrelção próxim e 0 3 orrelção próxim e -1 Ingestão protei CC

8 Coefiiente e regressão: Est mei é tmbém um mei e ssoição. Enqunto que orrelção é us pr meir forç relção liner entre us vriáveis, regressão liner é us pr estur nturez ess relção. Ao ontrário orrelção, é neessário istinguir qul vriável que se tent prever (vriável epenente) e vriável que prevê (vriável inepenente). Grfimente o moelo e regressão liner é presento omo ret que melhor proxim relção entre vriável epenente e vriável inepenente. Est é mesm ret represent no oefiiente e orrelção; no entnto, o oefiiente e regressão permite-nos onstruir ret; representção mtemáti o moelo é equção ess ret: y + bx Ou sej, est mei iz-nos qunto vri y por vrição e x. Resumino: Coefiiente e orrelção: iz-nos se existe relção liner ou não. Coefiiente e regressão: á-nos mgnitue relção entre s us vriáveis; iz-nos qul quntie e proteíns que temos e ingerir pr fzer moifir o peso o reémnsio. CC

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação 1 Fuldde de súde Públi Universidde de São Pulo HEP-5705 Epidemiologi I Estimndo Riso e Assoição 1. De 2.872 indivíduos que reeberm rdioterpi n infâni em deorrêni de presentrem o timo umentdo, 24 desenvolverm

Leia mais

Análise de Algoritmos Gabarito da Primeira Prova

Análise de Algoritmos Gabarito da Primeira Prova Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções

Leia mais

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule: Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8

Leia mais

EPIDEMIOLOGIA MEDIDAS DE ASSOCIAÇÃO E EFEITO. Programa de Pós Graduação em Saúde Coletiva Introdução a Epidemiologia. Introdução a Epidemiologia

EPIDEMIOLOGIA MEDIDAS DE ASSOCIAÇÃO E EFEITO. Programa de Pós Graduação em Saúde Coletiva Introdução a Epidemiologia. Introdução a Epidemiologia Universidde Federl do Rio de Jneiro Progrm de Pós Grdução em Súde Coletiv PDMOLOGA MDDAS D ASSOCAÇÃO FTO Mrio Vinn Vettore MDDAS D ASSOCAÇÃO FTO Medids dequds de freqüênci de doençs são bse pr comprção

Leia mais

2 Patamar de Carga de Energia

2 Patamar de Carga de Energia 2 Ptmr de Crg de Energi 2.1 Definição Um série de rg de energi normlmente enontr-se em um bse temporl, ou sej, d unidde dess bse tem-se um informção d série. Considerndo um bse horári ou semi-horári, d

Leia mais

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira Dosgem de onreto Prof. M.S. Rirdo Ferreir Regressão liner simples Método dos mínimos qudrdos Prof. M.S. Rirdo Ferreir Fonte: Drio Dfio Regressão liner simples Método dos mínimos qudrdos 3/3 Dd um onjunto

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

VI.1.1 DIFUSÃO EM FASE LÍQUIDA: 1- SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIDAS DILUÍDAS: EQUAÇÃO DE Wilke e Chang (1955):

VI.1.1 DIFUSÃO EM FASE LÍQUIDA: 1- SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIDAS DILUÍDAS: EQUAÇÃO DE Wilke e Chang (1955): VI.. IFUSÃO EM FSE LÍQUI: - SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIS ILUÍS: EQUÇÃO E Wilke e Chang (955): 0 B B 8 M 7,4 0 T V B IFUSIVIE. O SOLUTO( ) NO SOLVENTE B 0,6 b 0,5 cm 2 s ; T TEMPERTUR O MEIO

Leia mais

Integrais Impróprios

Integrais Impróprios Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas Tópicos Especiis de Álgebr Liner Tem # 2. Resolução de problem que conduzem s.e.l. com únic solução Assunto: Resolução de problems que conduzem Sistem de Equções Lineres utilizndo invers d mtriz. Introdução

