Modelos Variáveis de Estado

Tamanho: px
Começar a partir da página:

Download "Modelos Variáveis de Estado"

Transcrição

1 Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo e Matriz de Transição de Estados; Discretização da Resposta no domínio do Tempo; Exemplo de Projetos; Analise de Modelos de Variáveis de Estados usando MATLAB

2 Variáveis de Estado de Sistemas Dinâmicos Tendência dos sistemas modernos aumento de sua complexidade Principalmente devido a necessidade de uma boa precisão As variáveis de estado descrevem a resposta futura de um sistema, dado o estado presente, as excitações de entrada e as equações que descrevem a dinâmica Variáveis de Estado: É o menor conjunto de variáveis que determina o estado de um sistema dinâmico Se pelo menos n variáveis ( χ( t), χ( t), χn( t) ) são necessárias para descrever completamente o comportamento de um sistema dinâmico, então estas n variáveis são um conjunto de variáveis de estado Modelo de Variáveis de Estado É um conjunto de equações diferenciais de a ordem na forma matricial, representando as relações entre as entradas e saídas, e algumas características internas do sistema É possível enviar para dentro do modelo mais informações a cerca da planta, pois o sistema pode ter mais de uma entrada; Vários modelos de variáveis de estado podem ser obtidos para um mesmo sistema, depende da escolha das variáveis de estado; As teorias de controle moderno são desenvolvidas para esta abordagem; A simulação de sistemas geralmente necessita de modelo de variáveis de estado

3 Variáveis de Estado de Sistemas Dinâmicos As técnicas no domínio do tempo podem ser usadas para sistemas não-lineares, variantes no tempo e multivariáveis; Um sistemas variante no tempo é um sistema para o qual um ou mais parâmetros do sistema podem variar em função do tempo; O domínio do tempo é o domínio matemático que incorpora a resposta e a descrição de um sistema em termos do tempo, t A representação de sistemas de controle no domínio do tempo constitui uma das bases da teoria de controle moderno e da otimização de sistemas Um sistema de equações diferenciais descreve o comportamento do sistema em termos da taxa de variação de cada uma das variáveis de estado 3

4 Equação Diferencial de Estado O Estado de um sistema é descrito por meio de um sistema de equações diferenciais de primeira ordem em termos das variáveis de estados Vetor de Estado = a x a x K a x b u K b u n n m m = a x a x K a x b u K b u M n n m m = a x a x K a x b u K b u n n n nn n n nm m Forma Matricial x a a K an x b b m u x a a a d n x K K = dt M M M M M K M M bn b nm u m xn an an ann x K K n x x x = M x n Equação Diferencial de Estado = Ax Bu Equação de Saída y = Cx Du 4

5 Circuito RLC Variáveis de Estados: x = tensão no capacitor v c (t) x =corrente no Indutor i L( t) Energia Armazenada no Circuito: Lei de Kirchhoff: Li L Cv c Ε = dvc ic = C = u( t) il dt dil L RiL vc dt = v = Ri ( t) o L 5

6 Equaçao Diferencial de Estado A partir da equações do sistema se obtem duas equações diferenciais de primeira ordem em termos das variáveis de estado x e x dx = x u ( t ) Forma Matricial: C = x dt C C C u( t) R dx R = x x L L dt L L y( t) = v ( t) = Rx y = R x o A solução da equação diferencial de estado pode ser obtida de modo semelhante a abordagem utilizada para resolver uma equação diferencial de primeira ordem ( t) = Ax( t) Bu( t) sx ( s) x() = ax ( s) bu ( s) x() b X ( s) = U ( s) s a s a [ ] Onde x(t) e u(t) são funções escalares do tempo 6

7 Equação Diferencial de Estado A transformada de Laplace inversa, resulta na solução: Forma Matricial t at a( t τ ) ( ) () ( ) x t e x e bu τ dτ = k k At A t A t e = exp( At) = I At K K! k! x( t) = exp( At) x() exp[ A( t τ )] Bu( τ ) dτ ( ) = [ ] () [ ] ( ) X s si A x si A BU s t x( t) = Φ ( t) x() Φ( t τ )] Bu( τ ) dτ t x ( t) φ ( t) φ ( t) K φ n( t) x () x( t) φ( t) φ( t) φn ( t) x() K = M M K M M x ( t) φ ( t) φ ( t) K φ ( t) x () n n n nn n 7

8 Forma Padrão de Representação do Modelo de VE de um Sistema Onde: x(t) Vetor de Estado; u(t) Vetor de Entrada; y(t) Vetor de Saída ( t) = A x( t) B u( t) y( t) = C x( t) D u( t) Equação de Estado Equação de Saída A Matrix de Estado; B Matrix de Entrada; C Matrix de Saída; D Matrix de Transmissão direta 8

9 OBTENÇÃO DO MODELO DE ESTADO DE UM SISTEMA A PARTIR DA FUNÇÃO DE TRANSFERÊNCIA Y ( s ) ( ) b s b s = G s = b U ( s) s a s a s a 3 ( x ( s) ) Seja: Definindo-se: sx s x s x ( s) ( ) = ( ) y( t) = b x ( t) b x ( t) b x ( t) 3 ( t) = x ( t) ( t) = x 3( t) ( t) = a x ( t) a x ( t) a x ( t) µ ( t) 3 3 Y ( s) = bs x( s) bsx ( s) b x ( s) U ( s s a s ( a s a x s 3 ) = x ( s) x s) x ( s) ( ) s x ( s) = sx ( s) = x ( s) 3 Aplicando-se a transformação inversa de Laplace, resulta em : e, 9

10 OBTENÇÃO DO MODELO DE ESTADO DE UM SISTEMA A PARTIR DA FUNÇÃO DE TRANSFERÊNCIA Y ( s ) ( ) b s b s = G s = b U ( s) s a s a s a 3 ( t) x ( t) ( t) = x ( t) µ ( t) 3( t) a a a x3( t) x ( t) y( t) = [ b b b ] x( t) x3( t)

11 OBTENÇÃO DA FT DE UM SISTEMA A PARTIR DAS EQUAÇÕES DE ESTADO Seja a representação de estado, mostrada abaixo: sx ( s) = AX ( s) BU ( s) Y ( s) = CX ( s) DU ( s) X( t) = A X( t) B µ ( t) Y( t) = C X( t) D µ ( t) Aplicando a transformação de Laplace e considerando nulas as condições iniciais, resulta: matriz identidade ( si A) X ( s) = BU ( s) X ( s) = ( si A) BU ( s) Substituindo a expressão de X(s) na equação de Y(s), resulta: Com isto, tem-se: { } Y( s) = C(SI A) B D U( s) Y( s) = G( s) = C( SI A) B D U( s)

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona

Leia mais

Identificação e Controle Adaptativo

Identificação e Controle Adaptativo Identificação e Controle Adaptativo Prof. Antonio A. R. Coelho 1 Universidade Federal de Santa Catarina, UFSC Grupo de Pesquisa em Tecnologias de Controle Aplicado, GPqTCA Departamento de Automação e Sistemas,

Leia mais

Transformada de Laplace. Parte 3

Transformada de Laplace. Parte 3 Transformada de Laplace Parte 3 Elementos de circuito no domínio da frequência O resistor no domínio da frequência Pela lei de OHM : v= Ri A transformada da equação acima é V(s) = R I(s) O indutor no domínio

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais A Transformada de Laplace em análise de circuitos parte 2 Equivalente

Leia mais

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara Equações Diferenciais Ordinárias Modelagem de Sistemas Dinâmicos Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle

Leia mais

4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92)

4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92) ADL22 4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92) A transformada de Laplace fornece: (4.93) (4.94) A fim de separar X(s), substitua sx(s)

Leia mais

5 Transformadas de Laplace

5 Transformadas de Laplace 5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal

Leia mais

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios. Conteúdo programático: Elementos armazenadores de energia: capacitores e indutores. Revisão de características técnicas e relações V x I. Caracterização de regime permanente. Caracterização temporal de

Leia mais

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Espaço de Estados (CP1 www.professores.deq.ufscar.br/ronaldo/cp1 DEQ/UFSCar 1 / 69 Roteiro 1 Modelo Não-Linear Modelo

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais A Transformada de Laplace em análise de circuitos parte 1 A resistência

Leia mais

APOSTILA DE USO DO SOFTWARE COMPUTACIONAL ModSym

APOSTILA DE USO DO SOFTWARE COMPUTACIONAL ModSym UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO APOSTILA DE USO DO SOFTWARE COMPUTACIONAL ModSym Prof. André Laurindo Maitelli 28 de

Leia mais

Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos. Prof. Cassiano Rech cassiano@ieee.org

Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos. Prof. Cassiano Rech cassiano@ieee.org Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos cassiano@ieee.org 1 Projeto por alocação de pólos Na abordagem convencional, usando por exemplo o método do lugar das

Leia mais

Filtro de Kalman. Plano Básico Processos Estocásticos

Filtro de Kalman. Plano Básico Processos Estocásticos Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Programa de Educação Tutorial - PET Plano Básico Processos Estocásticos Filtro de Kalman Autores: Abnadan de Melo

Leia mais

Análise de Circuitos Elétricos III

Análise de Circuitos Elétricos III Análise de Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais Introdução à Transformada de Laplace A Transformada

Leia mais

CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA

CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA 1 CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA Simulação de chaves utilizando a função degrau a) Fonte de tensão que entra em operação em t = 0 Substituindo a chave

Leia mais

PRINCÍPIOS DE CONTROLE E SERVOMECANISMO

PRINCÍPIOS DE CONTROLE E SERVOMECANISMO PRINCÍPIOS DE CONTROLE E SERVOMECANISMO JOSÉ C. GEROMEL e RUBENS H. KOROGUI DSCE / Faculdade de Engenharia Elétrica e de Computação UNICAMP, CP 6101, 13083-970, Campinas, SP, Brasil, geromel@dsce.fee.unicamp.br

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

Controle Digital. Henrique C. Ferreira. Universidade de Brasília. 2 o semestre 2015

Controle Digital. Henrique C. Ferreira. Universidade de Brasília. 2 o semestre 2015 Controle Digital Henrique C. Ferreira Universidade de Brasília 2 o semestre 2015 Henrique C. Ferreira (UnB) Controle Digital 2 o semestre 2015 1 / 25 Motivação Os sistemas de controle estudados até o momento

Leia mais

Eletricidade Aplicada

Eletricidade Aplicada Eletricidade Aplicada Profa. Grace S. Deaecto Instituto de Ciência e Tecnologia / UNIFESP 12231-28, São J. dos Campos, SP, Brasil. grace.deaecto@unifesp.br Novembro, 212 Profa. Grace S. Deaecto Eletricidade

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA.

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Aulas anteriores Tipos de Sinais (degrau, rampa, exponencial, contínuos, discretos) Transformadas de Fourier e suas

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

LABORATÓRIO DE CONTROLE I

LABORATÓRIO DE CONTROLE I UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 1: ESTUDO DE FUNÇÕES DE TRANSFERÊNCIA E ANÁLISE DE RESPOSTA TRANSITÓRIA COLEGIADO DE

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Sistema de excitação

Sistema de excitação Sistema de excitação Introdução Introdução A função do sistema de excitação é estabelecer a tensão interna do gerador síncrono; Em consequência,o sistema de excitação é responsável não somente pela tensão

Leia mais

2.3- DIAGRAMAS DE BLOCOS E DE FLUXO DE SINAL. FÓRMULA DE MASON DIAGRAMA DE BLOCOS DB

2.3- DIAGRAMAS DE BLOCOS E DE FLUXO DE SINAL. FÓRMULA DE MASON DIAGRAMA DE BLOCOS DB 2.3 DIRMS DE BLOOS E DE FLUXO DE SINL. FÓRMUL DE MSON DIRM DE BLOOS DB Os sistemas de controle, geralmente, são constituídos por vários componentes ou partes interligadas. Para mostrar estas interconexões

Leia mais

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Departamento de Matemática balsa@ipb.pt Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia 1 o

Leia mais

Aplicação do Modelo Linear de Vorpérian ao Conversor tipo Buck Ewaldo L. M. Mehl

Aplicação do Modelo Linear de Vorpérian ao Conversor tipo Buck Ewaldo L. M. Mehl Aplicação do Modelo Linear de Vorpérian ao Conversor tipo Buck Ewaldo L. M. Mehl 1. Apresentação Com o uso do conceito do Interruptor PWM apresentado por Vorpérian [1,2], torna-se extremamente simples

Leia mais

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Prof. José Roberto Marques (direitos reservados) A ENERGIA DAS REDES ELÉTRICAS A transformação da energia de um sistema de uma forma para outra, dificilmente

Leia mais

Controlabilidade e Observabilidade

Controlabilidade e Observabilidade IA536 - Teoria de Sistemas Lineares - FEEC/UNICAMP contr 1/18 Controlabilidade e Observabilidade Sfrag replacements R 1 R 2 + u C 1 C 2 R 3 y A tensão no capacitor C 2 não pode ser controlada pela entrada

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período.

Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período. Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período. sin(t) = sin (t + T), ou exp(t) = exp(t+t) em que T é o período. [sin(a) e/ou cos(a) ]+[ sin(b) e/ou cos(b)] = o periodo

Leia mais

Introdução e Motivação

Introdução e Motivação Introdução e Motivação 1 Análise de sistemas enfoque: sistemas dinâmicos; escopo: sistemas lineares; objetivo: representar, por meio de modelos matemáticos, fenômenos observados e sistemas de interesse;

Leia mais

Circuitos Elétricos Circuitos de Segunda Ordem Parte 1

Circuitos Elétricos Circuitos de Segunda Ordem Parte 1 Circuitos Elétricos Circuitos de Segunda Ordem Parte 1 Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Introdução Circuitos que contem dois elementos armazenadores

Leia mais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais Capítulo 4 - Equações Diferenciais às Derivadas Parciais Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química

Leia mais

EEE 335 Eletromagnetismo II

EEE 335 Eletromagnetismo II 0.6 J 0 J 1 0.4 J 2 J 3 0.2 0 0.2 0 2 4 6 8 10 Universidade Federal do Rio de Janeiro EEE 335 Eletromagnetismo II Prof. Antonio Carlos Siqueira de Lima Sobre as notações Vetores em negrito nos slides!

Leia mais

Linhas de Transmissão

Linhas de Transmissão Linhas de Transmissão 1. Objetivo Medir a capacitância, indutância e a impedância num cabo coaxial. Observar a propagação e reflexão de pulsos em cabos coaxiais. 2. Introdução Uma linha de transmissão

Leia mais

Introdução aos circuitos seletores de frequências. Sandra Mara Torres Müller

Introdução aos circuitos seletores de frequências. Sandra Mara Torres Müller Introdução aos circuitos seletores de frequências Sandra Mara Torres Müller Aqui vamos estudar o efeito da variação da frequência da fonte sobre as variáveis do circuito. Essa análise constitui a resposta

Leia mais

DETERMINAÇÃO PELO MÉTODO DOS ELEMENTOS FINITOS DAS RESPOSTAS, NO DOMÍNIO DA FREQÜÊNCIA, DE SISTEMAS DINÂMICOS SUJEITOS A CONDIÇÕES INICIAIS

DETERMINAÇÃO PELO MÉTODO DOS ELEMENTOS FINITOS DAS RESPOSTAS, NO DOMÍNIO DA FREQÜÊNCIA, DE SISTEMAS DINÂMICOS SUJEITOS A CONDIÇÕES INICIAIS DETERMINAÇÃO PELO MÉTODO DOS ELEMENTOS FINITOS DAS RESPOSTAS, NO DOMÍNIO DA FREQÜÊNCIA, DE SISTEMAS DINÂMICOS SUJEITOS A CONDIÇÕES INICIAIS Webe João Mansur 1 Marco Aurélio Chaves Ferro 1 Programa de Engenharia

Leia mais

Indutor e Capacitor. Prof. Mário Henrique Farias Santos, M.Sc. 31 de Julho de 2009

Indutor e Capacitor. Prof. Mário Henrique Farias Santos, M.Sc. 31 de Julho de 2009 Indutor e Capacitor Prof. Mário Henrique Farias Santos, M.Sc. 3 de Julho de 2009 Introdução A partir deste momento introduziremos dois elementos dinâmicos de circuitos: indutor e capacitor. Porque são

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Figura 1 Circuito RLC série

Figura 1 Circuito RLC série ASSOCIAÇÃO EDUCACIONAL DOM BOSCO FACULDADE DE ENGENHARIA DE RESENDE ENGENHARIA ELÉTRICA ELETRÔNICA Disciplina: Laboratório de Circuitos Elétricos Circuitos de Segunda Ordem. Objetivo Os circuitos elétricos

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 04 Prof. Dr. Marco Antonio Leonel Caetano Guia de Estudo para Aula 04 Aplicação de Produto Escalar - Interpretação do produto escalar

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Eletricidade

UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Eletricidade UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Eletricidade Análise de Circuitos alimentados por fontes constantes Prof. Ilha Solteira,

Leia mais

Introdução aos Sistemas

Introdução aos Sistemas Aula 04 Sistemas Análise de Sinais Sistemas Introdução aos Sistemas A noção de sistemas é intuitiva. Quase tudo que nos rodeia é algum tipo de sistema. Qualquer mecanismo, ou dispositivo, que funcione

Leia mais

UFSM CT DELC. e Mecânicos. ELC 1021 Estudo de Casos em Engenharia Elétrica

UFSM CT DELC. e Mecânicos. ELC 1021 Estudo de Casos em Engenharia Elétrica UFSM CT DELC Analogia Sistemas entre Elétricos e Mecânicos ELC 1021 Estudo de Casos em Engenharia Elétrica Giovani Baratto 6/25/2007 Introdução As equações diferenciais que governam as tensões e correntes

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #A22 (1) O circuito a seguir amplifica a diferença de

Leia mais

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (2) Definição de Sistemas. Esta Aula

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (2) Definição de Sistemas. Esta Aula Resumo Sistemas e Sinais Definição de Sinais e de Sistemas (2) lco@ist.utl.pt Instituto Superior Técnico Definição de sistemas. Espaço de funções. Equações diferenciais e às diferenças. Sistemas com e

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA SÉRIE DE EXERCÍCIO #A7 () Analise o circuito a seguir e determine V A e V o. V A V

Leia mais

1 Descrição do Trabalho

1 Descrição do Trabalho Departamento de Informática - UFES 1 o Trabalho Computacional de Algoritmos Numéricos - 13/2 Métodos de Runge-Kutta e Diferenças Finitas Prof. Andréa Maria Pedrosa Valli Data de entrega: Dia 23 de janeiro

Leia mais

Indutores. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br

Indutores. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Indutores Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Indutores Consistem de um condutor enrolado com N voltas (espiras) na forma de um solenóide, ou de um tiróide. Podem conter ou não um

Leia mais

Fluxo de Potência em sistemas de distribuição

Fluxo de Potência em sistemas de distribuição Fluxo de Potência em sistemas de distribuição Os sistemas de distribuição são radiais, caracterizados por ter um único caminho entre cada consumidor e o alimentador de distribuição. A potência flui da

Leia mais

CAPACITORES: ESTUDO DO REGIME TRANSITÓRIO

CAPACITORES: ESTUDO DO REGIME TRANSITÓRIO LISTA DE EXERCÍCIOS IFES - CAMPUS CACHOEIRO DE ITAPEMIRIM CAPACITORES: ESTUDO DO REGIME TRANSITÓRIO Aluno: 1) Utilizando a figura a seguir como referência, responda: a) Explique como se dá o processo de

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do

Leia mais

Introdução ao Estudo de Sistemas Dinâmicos

Introdução ao Estudo de Sistemas Dinâmicos Introdução ao Estudo de Sistemas Dinâmicos 1 01 Introdução ao Estudo de Sistemas Dinâmicos O estudo de sistemas dinâmicos envolve a modelagem matemática, a análise e a simulação de sistemas físicos de

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace Resumo Sinais e Sistemas Transformada de aplace lco@ist.utl.pt Instituto Superior Técnico Definição da transformada de aplace. Região de convergência. Propriedades da transformada de aplace. Sistemas caracterizados

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Notas de aulas - 21 de Maio de 2003 Computação, Engenharia Elétrica e Engenharia Civil Prof. Ulysses Sodré ii Copyright c 2002 Ulysses Sodré. Todos os direitos reservados.

Leia mais

O preço de uma opção de compra segundo a teoria de Black, Scholes e Merton

O preço de uma opção de compra segundo a teoria de Black, Scholes e Merton O preço de uma opção de compra segundo a teoria de Black, Scholes e Merton Há opções de compra e de venda, do tipo europeu e do tipo americano. As do tipo americano podem ser exercidas a qualquer momento,

Leia mais

Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada

Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada ELETRICIDADE Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Associação de impedâncias As impedâncias

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Prof. Graça. Circuitos elétricos CC

Prof. Graça. Circuitos elétricos CC 01 Prof. Graça Circuitos elétricos CC Circuitos elétricos de CC Conteúdo Circuitos Equivalentes Princípio da Superposição Elementos Lineares egras de Kirchoff Divisor de tensão Circuito de várias malhas

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

Resposta em Frequência de Sistemas LTI 1

Resposta em Frequência de Sistemas LTI 1 Resposta em Frequência de Sistemas LTI A resposta em frequência de um sistema LTI fornece a caracterização intuitiva do comportamento entrada-saída do sistema. Isto ocorre porque a convolução no domínio

Leia mais

Otimização de Controlador LQR para Conversor BUCK Usando Algoritmos Genéticos

Otimização de Controlador LQR para Conversor BUCK Usando Algoritmos Genéticos Otimização de Controlador LQ para Conversor BUCK Usando Algoritmos Genéticos Cleomar Pereira da Silva Departamento de Engenharia Elétrica Pontifícia Universidade Católica do io de Janeiro ua Marquês de

Leia mais

Ótimo de Pragas: Modelos Linearizados, Funcional Quadrático 1. Controle

Ótimo de Pragas: Modelos Linearizados, Funcional Quadrático 1. Controle TEMA Tend. Mat. Apl. Comput., 5, No. 1 2004, 145-154. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Controle Ótimo de Pragas: Modelos Linearizados, Funcional Quadrático

Leia mais

Aula 7 Reatância e Impedância Prof. Marcio Kimpara

Aula 7 Reatância e Impedância Prof. Marcio Kimpara ELETRIIDADE Aula 7 Reatância e Impedância Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Parâmetros da forma de onda senoidal Vp iclo Vpp omo representar o gráfico por uma equação matemática?

Leia mais

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36)

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36) M. Eisencraft 6.5 Processos aleatórios gaussianos 86 R 0 (t 1 +2T) = 1 2T t1 +T t 1 Assim, tomando t 1 = 0 e assumindo que T é grande, temos x(t)y(t+τ)dt. (6.35) R 0 (2T) = 1 2T x(t)y(t+τ)dt R xy (τ) =

Leia mais

Aula 5 Componentes e Equipamentos Eletrônicos

Aula 5 Componentes e Equipamentos Eletrônicos Aula 5 Componentes e Equipamentos Eletrônicos Introdução Componentes Eletrônicos Equipamentos Eletrônicos Utilizados no Laboratório Tarefas INTRODUÇÃO O nível de evolução tecnológica evidenciado nos dias

Leia mais

Análise, verificação e comparação de simulações utilizando MATLAB e PSPICE. Rafael Campagnaro de Mendonça

Análise, verificação e comparação de simulações utilizando MATLAB e PSPICE. Rafael Campagnaro de Mendonça UNIOESTE Universidade Estadual do Oeste do Paraná Centro de Ciências Exatas Campus Universitário de Foz do Iguaçu Engenharia Elétrica Transitórios Professor Rui Jovita Simulações de Circuitos Elétricos

Leia mais

5. CONVERSORES QUASE-RESSONANTES

5. CONVERSORES QUASE-RESSONANTES Fontes Chaveadas - Cap. 5 CONVRSORS QUAS-RSSONANTS J. A. Pomilio 5. CONVRSORS QUAS-RSSONANTS Os conversores quase-ressonantes procuram associar as técnicas de comutação suave presentes nos conversores

Leia mais

Análise de sistemas no domínio da frequência

Análise de sistemas no domínio da frequência Análise de sistemas no domínio da frequência Quando se analisa um sistema no domínio da frequência, pretende-se essencialmente conhecer o seu comportamento no que respeita a responder a sinais periódicos,

Leia mais

Sistemas Lineares e Escalonamento

Sistemas Lineares e Escalonamento Capítulo 1 Sistemas Lineares e Escalonamento Antes de iniciarmos nos assuntos geométricos da Geometria Analítica, vamos recordar algumas técnicas sobre escalonamento de matrizes com aplicações na solução

Leia mais

Amplificador Operacional

Amplificador Operacional Amplificador Operacional Os modelos a seguir, referem-se a modelos elétricos simplificados para os amplificadores de tensão e de corrente sem realimentação. Os modelos consideram três elementos apenas:

Leia mais

CIRCUITOS ELÉTRICOS II

CIRCUITOS ELÉTRICOS II CIRCUITOS ELÉTRICOS II Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Corrente Elétrica Quantidade de carga elétrica deslocada por unidade de tempo As correntes elétricas

Leia mais

3) IMPORTÂNCIA DESTE PROGRAMA DE APRENDIZAGEM NA FORMAÇÃO PROFISSIONAL, NESTE MOMENTO DO CURSO

3) IMPORTÂNCIA DESTE PROGRAMA DE APRENDIZAGEM NA FORMAÇÃO PROFISSIONAL, NESTE MOMENTO DO CURSO PROGRAMA DE APRENDIZAGEM NOME: SEL0302 Circuitos Elétricos II PROFESSORES: Azauri Albano de Oliveira Junior turma Eletrônica PERÍODO LETIVO: Quarto período NÚMERO DE AULAS: SEMANAIS: 04 aulas TOTAL: 60

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Cálculo da resposta no domínio do tempo: o papel dos pólos e zeros

Cálculo da resposta no domínio do tempo: o papel dos pólos e zeros Capítulo Cálculo da resposta no domínio do tempo: o papel dos pólos e zeros. Introdução O cálculo da resposta no domínio do tempoy(t) de um sistemag(t) pode ser calculado através da integral de convolução:

Leia mais

Transformada de Laplace

Transformada de Laplace Capítulo 8 Transformada de Laplace A transformada de Laplace permitirá que obtenhamos a solução de uma equação diferencial ordinária de coeficientes constantes através da resolução de uma equação algébrica.

Leia mais

2. Imagine um mercado que apresenta as seguintes curvas de oferta e demanda: (Curva de Demanda)

2. Imagine um mercado que apresenta as seguintes curvas de oferta e demanda: (Curva de Demanda) Universidade de Brasília Departamento de Economia Disciplina: Economia Quantitativa I Professor: Carlos Alberto Período: 1/7 Segunda Prova Questões 1. Resolver a seguinte integral: 1 ln ( 1 + x.5 ) dx

Leia mais

SIMULAÇÃO HARDWARE-IN-THE-LOOP (HIL) USANDO HARDWARE COMPUTACIONAL NA CONFIGURAÇÃO MESTRE-ESCRAVO

SIMULAÇÃO HARDWARE-IN-THE-LOOP (HIL) USANDO HARDWARE COMPUTACIONAL NA CONFIGURAÇÃO MESTRE-ESCRAVO SIMULAÇÃO HARDWARE-IN-THE-LOOP (HIL) USANDO HARDWARE COMPUTACIONAL NA CONFIGURAÇÃO MESTRE-ESCRAVO José Raimundo de Oliveira Silva - IC Karl Heinz Kienitz - PQ Resumo: Este trabalho estudou a possibilidade

Leia mais

CONTROLE DE SISTEMAS LINEARES SUJEITOS A SALTOS MARKOVIANOS APLICADO EM VEÍCULOS AUTÔNOMOS

CONTROLE DE SISTEMAS LINEARES SUJEITOS A SALTOS MARKOVIANOS APLICADO EM VEÍCULOS AUTÔNOMOS CONTROLE DE SISTEMAS LINEARES SUJEITOS A SALTOS MARKOVIANOS APLICADO EM VEÍCULOS AUTÔNOMOS Uma abordagem prática Apresentação preliminar Universidade de São Paulo USP Escola de Engenharia de São Carlos

Leia mais

3 Faltas Desbalanceadas

3 Faltas Desbalanceadas UFSM Prof. Ghendy Cardoso Junior 2012 1 3 Faltas Desbalanceadas 3.1 Introdução Neste capítulo são estudados os curtos-circuitos do tipo monofásico, bifásico e bifase-terra. Durante o estudo será utilizado

Leia mais

MECÂNICA DOS FLUIDOS 2 ME262

MECÂNICA DOS FLUIDOS 2 ME262 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS (CTG) DEPARTAMENTO DE ENGENHARIA MECÂNICA (DEMEC) MECÂNICA DOS FLUIDOS ME6 Prof. ALEX MAURÍCIO ARAÚJO (Capítulo 5) Recife - PE Capítulo

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA CURSO DE ENGENHARIA INDUSTRIAL ELÉTRICA/ELETROTÉCNICA

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA CURSO DE ENGENHARIA INDUSTRIAL ELÉTRICA/ELETROTÉCNICA UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA CURSO DE ENGENHARIA INDUSTRIAL ELÉTRICA/ELETROTÉCNICA CLETO ROBALO NUNES FILHO KENZO SASAKI LUIZ FERNANDO COSTA NUNES

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Programa de Educação Tutorial Autor: Bruno Pinho Meneses Orientadores: Janailson Rodrigues Lima Prof. Dr. Ricardo

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

Video Lecture RF. Laps

Video Lecture RF. Laps Video Lecture RF Laps Agenda 1. Considerações no projeto de circuitos RF 2. Casamento de impedância 3. Parâmetros S e Carta de Smith 4. Dispositivos/blocos comumente usados 5. Arquiteturas de transceptores

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO 34 4.4 Experimento 4: Capacitância, capacitores e circuitos RC 4.4.1 Objetivos Fundamentar o conceito de capacitância e capacitor; Realizar leituras dos valores de capacitância de capacitores; Associar

Leia mais

² Servomecanismo: Sistema de controle realimentado para controle automático de posição, velocidade ou aceleração. Muito empregado na indústria.

² Servomecanismo: Sistema de controle realimentado para controle automático de posição, velocidade ou aceleração. Muito empregado na indústria. 1. Introdução 1.1. De nições Básicas ² Sistema: Interconexão de dispositivos e elementos para cumprir um objetivo desejado. ² Processo: Um sistema ou dispositivo a ser controlado. ² Sistema de controle:

Leia mais

EA616B Análise Linear de Sistemas Resposta em Frequência

EA616B Análise Linear de Sistemas Resposta em Frequência EA616B Análise Linear de Sistemas Resposta em Frequência Prof. Pedro L. D. Peres Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre 2013 Resposta em Frequência

Leia mais

Filtros em Telecomunicações

Filtros em Telecomunicações MINISTÉRIO DA EDUCAÇÃO - Campus São José Área de Telecomunicações Filtros em Telecomunicações Marcos Moecke São José - SC, 006 SUMÁRIO. FILTROS....1 RESPOSTA EM FREQUÊNCIA DE CIRCUITOS.1 R. LEVANTAMENTO

Leia mais

LISTA DE EXERCÍCIOS DE CIRCUITOS ELÉTRICOS I Valner Brusamarello Professor Dr. Em Engenharia

LISTA DE EXERCÍCIOS DE CIRCUITOS ELÉTRICOS I Valner Brusamarello Professor Dr. Em Engenharia Valner Brusamarello Professor Dr. Em Engenharia - Escola de Engenharia UFRGS 1 LISTA DE EXERCÍCIOS DE CIRCUITOS ELÉTRICOS I Valner Brusamarello Professor Dr. Em Engenharia Av. Osvaldo Aranha, 103 - Bairro

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais