CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO. capítulo ver-se-á como obter um sistema digital controlado através de técnicas

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO. capítulo ver-se-á como obter um sistema digital controlado através de técnicas"

Transcrição

1 3 CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO A técnca uada para obtr um tma dgtal controlado nctam, bacamnt, da aplcação d algum método d dcrtação. Matmatcamnt falando, pod- obrvar qu o método d dcrtação ubttum a ntgração ao longo d um ntrvalo d tmpo por um omatóro m um conunto dcrto fnto d ntant. Nt capítulo vr--á como obtr um tma dgtal controlado atravé d técnca aprntada na çõ A últma ção rá tratar da nfluênca da colha do príodo d amotragm para a dcrtação Implmntação dgtal d compnador a tmpo contínuo: Uma prmra técnca para o proto d controlador amotrado é xgr qu o comportamnto do tma controlado plo compnador dgtal C dva r dêntco ou, ao mno, bm aproxmado, ao do tma controlado por um compnador a tmpo contínuo dado C. Nta aproxmação, para obtr o controlador dgtal, dv- prmro protar o controlador a tmpo contínuo vr fgura 3. dpo aplcar obr t algum do método d dcrtação, grando controlador dgta dfrnt, dpndndo do método utlado [5], como motra a fgura 3..

2 33 rt t ut yt C P Fgura 3. - Stma controlado a tmpo contínuo Na fgura 3., a part pontlhada rprnta um controlador amotrado C obtdo atravé da aplcação d algum método d dcrtação aplcado ao controlador a tmpo contínuo C. O convror A/D D/A ão fundamnta para a utlação d C no tma controlado a tmpo contínuo ão ncronado por um rlógo não motrado na fgura 3.. Not- qu o compnador C rcb amotra do nal do rro apna m ntant dcrto no tmpo ntant d amotragm. E, por outro lado, o compnador atuala o nal d control qu rá à planta apna m ntant d amotragm, não rpondndo a nnhum nal qu ocorra ntr t ntant [5]. rt t u t yt A/D C D/A P Fgura 3. - Stma d control dgtal 3. - Planta Dgta Equvalnt: Eta outra mtodologa buca amotrar a planta ntão protar o controlador a tmpo dcrto. Conta do gunt pao para obtr planta dgta quvalnt ncára para formar um tma dgtal controlado: Prmro, tranforma- a planta a tmpo contínuo m uma planta dgtal qu a rprnt d forma aproxmada, dpndndo do método d dcrtação do príodo d

3 34 amotragm utlado. A partr da planta dgtal, prota- um controlador dgtal, uando a mma técnca utlada para protar o controlador a tmpo contínuo, ndo o pólo colhdo dntro do círculo untáro. rlógo rt t ukt y t Fgura A/D Stma C d control P amotrado D/A a partr d uma planta dcrtada. A fgura 3.3 motra um tma controlado por um controlador dgtal protado a partr d uma planta dgtal quvalnt P. A localação do pólo na rgão d tabldad, a colha do método d dcrtação do príodo d amotragm ão fundamnta no proto do controlador dgtal O método d dcrtação: Pod- dtngur o método d dcrtação ntr plo tpo d aproxmação numérca utlada Método d nvarânca ao mpulo: Condr um controlador protado a tmpo contínuo, com uma função d tranfrênca bprópra [3]:

4 35 C c C, 3. ond dnomna- d c d contant bprópra - c C C uma função trtamnt própra. Conform a fgura 3., na ntrada d C tm- um mpulo, aplcando a tranformada d Laplac E, a aída rá: U C. C 3.. A Tranformada Z da amotra da rpota ao mpulo da função d tranfrênca trtamnt própra d C quação 3. rá: C Ζ{L - [C ] tkt } 3.3. ndo k,,,..., o ntant dcrto T o príodo d amotragm. Dmontra-, a partr do Torma d Amotragm d Shannon [3,,6] qu, na rlação ntr a rpota na frqüênca d tma a tmpo contínuo C w a rpota corrpondnt na frqüênca do tma a tmpo dcrto C w, há ntrodução d um fator T, tornando: C c T.Z[C ] 3.4. Portanto, a quação 3.4 rprnta o controlador amotrado atravé do método d nvarânca ao mpulo Método d nvarânca ao dgrau: Et método também é dnomnado d aproxmação ZOH Zro-Ordr-Hold. Dtrmna- o controlador amotrado C, condrando qu a ua rpota ao dgrau é

5 36 gual à amotra da rpota ao dgrau do xt controlador a tmpo contínuo C [3] no ntant d amotragm. xkt Igualando a rpota ao dgrau d ambo o tma no ntant d amotragm, tm-: xk-t k-t kt t. Z C L C t kt Como fo ctado, C C ão funçõ d tranfrênca bprópra, k ndca o ntant dcrto T é o príodo d amotragm. Dt modo, o controlador amotrado C é caractrado por: C- - Z[C/ tkt ] Aproxmação Backward: Condr um compnador protado a tmpo contínuo 5 C [3] xt Axt but yt cxt dut 3.7a 3.7b uma ralação vr ção 4.3. A ntgração da quação 3.7a do ntrvalo d t a t T produ, com t : t T t dx t dt t T x t T x t Ax t dt 3.8. t 5. A varáv qu tão m ngrto ndcam vtor ou matr a outra ão valor calar.

6 37 Fgura Intgração rtangular backward Fgura Intgração trapodal xt xkt Na fgura 3.4, a ntgração for aproxmada pla ára marcada, ntão a quação 3.8 torna: xk-t xt T - xt Axt TT a qual pod r crta como k-t kt t xt T - xt T A dfrncação m 3.7a é aproxmada por: xt T - xt T Ito quval a dtrmnar-, no domíno da tranformada, a gunt Axt. aproxmação backward: 3.9. T. xt Tranformação Blnar: Nt método, também dnomnado d aproxmação trapodal ou, anda, método Tutn [3], a ntgração m 3.8 é aproxmada plo trapéo motrado na fgura 3.5, lvando a:

7 38 Sua tranformada Z é xt T xt.x - X T/.A.[.X X] [T. /].A.X A qual mplca m: xt T - xt/t.-/.x A A.X T A tranforma d Laplac d 3.7a com t é.x A.X. Am, a aproxmação trapodal rá dada por:. 3.. T Mapamnto d pólo ro: Vu- qu a opração d amotragm tm o fto d mapar o pólo da funçõ no domíno S para o domíno Z d acordo com a rlação []: T 3.. ond T é o príodo d amotragm. Dd qu xtam ma pólo qu ro numa função H é dto tr ro no nfnto. Sob a ação do mapamnto, fto m 3., o ro no nfnto rão mapado m -. Et método mapa todo o pólo ro drtamnt. Ecolh- um ganho arbtráro tal qu a rpota na frqüênca no domíno Z rprnt xatamnt a função d tranfrênca no domíno S. Dada uma função d tranfrênca m S na qual ão conhcdo o pólo ro, pod- crvê-la da gunt manra:

8 39 r n m d c b a K H ] [ ] [ β α 3.. Aplcando a quação 3., obtm- a gunt função no domíno Z: c T c T r T n a T a T m T k T d b T K H ] co [ ] co [ ' β α 3.3 ond o índc k é dado por: k p r - n - m; 3.4 K, na quação 3.3, é ncontrado gualando- H a H na quação 3. para SoT, ond C fo convnntmnt colhdo. A colha d dpnd da aplcação, ndo uual colhr o ganho no nfnto:, A colha do príodo d amotragm: A colha d um pquno príodo d amotragm, além d rqurr maor capacdad computaconal, nm mpr rulta numa rpota atfatóra. A colha adquada d um T anda é dcutda amplamnt na ltratura [3,,6]. O Torma da Amotragm [6,7], dnvolvdo por Shannon, dclara qu um nal contínuo amotrado pod r rcontruído a partr d ua amotra, omnt, a maor componnt d frqüênca do nal contínuo ω for mnor qu ω / ω : frqüênca d amotragm. Para vtar cao d falamnto alang, Nyqut ugr lconar ω tal qu: ω >. ω. Inflmnt, no control dcrto d planta a tmpo contínuo, ocorrm atrao no tmpo t dvm r condrado untamnt com o Torma d Shannon. Para

9 4 uma colha prátca da taxa d amotragm baada na caractrítca do rgm trantóro, a rfrênca [6] ugr qu, com o Torma d Shannon, faça- a frqüênca d amotragm /T r colhda crca d d v maor qu a frqüênca d cort da função d tranfrênca d malha fchada. Vê- na fgura 3.6, a planta P -/ 4 condrada m malha fchada, com a rpota m frqüênca dmontrada plo dagrama d Bod. Sndo a frqüênca d cort ω c dada por,5 rad/, aplcando o Torma d Shannon, a frqüênca d amotragm ω dvrá r d, no mínmo, 5 rad/ T, um príodo d amotragm d, no mínmo,,5 f 4h para ta planta. Dta forma, para P P 3 tm-: P 3/ 433, com ω 5 rad/, o T mínmo rá d,4; P 3 3/ 433, com ω 5 rad/, o T mínmo rá d,5. Nt trabalho foram utlado o gunt príodo d amotragm T : T.5, T.,T., T.4, T. T.5 m toda a dcrtaçõ aprntada no capítulo a gur.

10 4 Magntud db - Fa -4 - Frqunca rad/ Frqunca rad/ Fgura Dagrama d Bod da planta P Magntud db -5 Fa - - Frqunca rad/ Frqunca rad/ Fgura Dagrama d Bod da planta P M agntud db - -4 Fa -6 Frqunca rad/ -9-8 Frqunca rad/ Fgura Dagrama d Bod da planta P 3

Texto para Coluna do NRE-POLI na Revista Construção e Mercado Pini - Novembro 2013

Texto para Coluna do NRE-POLI na Revista Construção e Mercado Pini - Novembro 2013 Txto para Coluna do NRE-POLI na Rvita Contrução Mrcado Pini - Novmbro 2013 Rico do Tomador do Agnt Financiro no Uo do Sitma Pric m rlação ao Sitma SAC no Financiamnto d Imóvi Ridnciai Prof. Dr. Claudio

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Univridad Salvador UNIFACS Curo d Engnharia Método Matmático Alicado / Cálculo Avançado / Cálculo IV Profa: Ilka Rbouça Frir A Tranformada d Lalac Txto 3: Dlocamnto obr o ixo t. A Função Dgrau Unitário.

Leia mais

3 Estimação da Velocidade do Motor de Indução

3 Estimação da Velocidade do Motor de Indução 3 Etmação da Vlocdad do oto d Indução Um do poblma do contol toal cont m conhc xatamnt a poção do fluxo paa qu o contol tabalh na foma cta. uta pqua tm do alzada paa congu t objto. O contol tm qu utlza

Leia mais

GERADORES E RECEPTORES eléctricos

GERADORES E RECEPTORES eléctricos GADOS CPTOS léctrcos No momnto d lgarmos a chav d gnção, a batra fornc nrga léctrca ao motor d arranqu, pondo st m funconamnto. nrga químca nrga léctrca Quando um lmnto do crcuto é capaz d transformar

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

GALERKIN, PETROV-GALERKIN E MÍNIMOS QUADRADOS PARA A SOLUÇÃO DA CONVECÇÃO-DIFUSÃO TRANSIENTE

GALERKIN, PETROV-GALERKIN E MÍNIMOS QUADRADOS PARA A SOLUÇÃO DA CONVECÇÃO-DIFUSÃO TRANSIENTE va Ibroamrcana d Ingnría Mcánca. Vol. 6.º pp. 6-74 0 GALEKI PEOV-GALEKI E MÍIMOS QUADADOS PAA A SOLUÇÃO DA COVECÇÃO-DIFUSÃO ASIEE ESAE CLAO OMÃO JAIO APAECIDO MAIS JOÃO BAISA CAMPOS SILVA 3 JOÃO BAISA

Leia mais

GERADORES E RECEPTORES. Setor 1202 Aulas 58, 59, 60 Prof. Calil. Geradores

GERADORES E RECEPTORES. Setor 1202 Aulas 58, 59, 60 Prof. Calil. Geradores GERADORES E RECEPTORES Stor 1202 Aulas 58, 59, 60 Prof. Call Gradors São sstmas qu convrtm um dtrmnado tpo d nrga, m nrga létrca. Cram mantém nos sus trmnas, uma dfrnça d potncal. São xmplos d gradors

Leia mais

SC101. Decibelímetro integrador classe 1 com protocolos de medição FOI TÃO FÁC. Aplicações Dispõe de protocolos de medição para:

SC101. Decibelímetro integrador classe 1 com protocolos de medição FOI TÃO FÁC. Aplicações Dispõe de protocolos de medição para: Dciblímtro intgrador cla 1 com protocolo d mdição Aplicaçõ Dipõ d protocolo d mdição para: Ruído grado por vículo a motor Nívi onoro mitido produzido por atividad vizinhança UÍDO NUNA MEDIR O R IL FOI

Leia mais

Resoluções das atividades

Resoluções das atividades IO FÍSI soluçõs das atvdads Sumáro ula Eltrodnâmca III sstors... ula Eltrodnâmca I... ula 5 Eltrostátca Eltrodnâmca...6 ula 6 Eltrodnâmca...8 ula 7 rcutos létrcos I...0 ula Eltrodnâmca III sstors tvdads

Leia mais

TRANSFERÊNCIA DE CALOR (TCL)

TRANSFERÊNCIA DE CALOR (TCL) CAMPUS SÃO JOSÉ ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR TRANSFERÊNCIA DE CALOR (TCL) Volum I Part 3 Prof. Carlos Boabad Nto, M. Eng. 200 2 ÍNDICE Págna CAPÍTULO 3 - TRANSFERÊNCIA DE CALOR

Leia mais

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR UMCCE Eng. Elérca m - ab. Crco Elérco Prof. Wlon Yamag EXPEÊNC 7 MEDD DE NDUÂNC PO OND ENGU NODUÇÃO O objvo báco da xprênca é mdr a ndânca a rênca d ma bobna zando ma onda ranglar. O prncípo da mdção é

Leia mais

Análise de Estabilidade 113

Análise de Estabilidade 113 Análi d Etabilidad 6 Análi d Etabilidad 6. Etabilidad: A) Um itma é távl a ua rota ao imulo tnd ara zro à mdida qu o tmo tnd ara o infinito. B) Um itma é távl cada ntrada limitada roduz uma aída limitada.

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

Sistema de Detecção, Localização e Isolamento de Ramos com Vazamento em Redes de Gás Natural

Sistema de Detecção, Localização e Isolamento de Ramos com Vazamento em Redes de Gás Natural Stma Dtcção, ocalzação Iolamnto Ramo com Vazamnto m R Gá Natural Joé Wanrly Scucugla lo orra Souza rtan Mara M. M. Patríco Núclo Enrga, Automação ontrol NEA, UNIDERP, Rua rará, 900-00, ampo Gran, MS E-mal:

Leia mais

C. Almeida (1987) Determinação da transmissividade e coeficiente de armazenamento por ensaios de recuperação

C. Almeida (1987) Determinação da transmissividade e coeficiente de armazenamento por ensaios de recuperação C. Almda (1987 Dtrmação da tramvdad cofct d armazamto or ao d rcuração Hdrogologa y Rcuro Hdráulco, t. XII,. 689-694. IV IMPOIO DE HIDROGEOLOGÍA ALMEIDA, Carlo DEERMINAÇÃO DE RANMIIVIDADE E COEFICIENE

Leia mais

Desenvolvimento de Sistema de Avaliação da Capacidade de Transferência de Sistemas de Transmissão

Desenvolvimento de Sistema de Avaliação da Capacidade de Transferência de Sistemas de Transmissão 1 Dsnvolvmnto d stma d Avalação da Capacdad d Transfrênca d stmas d Transmssão F. C. Gano, A. Padlha-Fltrn, UEP L. F.. Dlbon, CTEEP Rsumo- Algortmos fcnts para calcular a capacdad d transfrênca m uma rd

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc.

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc. TRANSMISSÃO DE CALOR II Prof. Eduardo C. M. Lourro, DSc. ANÁLISE TÉRMICA Dtrmnação da ára rqurda para transfrr o calor, numa dtrmnada quantdad por undad d tmpo, dadas as vlocdads d scoamnto as tmpraturas

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

QUADRO. ProfiScale QUADRO Medidor de distância. www.burg-waechter.de. pt Instruções h de serviço. ft 2 /ft 3 QUADRO PS 7350

QUADRO. ProfiScale QUADRO Medidor de distância. www.burg-waechter.de. pt Instruções h de serviço. ft 2 /ft 3 QUADRO PS 7350 QUADRO PS 7350 QUADRO 0,5 32 m 0,5 32 m m 2 /m 3 t 2 /t 3 prcson +1% ProScal QUADRO Mddor d dstânca pt Instruçõs d srvço www.burg-wactr.d BURG-WÄCHTER KG Altnor Wg 15 58300 Wttr Grmany Extra + + 9V Introdução

Leia mais

Introdução aos Conversores CC-CC

Introdução aos Conversores CC-CC INIUO E ELERÔNICA E POÊNCIA epartamento de Engenhara Elétrca Centro ecnológco UNIERIAE FEERAL E ANA CAARINA Introdução ao Converore CCCC Reponável pelo Etudo: Clóv Antôno Petry (INEP/EEL UFC) Orentador:

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS Normas Aplicávis - NBR 15.950 Sistmas para Distribuição d Água Esgoto sob prssão Tubos d politilno

Leia mais

CONTROLADOR EM MODO DUAL ADAPTATIVO ROBUSTO - DMARC.

CONTROLADOR EM MODO DUAL ADAPTATIVO ROBUSTO - DMARC. UIVERSIDADE FEDERAL DO RIO GRADE DO ORE CERO DE ECOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA ELÉRICA CAIO DORELES CUHA COROLADOR EM MODO DUAL ADAPAIVO ROBUSO - DMARC. AAL 8 CAIO DORELES CUHA COROLADOR

Leia mais

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema Força cntral 3 O problma das forças cntrais TÓPICOS FUNDAMENTAIS DE FÍSICA Uma força cntralé uma força (atrativa ou rpulsiva) cuja magnitud dpnd somnt da distância rdo objto à origm é dirigida ao longo

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

Departamento de Engenharia Elétrica CONTROLE DIGITAL

Departamento de Engenharia Elétrica CONTROLE DIGITAL Dpartamnto d Engnharia Elétrica CONTROLE DIGITAL PROF. DR. EDVALDO ASSUNÇÃO Univrsidad Estadual Paulista UNESP Faculdad d Engnharia d Ilha Soltira FEIS Dpartamnto d Engnharia Elétrica DEE -03- Sumário

Leia mais

Curso de Eletrônica Parte Analógica. Ademarlaudo Barbosa

Curso de Eletrônica Parte Analógica. Ademarlaudo Barbosa urso d Eltrônca Part Analógca Admarlaudo Barbosa III spostos smcondutors Os átomos d um matral smcondutor são dspostos m uma rd crstalna. Enquanto m um átomo solado os nís d nrga acssís a um létron são

Leia mais

Controle Digital. Henrique C. Ferreira. Universidade de Brasília. 2 o semestre 2015

Controle Digital. Henrique C. Ferreira. Universidade de Brasília. 2 o semestre 2015 Controle Digital Henrique C. Ferreira Universidade de Brasília 2 o semestre 2015 Henrique C. Ferreira (UnB) Controle Digital 2 o semestre 2015 1 / 25 Motivação Os sistemas de controle estudados até o momento

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

2 o CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO & GÁS

2 o CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO & GÁS o CONGRESSO RSILEIRO DE P&D EM PETRÓLEO & GÁS UM NOVO ESQUEM DE DISCRETIZÇÃO PR O MÉTODO DE VOLUMES FINITOS PLICDO À PROPGÇÃO DE OND ESCLR Carlos lxandr Santóro, Paulo César Olvra Unvrsdad Fdral do Espírto

Leia mais

ANAIS A MANUFATURA ENXUTA CONTIBUINDO PARA A MELHORIA DO SISTEMA DE GESTÃO DA QUALIDADE (SGQ): ESTUDO DE CASO

ANAIS A MANUFATURA ENXUTA CONTIBUINDO PARA A MELHORIA DO SISTEMA DE GESTÃO DA QUALIDADE (SGQ): ESTUDO DE CASO A MANUFATURA ENXUTA CONTIBUINDO PARA A MELHORIA DO SISTEMA DE GESTÃO DA QUALIDADE (SGQ): ESTUDO DE CASO LUCIANE DE OLIVEIRA CUNHA ( lucanoc@yahoo.com.br ) INSTITUTO TECNOLÓGICO DE AERONÁUTICA - ITA JOÃO

Leia mais

EFICIÊNCIA DE UMA UNIDADE DE REFRIGERAÇÃO POR COMPRESSÃO DE VAPOR

EFICIÊNCIA DE UMA UNIDADE DE REFRIGERAÇÃO POR COMPRESSÃO DE VAPOR EFICIÊNCIA DE UMA UNIDADE DE REFRIGERAÇÃO POR COMPRESSÃO DE VAPOR Janailon Olivira Cavalcanti 1 - janailonolivr@ig.com.br Univridad Fdral d Campina Grand Av. Aprígio Vloo, 88 - Campu II 58109-970 - Campina

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS APÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS As filas m intrsçõs não smaforizadas ocorrm dvido aos movimntos não prioritários. O tmpo ncssário para ralização da manobra dpnd d inúmros fators,

Leia mais

Modelos Variáveis de Estado

Modelos Variáveis de Estado Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

Universidade Estadual de Maringá Centro de Ciências Exatas Pós-Graduação em Física

Universidade Estadual de Maringá Centro de Ciências Exatas Pós-Graduação em Física Univridad Etadual d Mariná Cntro d Ciência Eata Pó-Graduação m Fíica Dirtação d Mtrado Modlo Tórico para a Técnica d Doi Fi Aplicado a Amotra d Dua Camada Danil Soar Vlaco Mariná - 006 DISSERTAÇÃO DE MESTRADO

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de.

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de. EEC rado Engnharia Elroénia d Copuador CDI odlação Conrolo d ia Dinâio Exríio d Função Driiva Conuno d xríio laborado plo don Joé Tnriro ahado JT, anul ano ilva, Víor Rodrigu da Cunha VRC Jorg Erla da

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Projeto de Magnéticos

Projeto de Magnéticos rojto d Magnéticos rojto d circuitos magnéticos ltrônicos rojto d Magnéticos 1. ntrodução s caractrísticas idais d um componnt magnético são: rsistência nula, capacitância parasita nula, dnsidad d campo

Leia mais

Critérios de Avaliação do Ensino Básico - 3º Ciclo

Critérios de Avaliação do Ensino Básico - 3º Ciclo Crtéro d Avalação do Enno Báo - 3º Clo Língua Portugua ATITUDES Formação para a dadana. DOMÍNIOS DO CONHECIMENTO E PERCENTAGENS COMPETÊNCIAS Comprnão oral ACTIVIDADES/ /INSTRUMENTOS DE AVALIAÇÃO Ralzação

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

Análises de sistemas no domínio da frequência

Análises de sistemas no domínio da frequência prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico

Leia mais

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada.

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada. Compenadore 0.1 Introdução Controle 1 - DAELN - UTFPR Prof. Paulo Roberto Brero de Campo O compenadore ão utilizado para alterar alguma caracterítica do itema em malha fechada. 1. Avanço de fae (lead):

Leia mais

Desempenho elevado... mesmo nos espaços mais reduzidos

Desempenho elevado... mesmo nos espaços mais reduzidos Stackr com condutor apado Aimntação AC 1,0 1,6 tonada SBP10N2 SBP12N2(I) SBP12N2(I)R SBP14N2(I) SBP14N2(I)R SBP16N2(I) SBP16N2(I)R SBP16N2S SBP16N2SR Dmpnho vado... mmo no paço mai rduzido Compacto, fáci

Leia mais

Capitulo 5 Resolução de Exercícios

Capitulo 5 Resolução de Exercícios Captulo 5 Rsolução Exrcícos FORMULÁRIO Dscoto Racoal Smpls D ; D ; ; D R R R R R R Dscoto Comrcal Smpls D ; ; D C C C C Dscoto Bacáro Smpls D s ; s ; D b b b b s Db ; b Rlaçõs tr o Dscoto Racoal Smpls

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

Física Geral I F -128. Aula 6 Força e movimento II

Física Geral I F -128. Aula 6 Força e movimento II Física Gral I F -18 Aula 6 Força movimnto II Forças Fundamntais da Naturza Gravitacional Matéria ( 1/r ) Eltromagné7ca ( 1/r ) Cargas Elétricas, átomos, sólidos Nuclar Fraca Dcaimnto Radioa7vo bta Nuclar

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emrson Marcos Furtado Mstr m Métodos Numéricos pla Univrsidad Fdral do Paraná (UFPR). Graduado m Matmática pla UFPR. Profssor do Ensino Médio nos stados do Paraná Santa Catarina dsd 1992. Profssor do Curso

Leia mais

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2 ] Univrsidad Fdral da Paraíba Cntro d Ciências Exatas da Naturza Dpartamnto d Matmática Univrsidad Fdral d Campina Grand Cntro d Ciências Tcnologia Unidad Acadêmica d Matmática Programa Associado d Pós-Graduação

Leia mais

Capítulo 5 Análise com volumes de controle fixos

Capítulo 5 Análise com volumes de controle fixos Caítulo 5 náli com volum d control fixo Como dito antriormnt, a análi d algun roblma d Mcânica do Fluido alicado a ngnharia é mai fácil, adquada, quando fita a artir da conidração d volum d control. Exmlo

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

S is tem a de G es tã o da Qua lida de. S egura n ça do T ra ba lho

S is tem a de G es tã o da Qua lida de. S egura n ça do T ra ba lho S is tm a d G s tã o da Qua lida d S gura n ça do T ra ba lho G s tã o da Qua lida d I n t r n a ti o n a l O r g a n i za ti o n fo r S ta n d a r d i za ti o n (I S O ) Organização Normalização. Intrnacional

Leia mais

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG.

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG. Atituds Sociolinguísticas m cidads d frontira: o caso d Brnardo d Irigoyn. Célia Niscoriuk Grad/UEPG. Valska Gracioso Carlos UEPG. 1. Introdução: O Brasil Argntina fazm frontira m crca d 1240 km dsd sua

Leia mais

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício OFICINA 9-2ºSmntr / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Profssors: Edu Vicnt / Gabrila / Ulício 1. (Enm 2012) As curvas d ofrta d dmanda d um produto rprsntam, rspctivamnt, as quantidads qu vnddors

Leia mais

CAMPOS ELÉCTRICOS. Formalismo do Electromagnetismo (equações de Maxwell)

CAMPOS ELÉCTRICOS. Formalismo do Electromagnetismo (equações de Maxwell) CAMPOS ELÉCTRICOS Fomalsmo do Elctomagntsmo (quaçõs d Maxwll) Explcatvo d todos os fnómnos qu nvolvm popdads léctcas magnétcas PROPRIEDADES DAS CARGAS ELÉCTRICAS Exstm dos tpos d cagas: postvas ngatvas.

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e :

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : INSCRIÇÕES ABERTAS ATÉ 13 DE JULH DE 2015! Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : Caso vo cê nunca t e nh a pa

Leia mais

Inspeção Industrial Através de Visão Computacional. Maurício Edgar Stivanello Paulo César Rodacki Gomes - Orientador

Inspeção Industrial Através de Visão Computacional. Maurício Edgar Stivanello Paulo César Rodacki Gomes - Orientador Inspeção Industrial Através de Visão Computacional Maurício Edgar Stivanello Paulo César Rodacki Gomes - Orientador Roteiro da apresentação 1 Introdução 2 Fundamentação teórica 3 Desenvolvimento do Trabalho

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1 5 MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 5 Introdução: Considrmos os sguints nunciados: Quais são as dimnsõs d uma caia rtangular sm tampa com volum v com a mnor ára d supríci possívl? A tmpratura

Leia mais

Automotive Service Center Soluções completas para empresas e profissionais do setor automotivo

Automotive Service Center Soluções completas para empresas e profissionais do setor automotivo A Boch traz para você a oficina do futuro Oficina autopça d todo o mundo têm a Boch como um grand técnico mprariai criado pcialmnt para difrnciar ua mpra no mrcado. té A gama mai complta d pça d rpoição.

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

Otimização de Redes de Distribuição de Água com Bombeamento

Otimização de Redes de Distribuição de Água com Bombeamento Otzação d Rds d strbução d Água co Bobanto Ua rd d dstrbução d água é coposta por u conunto d canos u ntrlga nós os uas rprsnta consudors (casas ndústras tc.) forncdors d água (caas d'água staçõs d tratanto

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Resolução. Admitindo x = x. I) Ax = b

Resolução. Admitindo x = x. I) Ax = b Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)

Leia mais

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo Anális m Frquência d Sistmas Linars Invariants no Tmpo Luís Caldas d Olivira Rsumo. Rsposta m Frquência 2. Sistmas com Função d Transfrência Racional 3. Sistmas d Fas Mínima 4. Sistmas d Fas Linar Gnralizada

Leia mais

RELATÓRIO DE ACOMPANHAMENTO DO TRABALHO TÉCNICO SOCIAL Dezembro/2010

RELATÓRIO DE ACOMPANHAMENTO DO TRABALHO TÉCNICO SOCIAL Dezembro/2010 [Digit txto] 1 IDENTIFICAÇÃO RELATÓRIO DE ACOMPANHAMENTO DO TRABALHO TÉCNICO SOCIAL Dzmbro/2010 Programa: Opraçõs Coltivas Contrato CAIXA nº: 0233.389.09/2007 Ação/Modalidad: Construção d unidad habitacional

Leia mais

VOLUME DE PRODUÇÃO, PREÇOS E A DECISÃO DE COMERCIALIZAÇÃO INFORMAL DO LEITE: UM ESTUDO NO ESTADO DO RIO DE JANEIRO

VOLUME DE PRODUÇÃO, PREÇOS E A DECISÃO DE COMERCIALIZAÇÃO INFORMAL DO LEITE: UM ESTUDO NO ESTADO DO RIO DE JANEIRO VOLUME DE PRODUÇÃO, PREÇOS E A DECISÃO DE COMERCIALIZAÇÃO INFORMAL DO LEITE: UM ESTUDO NO ESTADO DO RIO DE JANEIRO Volum d produção, prços a dcsão d comrcalzação... 405 Producton volum, prcs and th dcson

Leia mais

II Seminário NEPPAS: Caminhos e olhares da agroecologia nos sertões de Pernambuco Normas para envio de trabalho

II Seminário NEPPAS: Caminhos e olhares da agroecologia nos sertões de Pernambuco Normas para envio de trabalho II Sminário NEPPAS: Caminhos olhars da agrocologia nos srtõs d Prnambuco Normas para nvio d trabalho Srra Talhada, 26,27 28 d abril d 2012 Espaço Roda Mundo - Rodas d convrsas, rlatos trocas d xpriência

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Rio Grande do Norte terá maior oferta de energia eólica em leilão Agência Estado 17/04/2015

Rio Grande do Norte terá maior oferta de energia eólica em leilão Agência Estado 17/04/2015 www.lmntos.com.br du dilignc slção d arogradors inspçõs d fábricas ngnharia do propritário projtos solars ntr outros 17 d abril d 2015 Sxta-Fira - # 1.528 Rio Grand do Nort trá maior ofrta d nrgia ólica

Leia mais

1. INTRODUÇÃO 2. MÉTODOS PARA ANÁLISE SIMPLIFICADA

1. INTRODUÇÃO 2. MÉTODOS PARA ANÁLISE SIMPLIFICADA MÉTODOS DE ANÁLISE ESTRUTURAL DE TABULEIROS DE PONTES EM VIGAS MÚLTIPLAS DE CONCRETO PROTENDIDO Eduardo Valrano Alvs 1 Sérgo Marqus Frrra d Almda 1 Fláva Moll d Souza Judc 1 Rsumo: Est trabalho vsa aprsntar

Leia mais

TENSORES 1.1 INTRODUÇÃO

TENSORES 1.1 INTRODUÇÃO nsors ENSORES. INRODUÇÃO Os lmntos sóldos utlzados m Engnhara Mcânca das Estruturas dsnolm-s num spaço trdmnsonal no qu rspta à sua Gomtra, sndo ncssáro posconar pontos, curas, suprfícs obctos no spaço

Leia mais

A FERTILIDADE E A CONCEPÇÃO Introdução ao tema

A FERTILIDADE E A CONCEPÇÃO Introdução ao tema A FERTILIDADE E A CONCEPÇÃO Introdução ao tma O ciclo mnstrual tm a missão d prparar o organismo para consguir uma gravidz com êxito. O 1º dia d mnstruação corrspond ao 1º dia do ciclo mnstrual. Habitualmnt,

Leia mais

PARECER HOMOLOGADO(*)

PARECER HOMOLOGADO(*) PARECER HOMOLOGADO(*) (*) Dspacho do Ministro, publicado no Diário Oficial da União d 17/07/2003 (*) Portaria/MEC nº 1.883, publicada no Diário Oficial da União d 17/07/2003 MINISTÉRIO DA EDUCAÇÃO CONSELHO

Leia mais

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES 17 As associaçõs d pilhas ou batrias m séri ou parallo xigm o domínio d suas rspctivas polaridads, tnsõs corrnts. ALGUMAS SITUAÇÕES CLÁSSICAS (pilhas

Leia mais

PALAVRAS-CHAVE: CURRÍCULO DE PEDAGOGIA, FORMAÇÃO,EDUCAÇÃO INFANTIL, IDENTIDADE PROFISSIONAL

PALAVRAS-CHAVE: CURRÍCULO DE PEDAGOGIA, FORMAÇÃO,EDUCAÇÃO INFANTIL, IDENTIDADE PROFISSIONAL Govrno do Estado do Rio Grand do Nort Scrtariado d Estado da Educação Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN Pró-Ritoria d Psquisa Pós-Graduação PROPEG Dpartamnto d Psquisa

Leia mais

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos. DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo

Leia mais

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico. Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

SISTEMAS DE CONTROLE II

SISTEMAS DE CONTROLE II SISTEMAS DE CONTROLE II - Algumas situações com desempenho problemático 1) Resposta muito oscilatória 2) Resposta muito lenta 3) Resposta com erro em regime permanente 4) Resposta pouco robusta a perturbações

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

MINICURSO MINISTRADO NO DINCON 2010 INTRODUÇÃO AOS MÉTODOS PRIMAL-DUAL DE PONTOS INTERIORES E APLICAÇÕES

MINICURSO MINISTRADO NO DINCON 2010 INTRODUÇÃO AOS MÉTODOS PRIMAL-DUAL DE PONTOS INTERIORES E APLICAÇÕES MINICURSO MINISRDO NO DINCON INRODUÇÃO OS MÉODOS PRIML-DUL DE PONOS INERIORES E PLICÇÕES UORES: Prof. Dr. too Robrto Balbo mal: arbalbo@fc.up Profa. Dra. Eméa Cáa Baptta mal: baptta@fc.up.br Dpartamto

Leia mais

TIPOS DE GERADORES DE CC

TIPOS DE GERADORES DE CC ANOTAÇÕS D MÁQUINAS LÉTRICAS 17 TIPOS D GRADORS D CC S dfnm m função dos tpos d bobnas dos pólos. ssas bobnas, atravssadas pla corrnt d xctação, produzm a força magntomotrz qu produz o fluxo magnétco ndutor.

Leia mais

As Abordagens do Lean Seis Sigma

As Abordagens do Lean Seis Sigma As Abordagns do Lan Sis Julho/2010 Por: Márcio Abraham (mabraham@stcnt..br) Dirtor Prsidnt Doutor m Engnharia d Produção pla Escola Politécnica da Univrsidad d São Paulo, ond lcionou por 10 anos. Mastr

Leia mais

FLAVIANE C. F. VENDITTI 1, EVANDRO M. ROCCO 1, ANTONIO F. B. A. PRADO 1.

FLAVIANE C. F. VENDITTI 1, EVANDRO M. ROCCO 1, ANTONIO F. B. A. PRADO 1. ESTUDO DE PERTURBAÇÕES EM ÓRBITAS AO REDOR DO ASTEROIDE 6 KLEOPATRA UTILIZANDO MODELO DE POLIEDROS FLAVIANE C. F. VENDITTI, EVANDRO M. ROCCO, ANTONIO F. B. A. PRADO.. Insttuto Naconal d Psqusas Espacas,

Leia mais

OAB 1ª FASE RETA FINAL Disciplina: Direito Administrativo MATERIAL DE APOIO

OAB 1ª FASE RETA FINAL Disciplina: Direito Administrativo MATERIAL DE APOIO I. PRINCÍPIOS: 1. Suprmacia do Intrss Público sobr o Particular Em sndo a finalidad única do Estado o bm comum, m um vntual confronto ntr um intrss individual o intrss coltivo dv prvalcr o sgundo. 2. Indisponibilidad

Leia mais

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento CAP RATES, YIELDS E AALIAÇÃO DE IMÓEIS pelo étodo do rendento Publcado no Confdencal Iobláro, Março de 2007 AMARO NAES LAIA Drector da Pós-Graduação de Gestão e Avalação Ioblára do ISEG. Docente das caderas

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

MECÂNICA DOS FLUIDOS APLICADA A ESCOAMENTO DO SANGUE NA MICROCIRCULAÇÃO

MECÂNICA DOS FLUIDOS APLICADA A ESCOAMENTO DO SANGUE NA MICROCIRCULAÇÃO 6º POSMEC Univridad Fdral d Ubrlândia Faculdad d Engnharia Mcânica MECÂNICA DOS FLUIDOS APLICADA A ESCOAMENTO DO SANGUE NA MICROCIRCULAÇÃO Jona Antonio Albuqurqu d Carvalho Univridad d Braília Braília

Leia mais