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação:

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação: . Determine os vores reis e x que stisfzem inequção: x IR e X og x og 9 x² x og x og Fzeno x og, temos: ( ) ( ) ( ) ² ² ² ² + + + + + + - - - - - - - - - - - - - - - - - - + + + - + + + - - - + + + + +

Leia mais

Sólidos semelhantes. Segmentos proporcionais Área Volume

Sólidos semelhantes. Segmentos proporcionais Área Volume Sólios semelntes Segmentos proporcionis Áre olume Sólios semelntes Consiere um pirâmie cuj se é um polígono qulquer: Se seccionrmos ess pirâmie por um plno prlelo à se, iiiremos pirâmie em ois outros sólios:

Leia mais

Retomada dos conceitos

Retomada dos conceitos etom os conceitos rofessor: s resoluções estes exercícios estão isponíveis no lno e uls este móulo. onsulte tmbém o nco e uestões e incentive os lunos usr o imulor e Testes. 1 N esc figur, os egrus istm

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo? N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

CPV conquista 70% das vagas do ibmec (junho/2007)

CPV conquista 70% das vagas do ibmec (junho/2007) conquist 70% ds vgs do ibmec (junho/007) IBME 08/Junho /008 NÁLISE QUNTITTIV E LÓGI DISURSIV 0. Num lv-rápido de crros trblhm três funcionários. tbel bio mostr qunto tempo cd um deles lev sozinho pr lvr

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S.

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S. Resumo e Exemplos Resolvios roessos Termoinâmios - Físi ro. Dr. láuio S. Srtori Lei termoinâmi: U W roessos termoinâmios omuns 2 Lei Termoinâmi: uno se inluem toos os sistems que tomm prte num proesso,

Leia mais

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13 Mtemátic UNICAMP QUESTÃO 1 Em 1 de outubro de 01, Felix Bumgrtner quebrou o recorde de velocidde em qued livre. O slto foi monitordo oficilmente e os vlores obtidos estão expressos de modo proximdo n tbel

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A]

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A] . (Ufrgs 0) Assinle lterntiv ue preenche corretmente s lcuns no fim o enuncio ue segue, n orem em ue precem. Três esfers metálics iêntics, A, B e C, são monts em suportes isolntes. A esfer A está positivmente

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

Questão 01. Determine os valores reais de x que satisfazem a inequação: log 1. Questão 02 Encontre as soluções reais da equação: Resolução: log 1

Questão 01. Determine os valores reais de x que satisfazem a inequação: log 1. Questão 02 Encontre as soluções reais da equação: Resolução: log 1 Questão 0 etermine os vlores reis e que stisfzem inequção: 4 log log 9 4 log 9 log * 0 0 conição e eistênci: 0 ou Fzeno log e log, temos: 4. 0 0... 0 0 + + + Portnto: 0 ou log 0 ou log ou 9 omo, poemos

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas.

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas. List de Prolems H 0/ List sugerid de prolems do livro texto (Nilsson& Riedel, quint edição) 4.8, 4.9, 4., 4.1, 4.18, 4., 4.1, 4., 4.3, 4.3, 4.36, 4.38, 4.39, 4.40, 4.41, 4.4, 4.43, 4.44, 4.4, 4.6, 4.,

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014

Leia mais

CURSO DE MATEMÁTICA ÁLGEBRA AULA

CURSO DE MATEMÁTICA ÁLGEBRA AULA CURSO DE MATEMÁTICA ÁLGEBRA AULA 7 POLINÔMIOS & EQUAÇÕES POLINOMIAIS PROF. MARCELO RENATO Outuro/8 mrcelorento.com RESUMO TEÓRICO Prof. Mrcelo Rento. SOMA DOS COEFICIENTES DE UM POLINÔMIO Pr clculr som

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Dinâmica dos corpos rígidos

Dinâmica dos corpos rígidos Dinâmi dos orpos ríidos Moimento em D Métodos de resolução Num instnte prtiulr: Equções de moimento Moimento finito: Prinípio d onserção de eneri meâni (forçs onsertis) Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL,

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV dministrção Fse 9/junho/005 MTMÁTI 0. ntônio investiu qunti recebid de hernç em três plicções distints: do totl recebido em um fundo de rend fi; 40% do vlor herddo em um

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +.

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +. 6 4. Função Eponencil É todo função que pode ser escrit n form: f: R R + = Em que é um número rel tl que 0

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

9 Implementação de Relógio Digital (State Charts)

9 Implementação de Relógio Digital (State Charts) StteFlow toolox 9 Implementção e Digitl (Stte Chrts) Desrever o funionmento e um relógio igitl, om um áre e isply prinipl, e 4 áres mis pequens. O relógio ispõe e: Poe mostrr o tempo num formto e 24 hors

Leia mais

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE TEORIA DOS LIMITES Professor: Alendre LIMITES. NOÇÃO INTUITIVA DE LIMITE Vmos nlisr o comportmento gráfico d função f ( ) qundo tende pr. ) Primeirmente vmos tender vriável por vlores inferiores, ou sej,

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA lever Pereir 4. PLÇÃO D PROTEÇÃO DFEREL À PROTEÇÃO DE TRSFORMDORES DE POTÊ 4.. Prinípio ásio s orrentes primáris e seundáris de um trfo de potêni gurdm entre si um relção onheid em ondições de operção

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 2008. FÍSICA 1 CAPÍTULO 3 VETORES

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 2008. FÍSICA 1 CAPÍTULO 3 VETORES Polems Resolvios e Físi Pof. Aneson Cose Guio Depto. Físi UFES HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 008. FÍSICA 1 CAPÍTULO 3 VETORES 16. N som A + = C, o veto A

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Tema #4. Resolução de problema que conduzem a s.e.l. incompatível. Introdução aos sistemas incompatível

Tema #4. Resolução de problema que conduzem a s.e.l. incompatível. Introdução aos sistemas incompatível Tem #4. Resolução de problem que conduzem s.e.l. incomptível Assunto: Problems que conduzem Sistem de Equções Lineres incomptível. Introdução os sistems incomptível Ns uls nteriores, estudmos problems

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Manual de Utilização do UpLoad BR

Manual de Utilização do UpLoad BR Mnul_UpLo_BR_20121128.o Mnul e Utilizção o UpLo BR Mnul_UpLo_BR_20121128.o ÍNDICE INFORMAÇÕES IMPORTANTES DA OPERADORA... 3 ACESSANDO O APLICATIVO... 3 MENU SELEÇÃO DE OPERADORA... 4 MENU CADASTROS...

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

Funções e Limites. Informática

Funções e Limites. Informática CURSO DE: SEGUNDA LICENCIATURA EM INFORMÁTICA DISCIPLINA: CÁLCULO I Funções e Limites Informátic Prof: Mrcio Demetrius Mrtinez Nov Andrdin 00 O CONCEITO DE UMA FUNÇÃO - FUNÇÃO. O que é um função Um função

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS6

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS6 FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS6 Gil d Cost Mrques Fundmentos de Mtemátic I 6. Potênci de epoente rel 6.2 Funções inverss 6.3 Função eponencil 6.4 Função logrítmic 6.5 Função logrítmic como função

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aul 7 _ Função Modulr, Eponencil e Logrítmic Professor Lucino Nóbreg FUNÇÃO MODULAR 2 Módulo (ou vlor bsolutode um número) O módulo (ou vlor bsoluto) de um número rel, que

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Professor Sérgio Furgeri. Pilhas. O primeiro a entrar é o último a sair e o último a entrar o primeiro a sair (LIFO Last-In First-Out).

Professor Sérgio Furgeri. Pilhas. O primeiro a entrar é o último a sair e o último a entrar o primeiro a sair (LIFO Last-In First-Out). Pilhs Pilhs Pilh é um tipo e list one tos s operções e inserção e remoção são feits n mesm extremie (Topo). O primeiro entrr é o último sir e o último entrr o primeiro sir (LIFO Lst-In First-Out). Trt-se

Leia mais

Proporção e Conceitos Relacionados. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Proporção e Conceitos Relacionados. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Móulo e Rzões e Proporções Proporção e Conceitos Relcionos 7 no E.F. Professores Tigo Mirn e Cleber Assis Rzões e Proporções Proporção e Conceitos Relcionos Exercícios Introutórios Exercício. Dos os números

Leia mais

CASE-CONTROL STUDIES: A BRIEF REVIEW

CASE-CONTROL STUDIES: A BRIEF REVIEW Gz. mé. Bhi 2010;80:1(Jn-Ar):101-110 Estuos Cso-Controle 101 ESTUDOS CASO-CONTROLE: CONTROLE: UMA BREVE REVISÃO CASE-CONTROL STUDIES: A BRIEF REVIEW Mro Antônio V. Rêgo 1 Deprtmento e Meiin Preventiv e

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

5(6,67Ç1&,$(&$3$&,7Æ1&,$

5(6,67Ç1&,$(&$3$&,7Æ1&,$ 59 5(6,67Ç&,$(&$3$&,7Æ&,$ ÃÃ5(6,67Ç&,$Ã(Ã/(,Ã'(Ã+0 No pítulo 6 efinimos ução J σ omo seno um ensie e oente e onução. Multiplino mos os los po um áe S, el fiá: J.S σs (A (8. σs (A (8. Se o mpo elétio fo

Leia mais

Falando. Matematicamente. Teste Intermédio. Escola: Nome: Turma: N.º: Data:

Falando. Matematicamente. Teste Intermédio. Escola: Nome: Turma: N.º: Data: Mtemticmente Flndo lexndr Conceição Mtilde lmeid Teste Intermédio vlição MTEMTICMENTE FLNDO LEXNDR CONCE ÇÃO MT LDE LME D lexndr Conceição Mtilde lmeid VLIÇÃO Escol: Nome: Turm: N.º: Dt: MTEMÁTIC.º NO

Leia mais

Geometria Plana II - Respostas

Geometria Plana II - Respostas Geometri Pln II - Resosts Ensino de qulidde, qunto ntes, melor 01 Sej M o onto médio de DE, então BM é medin reltiv à iotenus do triângulo BDE Logo B DM ME BM Como BM é isóseles, temos que MB ˆ lém disso,

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho Equilíbrio do indivíduo-consumidor-trblhdor e ofert de trblho 6 1 Exercício de plicção: Equilíbrio de um consumidor-trblhdor e nálise de estátic comprd Exercícios pr prátic do leitor Neste cpítulo, presentmos

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Prezados Estudantes, Professores de Matemática e Diretores de Escola,

Prezados Estudantes, Professores de Matemática e Diretores de Escola, Prezdos Estudntes, Professores de Mtemátic e Diretores de Escol, Os Problems Semnis são um incentivo mis pr que os estudntes possm se divertir estudndo Mtemátic, o mesmo tempo em que se preprm pr s Competições

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Técnicas de Análise de Circuitos

Técnicas de Análise de Circuitos Coordendori de utomção Industril Técnics de nálise de Circuitos Eletricidde Gerl Serr 0/005 LIST DE FIGURS Figur - Definição de nó, mlh e rmo...3 Figur LKC...4 Figur 3 Exemplo d LKC...5 Figur 4 plicção

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

CES - Lafaiete Engenharia Elétrica

CES - Lafaiete Engenharia Elétrica CES - Lfiete Engenhri Elétric Revisão: Acelerção etc - Prof.: Aloísio Elói 01) (MACK-SP) Um pssgeiro de um ônibus, que se move pr direit em MRU, observ chuv trvés d jnel. Não há ventos e s gots de chuv

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais