Modelos Variáveis de Estado

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Modelos Variáveis de Estado"

Transcrição

1 Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo e Matriz de Transição de Estados; Discretização da Resposta no domínio do Tempo; Exemplo de Projetos; Analise de Modelos de Variáveis de Estados usando MATLAB

2 Variáveis de Estado de Sistemas Dinâmicos Tendência dos sistemas modernos aumento de sua complexidade Principalmente devido a necessidade de uma boa precisão As variáveis de estado descrevem a resposta futura de um sistema, dado o estado presente, as excitações de entrada e as equações que descrevem a dinâmica Variáveis de Estado: É o menor conjunto de variáveis que determina o estado de um sistema dinâmico Se pelo menos n variáveis ( χ( t), χ( t), χn( t) ) são necessárias para descrever completamente o comportamento de um sistema dinâmico, então estas n variáveis são um conjunto de variáveis de estado Modelo de Variáveis de Estado É um conjunto de equações diferenciais de a ordem na forma matricial, representando as relações entre as entradas e saídas, e algumas características internas do sistema É possível enviar para dentro do modelo mais informações a cerca da planta, pois o sistema pode ter mais de uma entrada; Vários modelos de variáveis de estado podem ser obtidos para um mesmo sistema, depende da escolha das variáveis de estado; As teorias de controle moderno são desenvolvidas para esta abordagem; A simulação de sistemas geralmente necessita de modelo de variáveis de estado

3 Variáveis de Estado de Sistemas Dinâmicos As técnicas no domínio do tempo podem ser usadas para sistemas não-lineares, variantes no tempo e multivariáveis; Um sistemas variante no tempo é um sistema para o qual um ou mais parâmetros do sistema podem variar em função do tempo; O domínio do tempo é o domínio matemático que incorpora a resposta e a descrição de um sistema em termos do tempo, t A representação de sistemas de controle no domínio do tempo constitui uma das bases da teoria de controle moderno e da otimização de sistemas Um sistema de equações diferenciais descreve o comportamento do sistema em termos da taxa de variação de cada uma das variáveis de estado 3

4 Equação Diferencial de Estado O Estado de um sistema é descrito por meio de um sistema de equações diferenciais de primeira ordem em termos das variáveis de estados Vetor de Estado = a x a x K a x b u K b u n n m m = a x a x K a x b u K b u M n n m m = a x a x K a x b u K b u n n n nn n n nm m Forma Matricial x a a K an x b b m u x a a a d n x K K = dt M M M M M K M M bn b nm u m xn an an ann x K K n x x x = M x n Equação Diferencial de Estado = Ax Bu Equação de Saída y = Cx Du 4

5 Circuito RLC Variáveis de Estados: x = tensão no capacitor v c (t) x =corrente no Indutor i L( t) Energia Armazenada no Circuito: Lei de Kirchhoff: Li L Cv c Ε = dvc ic = C = u( t) il dt dil L RiL vc dt = v = Ri ( t) o L 5

6 Equaçao Diferencial de Estado A partir da equações do sistema se obtem duas equações diferenciais de primeira ordem em termos das variáveis de estado x e x dx = x u ( t ) Forma Matricial: C = x dt C C C u( t) R dx R = x x L L dt L L y( t) = v ( t) = Rx y = R x o A solução da equação diferencial de estado pode ser obtida de modo semelhante a abordagem utilizada para resolver uma equação diferencial de primeira ordem ( t) = Ax( t) Bu( t) sx ( s) x() = ax ( s) bu ( s) x() b X ( s) = U ( s) s a s a [ ] Onde x(t) e u(t) são funções escalares do tempo 6

7 Equação Diferencial de Estado A transformada de Laplace inversa, resulta na solução: Forma Matricial t at a( t τ ) ( ) () ( ) x t e x e bu τ dτ = k k At A t A t e = exp( At) = I At K K! k! x( t) = exp( At) x() exp[ A( t τ )] Bu( τ ) dτ ( ) = [ ] () [ ] ( ) X s si A x si A BU s t x( t) = Φ ( t) x() Φ( t τ )] Bu( τ ) dτ t x ( t) φ ( t) φ ( t) K φ n( t) x () x( t) φ( t) φ( t) φn ( t) x() K = M M K M M x ( t) φ ( t) φ ( t) K φ ( t) x () n n n nn n 7

8 Forma Padrão de Representação do Modelo de VE de um Sistema Onde: x(t) Vetor de Estado; u(t) Vetor de Entrada; y(t) Vetor de Saída ( t) = A x( t) B u( t) y( t) = C x( t) D u( t) Equação de Estado Equação de Saída A Matrix de Estado; B Matrix de Entrada; C Matrix de Saída; D Matrix de Transmissão direta 8

9 OBTENÇÃO DO MODELO DE ESTADO DE UM SISTEMA A PARTIR DA FUNÇÃO DE TRANSFERÊNCIA Y ( s ) ( ) b s b s = G s = b U ( s) s a s a s a 3 ( x ( s) ) Seja: Definindo-se: sx s x s x ( s) ( ) = ( ) y( t) = b x ( t) b x ( t) b x ( t) 3 ( t) = x ( t) ( t) = x 3( t) ( t) = a x ( t) a x ( t) a x ( t) µ ( t) 3 3 Y ( s) = bs x( s) bsx ( s) b x ( s) U ( s s a s ( a s a x s 3 ) = x ( s) x s) x ( s) ( ) s x ( s) = sx ( s) = x ( s) 3 Aplicando-se a transformação inversa de Laplace, resulta em : e, 9

10 OBTENÇÃO DO MODELO DE ESTADO DE UM SISTEMA A PARTIR DA FUNÇÃO DE TRANSFERÊNCIA Y ( s ) ( ) b s b s = G s = b U ( s) s a s a s a 3 ( t) x ( t) ( t) = x ( t) µ ( t) 3( t) a a a x3( t) x ( t) y( t) = [ b b b ] x( t) x3( t)

11 OBTENÇÃO DA FT DE UM SISTEMA A PARTIR DAS EQUAÇÕES DE ESTADO Seja a representação de estado, mostrada abaixo: sx ( s) = AX ( s) BU ( s) Y ( s) = CX ( s) DU ( s) X( t) = A X( t) B µ ( t) Y( t) = C X( t) D µ ( t) Aplicando a transformação de Laplace e considerando nulas as condições iniciais, resulta: matriz identidade ( si A) X ( s) = BU ( s) X ( s) = ( si A) BU ( s) Substituindo a expressão de X(s) na equação de Y(s), resulta: Com isto, tem-se: { } Y( s) = C(SI A) B D U( s) Y( s) = G( s) = C( SI A) B D U( s)

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a):

Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a): Pontifícia Universidade Católica de Goiás Departamento de Engenharia Laboratório ENG 3502 Controle de Processos 01 Prof: Marcos Lajovic Carneiro Aluno (a): Aula Prática 01 Polinômios, frações parciais,

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

1ā lista de exercícios de Sistemas de Controle II

1ā lista de exercícios de Sistemas de Controle II ā lista de exercícios de Sistemas de Controle II Obtenha uma representação em espaço de estados para o sistema da figura R(s) + E(s) s + z U(s) K Y (s) s + p s(s + a) Figura : Diagrama de blocos do exercício

Leia mais

Introdução aos Circuitos Elétricos

Introdução aos Circuitos Elétricos Introdução aos Circuitos Elétricos A Transformada de Laplace Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia A Transformada de Laplace História Pierri

Leia mais

SISTEMAS REALIMENTADOS

SISTEMAS REALIMENTADOS SISTEMAS REALIMENTADOS Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Representação no Espaço de Estados É apropriada para sistemas que possuem várias entradas e várias

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

Descrição de Sistemas LTI por Variáveis de Estados 1

Descrição de Sistemas LTI por Variáveis de Estados 1 Descrição de Sistemas LTI por Variáveis de Estado Os estados de um sistema podem ser definidos como o conjunto mínimo de sinais que descrevem o comportamento dinâmico do sistema. Sendo assim, dado o valor

Leia mais

Entre os pontos A e B temos uma d.d.p. no indutor dada por V L = L d i e entre os pontos C e D da d.d.p. no capacitor é dada por V L V C = 0

Entre os pontos A e B temos uma d.d.p. no indutor dada por V L = L d i e entre os pontos C e D da d.d.p. no capacitor é dada por V L V C = 0 Um circuito elétrico LC é composto por um indutor de mh e um capacitor de 0,8 μf. A carga inicial do capacitor é de 5 μc e a corrente no circuito é nula, determine: a) A variação da carga no capacitor;

Leia mais

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em

Leia mais

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.1 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Questão 01: Oscilador harmônico Considere o oscilador harmônico ẋ = y, ẏ

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos Modelagem Matemática de Sistemas Eletromecânicos Estudos e Analogias de modelos de funções de transferências. Prof. Edgar Brito Introdução Os sistemas elétricos são componentes essenciais de muitos sistemas

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

Conteúdo. Definições básicas;

Conteúdo. Definições básicas; Conteúdo Definições básicas; Caracterização de Sistemas Dinâmicos; Caracterização dinâmica de conversores cc-cc; Controle Clássico x Controle Moderno; Campus Sobral 2 Engenharia de Controle Definições

Leia mais

40.(ASSEMB.LEG-SP/FCC/2010) Um circuito RLC paralelo é alimentado por uma tensão v(t). A expressão da corrente total i(t) no domínio do tempo é: C dt

40.(ASSEMB.LEG-SP/FCC/2010) Um circuito RLC paralelo é alimentado por uma tensão v(t). A expressão da corrente total i(t) no domínio do tempo é: C dt 40.(ASSEMB.LEG-SP/FCC/00) Um circuito RLC paralelo é alimentado por uma tensão. A expressão da corrente total i( no domínio do tempo é: A) i( = R. + L dt + C dt B) i( = R + L + C dt dt dt C ) e( = + L

Leia mais

Exemplos de equações diferenciais

Exemplos de equações diferenciais Transformadas de Laplace - EDO's Prof. E.T.Galante Denição. Uma equação diferencial é uma equação na qual: a incógnita é uma função; há ao menos uma derivada da função incógnita. Antes de mais nada, vamos

Leia mais

Sinais Elementares e Operações Básicas

Sinais Elementares e Operações Básicas Exper. 2 Sinais Elementares e Operações Básicas Objetivo Esta prática descreve como utilizar o Matlab para representar e manipular alguns sinais elementares: Estudar os sinais elementares de tempo contínuo

Leia mais

Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)

Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II) Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre

Leia mais

Aula 3. Circuitos Complexos via Método das Malhas. Função de transferência múltiplas malhas

Aula 3. Circuitos Complexos via Método das Malhas. Função de transferência múltiplas malhas 2 Aula 3 Circuitos Complexos via Método das Malhas 1. Substituir todos os valores dos elementos passivos por suas impedâncias. 2. Substituir todas as fontes e todas as variáveis no domínio do tempo pelas

Leia mais

Introdução ao Controle em Espaço de Estados - Escrevendo as Equações de Estado

Introdução ao Controle em Espaço de Estados - Escrevendo as Equações de Estado Introdução ao Controle em Espaço de Estados - Escrevendo as Equações de Estado Eduardo M. A. M. Mendes DELT - UFMG Curso de Engenharia de Controle e Automação Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br

Leia mais

ic Mestrado Integrado em Bioengenharia

ic Mestrado Integrado em Bioengenharia ic Mestrado Integrado em Bioengenharia MATEMÁTICA I 01-11- 1º Teste de Avaliação Álgebra Linear e Geometria Analítica Justifique convenientemente todos os cálculos que efetuar. O teste tem a duração de

Leia mais

Representação por Variáveis de Estado

Representação por Variáveis de Estado EPESENTAÇÃO DE SISTEMAS DINÂMIOS PO VAIÁVEIS DE ESTADO Um sistema é dito dinâmico se a resposta presente depender de uma ecitação passada. aso contrário, se depender apenas da ecitação presente, é dito

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

Resposta em Frequência dos Circuitos

Resposta em Frequência dos Circuitos Instituto Federal de Santa Catarina Curso Técnico em Telecomunicações PRT- Princípios de Telecomunicações Resposta em Frequência dos Circuitos Prof. Deise Monquelate Arndt São José, abril de 2016 Resposta

Leia mais

Teoria dos Circuitos e Fundamentos de Electrónica

Teoria dos Circuitos e Fundamentos de Electrónica Teoria dos ircuitos e Fundamentos de Electrónica Teoria dos ircuitos Representação das Grandezas Alternadas Sinusoidais As grandezas de variação alternada sinusoidal podem representar-se na forma u(t)=u

Leia mais

Modelagem Matemática de Sistemas Dinâmicos

Modelagem Matemática de Sistemas Dinâmicos Modelagem Matemática de Sistemas Dinâmicos 3.1 INTRODUÇÃO No estudo de sistemas de controle, o leitor deve ser capaz de modelar sistemas dinâmicos e analisar características dinâmicas. O modelo matemático

Leia mais

Disciplina: Circuitos Elétricos I. Conceitos Preliminares

Disciplina: Circuitos Elétricos I. Conceitos Preliminares Disciplina: Circuitos Elétricos I Conceitos Preliminares Introdução O termo circuito elétrico se refere tanto a um sistema elétrico real quanto a um modelo matemático; É o instrumento básico para a compreensão

Leia mais

Sistemas lineares e matrizes, C = e C =

Sistemas lineares e matrizes, C = e C = 1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,

Leia mais

Transformada de Laplace

Transformada de Laplace Transformada de aplace Nas aulas anteriores foi visto que as ferramentas matemáticas de Fourier (série e transformadas) são de extrema importância na análise de sinais e de sistemas IT. Isto deve-se ao

Leia mais

Projeto de Inversores e Conversores CC-CC

Projeto de Inversores e Conversores CC-CC epartamento de ngenharia létrica Aula 1.2 Topologias de Conversor CC-CC Prof. João Américo Vilela Conversores Boost Característica de fonte de corrente CONVRSOR LVAOR TNSÃO I e ( BOOST ; STP-UP ) Ch V

Leia mais

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781 Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito

Leia mais

Circuitos Elétricos I EEL420 29/11/2012

Circuitos Elétricos I EEL420 29/11/2012 Circuitos Elétricos I EEL420 29/11/2012 PARA ESTA PROVA, DESRESPEITAR AS SEGUINTES REGRAS VALE 1 PONTO 1) COLOQUE SEU NOME E NUMERE AS FOLHAS DOS CADERNOS DE RESPOSTA 4) ESCREVA AS EQUAÇÕES LITERAIS, E

Leia mais

5 Descrição entrada-saída

5 Descrição entrada-saída Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)

Leia mais

Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II. A C Tort. 25 de setembro de y (x) + p(x)y(x) = g(x).

Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II. A C Tort. 25 de setembro de y (x) + p(x)y(x) = g(x). Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II A C Tort 25 de setembro de 2012 1 O fator integrante Suponha que a EDO de primeira ordem seja da forma: Multiplicando a EDO por

Leia mais

Corrente e Resistência

Corrente e Resistência Capítulo 5 Corrente e Resistência 5.1 Corrente Elétrica A corrente elétrica i em um fio condutor é definida como a carga que atravessa a área do fio por unidade de tempo: Unidade de corrente: Ampere [A]

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares CAPÍTULO 1 Sistemas de Equações Diferenciais Lineares Descrição do capítulo 1.1 Teoria preliminar 1.2 Sistemas lineares homogêneos 1.2.1 Autovalores reais distintos 1.2.2 Autovalores repetidos 1.2.3 Autovalores

Leia mais

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora.

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora. Apostila de Métodos Quantitativos - UERJ Professor: Pedro Hemsley Funções: f: X Y : Associa a cada elemento do conjunto X um único elemento do conjunto Y. Existem tres tipos especícos de funções: Sobrejetora,

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

Processos estocásticos

Processos estocásticos 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges gaborges@ene.unb.br

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais

1. Diagrama de Blocos. 2. Gráfico de fluxo de sinais. Representação e Análise de Sistemas Dinâmicos Lineares

1. Diagrama de Blocos. 2. Gráfico de fluxo de sinais. Representação e Análise de Sistemas Dinâmicos Lineares Representação e Análise de Sistemas Dinâmicos Lineares 1. Diagrama de Blocos 2. Gráfico de fluxo de sinais Fernando de Oliveira Souza pag.1 Engenharia de Controle Aula 3 Diagrama de Blocos U(s) G(s) Y

Leia mais

2 Conceitos Básicos da Geometria Diferencial Afim

2 Conceitos Básicos da Geometria Diferencial Afim 2 Conceitos Básicos da Geometria Diferencial Afim Antes de iniciarmos o estudo das desigualdades isoperimétricas para curvas convexas, vamos rever alguns conceitos e resultados da Geometria Diferencial

Leia mais

Teoria de Sistemas Lineares I

Teoria de Sistemas Lineares I Teoria de Sistemas Lineares I Prof. Aguinaldo S.e Silva Universidade Federal de Santa Catarina Estabilidade Entrada-Saída BIBO Estabilidade Considere o sistema linear SISO invariante no tempo, causal e

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada

LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada LINHAS DE TRANSMISSÃO DE ENERGIA LTE Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada Tópicos da Aula Tensões e Correntes Variantes no Tempo Sistema em Regime Permanente Senoidal Interpretação

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas

Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO Vimos que a dissipação de energia num circuito nos fornece uma condição de amortecimento. Porém, se tivermos uma tensão externa que sempre forneça energia ao sistema, de modo que compense

Leia mais

Sistemas Lineares. Pedro Luis Dias Peres Universidade Estadual de Campinas

Sistemas Lineares. Pedro Luis Dias Peres Universidade Estadual de Campinas Sistemas Lineares Pedro Luis Dias Peres Universidade Estadual de Campinas email: peres@dt.fee.unicamp.br 1 Capítulo 1 Definições e Exemplos cap:defexem Carlos Eduardo Trabuco Dórea Universidade Federal

Leia mais

Sistemas de Equações lineares

Sistemas de Equações lineares LEIC FEUP /4 Sistemas- Sistemas de Equações lineares SEL- Dado o sistema coeficientes + + + +, resolva-o invertendo a matriz dos SEL- SEL- Considere o seguinte sistema de equações lineares: + + + a + a

Leia mais

Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti

Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Resposta em Frequência O que será estudado? Decibel Circuitos Ressonantes Filtros Ressonância Circuito Ressonante (ou sintonizado) Combinação

Leia mais

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo:

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo: Matrizes 9 Calcule: 5 7 9 6 5 8 5 7 5 6 6 8 7 5 7 Sejam A 9 5, B 8 6 e C 7 Determine as matrizes: A B C A B C A (B C) Sejam as matrizes A (a ij ), em que a ij i j, e B (b ij ), em que b ij i j Seja C A

Leia mais

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre

Leia mais

ENGC25 - ANÁLISE DE CIRCUITOS ELÉTRICOS II

ENGC25 - ANÁLISE DE CIRCUITOS ELÉTRICOS II ENGC25 - ANÁLISE DE CIRCUITOS ELÉTRICOS II Módulo IV POTÊNCIA E VALOR EFICAZ UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Potência Instantânea Potência entregue a um elemento em um

Leia mais

Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto

Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva jmauricio@cear.ufpb.br

Leia mais

FACULDADE DE CIÊNCIAS ECONÓMICAS E EMPRESARIAIS. Matemática I 1 a Frequência: 27 de Outubro de 2009

FACULDADE DE CIÊNCIAS ECONÓMICAS E EMPRESARIAIS. Matemática I 1 a Frequência: 27 de Outubro de 2009 FACULDADE DE CIÊNCIAS ECONÓMICAS E EMPRESARIAIS Matemática I 1 a Frequência: 27 de Outubro de 2009 A frequência consiste em duas partes, tem uma duração de 2h30m e está cotado para 20 valores, é efectuado

Leia mais

Cap. 6 Conversores DC-DC

Cap. 6 Conversores DC-DC Cap. 6 Conversores DC-DC CONVERSORES DC-DC Regulador Linear de Tensão Conversores Chaveados Conversor Buck (abaixador) Conversor Boost (elevador) Conversor Buck-Boost Conversores Cuk Outros REGULADOR LINEAR

Leia mais

1 A função δ de Dirac

1 A função δ de Dirac Transformadas de Laplace - Delta de Dirac Prof ETGalante Nesta nota de aula abordaremos a função (que não é bem uma função) delta de Dirac, tão importante nas equações diferenciais que modelam fenômenos

Leia mais

Análise de Sinais e Sistemas

Análise de Sinais e Sistemas Universidade Federal da Paraíba Departamento de Engenharia Elétrica Análise de Sinais e Sistemas Luciana Ribeiro Veloso luciana.veloso@dee.ufcg.edu.br ANÁLISE DE SINAIS E SISTEMAS Ementa: Sinais contínuos

Leia mais

αx + 2y + (α + 1)z + 2αw = β 1. [40 pontos] Discuta o sistema em função dos parâmetros α, β e γ.

αx + 2y + (α + 1)z + 2αw = β 1. [40 pontos] Discuta o sistema em função dos parâmetros α, β e γ. Católica Lisbon School of Business and Economics UCP MATEMÁTICA I MINI-TESTE 1 - versão A Duração: 90 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =

Leia mais

Estados Prof: Marcos Lajovic Carneiro Aluno (a): Laboratório Resumo Experimentos da Modelagem no Espaço dos Estados

Estados Prof: Marcos Lajovic Carneiro Aluno (a): Laboratório Resumo Experimentos da Modelagem no Espaço dos Estados Pontifícia Universidade Católica de Goiás Espaço dos Escola de Engenharia ENG 3503 Sistemas de Controle Estados Prof: Marcos Lajovic Carneiro Aluno (a): Laboratório Resumo Experimentos da Modelagem no

Leia mais

1 Diagonalização de Matrizes 2 2. Sistemas de Equações Diferenciais Lineares

1 Diagonalização de Matrizes 2 2. Sistemas de Equações Diferenciais Lineares Diagonalização de Matrizes e Sistemas de Equações Diferenciais Lineares Reginaldo J Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 3 de setembro de

Leia mais

Circuitos Resistivos (Parte 1)

Circuitos Resistivos (Parte 1) Capítulo 2 Circuitos Resistivos (Parte 1) Neste Capítulo Relações e x i para Resistências e Fontes Sistemas de Equações Algébricas Evidenciam-se os principais resultados da análise de circuitos sem entrar

Leia mais

Prof. Amauri Assef. UTFPR Campus Curitiba 1

Prof. Amauri Assef. UTFPR Campus Curitiba 1 UNERSDADE TECNOLÓGCA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMCO DE ELETROTÉCNCA CURSO DE ENGENHARA NDUSTRAL ELÉTRCA Disciplina de Eletrônica de Potência ET66B Aula 7 Retificador monofásico onda completa a

Leia mais

CAPÍTULO 4 REPRESENTAÇÃO NO ESPAÇO DE ESTADOS..4. Solução da equação de estado no domínio temporal

CAPÍTULO 4 REPRESENTAÇÃO NO ESPAÇO DE ESTADOS..4. Solução da equação de estado no domínio temporal CAPÍTULO 4 REPRESENTAÇÃO NO ESPAÇO DE ESTADOS.1. Espaço de estados e variáveis de estado. Escolha das variáveis de estado.3 Solução da equação de estado linear.4. Solução da equação de estado no domínio

Leia mais

Aula 9. Diagrama de Bode

Aula 9. Diagrama de Bode Aula 9 Diagrama de Bode Hendrik Wade Bode (americano,905-98 Os diagramas de Bode (de módulo e de fase são uma das formas de caracterizar sinais no domínio da frequência. Função de Transferência Os sinais

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

em valores singulares ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Decomposição por valores singulares 1 / 14

em valores singulares ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Decomposição por valores singulares 1 / 14 Capítulo 7 Decomposição em valores singulares ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Decomposição por valores singulares 1 / 14 Motivação A determinação da característica de uma

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que: Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios

Leia mais

PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho

PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=

Leia mais

y y(y + 3x) em frações parciais: 1 u + 1 A(u + 1) + Bu = 1 A = 1, B = 1 du u(u + 1) u + 1 u 2 u + 1

y y(y + 3x) em frações parciais: 1 u + 1 A(u + 1) + Bu = 1 A = 1, B = 1 du u(u + 1) u + 1 u 2 u + 1 Turma A Questão : (3,5 pontos) Instituto de Matemática e Estatística da USP MAT455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 03-0//03 (a) Determine a solução y da equação

Leia mais

Ressonador de Helmholtz.

Ressonador de Helmholtz. Ressonador de Helmholtz. Modelo mecânico do ressonador de Helmholtz O ressonador é composto por um volume V, esférico no caso mostrado na figura, e um gargalo de seção reta S e comprimento l. A primeira

Leia mais

CF360 - Resumo Experimentos Prova 2

CF360 - Resumo Experimentos Prova 2 CF360 - Resumo Experimentos Prova 2 Fabio Iareke 19 de dezembro de 2011 1 Força Magnética sobre Condutores de Corrente 1.1 Roteiro de Estudos 1. Qual é a expressão para o campo magnético

Leia mais

CORRENTE CONTÍNUA 1. RESISTORES EM SÉRIE E EM. Resistores em série: V = I.R1 + I.R2 = I.(R1 + R2) = I.Req, com Req = Ri

CORRENTE CONTÍNUA 1. RESISTORES EM SÉRIE E EM. Resistores em série: V = I.R1 + I.R2 = I.(R1 + R2) = I.Req, com Req = Ri 25 - CIRCUITOS DE CORRENTE CONTÍNUA 1. RESISTORES EM SÉRIE E EM PARALELO: Resistores em série: V = I.R1 + I.R2 = I.(R1 + R2) = I.Req, com Req = Ri 1 Solução: Primeiro se calcula a resistência equivalente

Leia mais

Indução Magnética. E=N d Φ dt

Indução Magnética. E=N d Φ dt Indução Magnética Se uma bobina de N espiras é colocada em uma região onde o fluxo magnético está variando, existirá uma tensão elétrica induzida na bobina, e que pode ser calculada com o auxílio da Lei

Leia mais

MATLAB EM VIBRAÇÕES MECÂNICAS

MATLAB EM VIBRAÇÕES MECÂNICAS MATLAB EM VIBRAÇÕES MECÂNICAS O QUE É O MATLAB? O MATLAB ( MATrix LABoratory ) é um pacote de programas computacionais que pode ser usado para a resolução de uma variedade de problemas científicos e de

Leia mais

Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema

Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Um elemento pode ser ativo (capaz de gerar energia), passivo (apenas dissipam

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Dada uma função contínua a(t) definida num intervalo I = [0, T ], considere o problema x = a(t) x, x(0) = x 0. (1) Solução do Problema. 0 a(s) ds.

Dada uma função contínua a(t) definida num intervalo I = [0, T ], considere o problema x = a(t) x, x(0) = x 0. (1) Solução do Problema. 0 a(s) ds. Lei Exponencial Dada uma função contínua a(t) definida num intervalo I = [, T ], considere o problema x = a(t) x, x() = x. (1) Solução do Problema O problema (1) admite uma única solução, que é explicitamente

Leia mais

Existem várias formas de modulação e demodulação. Nesta página, algumas das mais comuns para a demodulação e alguns circuitos também comuns.

Existem várias formas de modulação e demodulação. Nesta página, algumas das mais comuns para a demodulação e alguns circuitos também comuns. Introdução O processo básico das telecomunicações consiste em adicionar o sinal das informações que se deseja transmitir ao sinal de transmissão (portadora), ou seja, uma modulação. No receptor, deve ocorrer

Leia mais

ENGENHARIA MECATRÔNICA

ENGENHARIA MECATRÔNICA MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA PROCESSO SELETIVO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA (PS-EngNav/2011) ENGENHARIA MECATRÔNICA PROVA ESCRITA DISCURSIVA INSTRUÇÕES GERAIS 1-

Leia mais

Lista de Exercícios de Cálculo 3 Terceira Semana

Lista de Exercícios de Cálculo 3 Terceira Semana Lista de Exercícios de Cálculo 3 Terceira Semana Parte A 1. Reparametrize as curvas pelo parâmetro comprimento de arco medido a partir do ponto t = 0 na direção crescente de t. (a) r(t) = ti + (1 3t)j

Leia mais

ANÁLISE DE VIBRAÇÃO MECÂNICA EM UMA CHAMINÉ INDUSTRIAL

ANÁLISE DE VIBRAÇÃO MECÂNICA EM UMA CHAMINÉ INDUSTRIAL 13 o POSMEC - Simpósio do Programa de Pós-Graduação em Engenharia Mecânica Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica ANÁLISE DE VIBRAÇÃO MECÂNICA EM UMA CHAMINÉ INDUSTRIAL Rogério

Leia mais

5 a LISTA DE EXERCÍCIOS

5 a LISTA DE EXERCÍCIOS 5 a LITA DE EXERCÍCIO ) A ação de controle proporcionalderivativo só apresenta influência durante o regime permanente não tendo nenhum efeito durante os transitórios do sistema. Responda se a afirmação

Leia mais

Mudança de base. Lista de exercícios. Professora: Graciela Moro

Mudança de base. Lista de exercícios. Professora: Graciela Moro Lista de exercícios Professora: Graciela Moro Mudança de base. Sejam β {( ) ( )} β {( ) ( )} β { ) ( )} e β {( ) ( )} bases ordenadas de R. (a) Encontre a matrizes mudança de base: i. [I β β ii. [I β β

Leia mais

A N Á L I S E N U M É R I C A. Sistemas de Equações Lineares

A N Á L I S E N U M É R I C A. Sistemas de Equações Lineares Sistemas de Equações Lineares . Inversa O sistema de equações lineares Pode ser escrito na forma matricial por AX=B Onde O sistema terá solução única caso e a sua solução pode ser obtida por Em Matlab:

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

Minicurso de MATLAB. Programa de Educação Tutorial de Engenharia Elétrica 28/03/15. lmax Rodrigues. lcaroline Pereira.

Minicurso de MATLAB. Programa de Educação Tutorial de Engenharia Elétrica 28/03/15. lmax Rodrigues. lcaroline Pereira. Minicurso de MATLAB Programa de Educação Tutorial de Engenharia Elétrica lmax Rodrigues lcaroline Pereira lnayara Medeiros 28/03/15 Conteúdo a ser abordado na aula Declaração e manipulação de vetores ;

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 7

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 7 Universidade Federal do Rio de Janeiro Circuitos Elétricos I - EEL420 Módulo 7 Musschenbroek Green Gauss Edison Tesla Lorentz Conteúdo 7 - Circuitos de Segunda Ordem...1 7.1 - Circuito RLC linear e invariante

Leia mais

A u l a 0 3 : R e p r e s e n t a ç ã o d o S i s t e m a E l é t r i c o d e P o t ê n c i a

A u l a 0 3 : R e p r e s e n t a ç ã o d o S i s t e m a E l é t r i c o d e P o t ê n c i a Análise de Sistemas Elétricos de Potência 1 UNIVERSIDADE FEDERAL DE JUIZ DE FORA A u l a 0 3 : R e p r e s e n t a ç ã o d o S i s t e m a E l é t r i c o d e P o t ê n c i a 1. Visão Geral do Sistema

Leia mais

PARTE 10 REGRA DA CADEIA

PARTE 10 REGRA DA CADEIA PARTE 10 REGRA DA CADEIA 10.1 Introdução Em Cálculo 1A, quando queríamos derivar a função h(x = (x 2 3x + 2 37, fazíamos uso da regra da cadeia, que é uma das mais importantes regras de derivação e nos

Leia mais

Exercícios desafiadores de Cinemática

Exercícios desafiadores de Cinemática Exercícios desaiadores de Cinemática Stevinus agosto 2009 1 Cinemâtica 1.1 Moysés, cap.2-10 Um trem com aceleração máxima a, e deceleração máxima (magnitude da aceleração de reiamento) tem de percorrer

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho 1 - Verifique que os conjuntos V abaixo com as operações dadas não são espaços vetoriais explicitando a falha em alguma das propriedades.

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Análise II Professor: Rubens Penha Cysne

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Análise II Professor: Rubens Penha Cysne Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Análise II Professor: Rubens Penha Cysne Lista de Exercícios 1 - VC Cálculo de Variações em Tempo Contínuo Postada dia 13/4/9 Data

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Lista de Exercícios 1 Lista 1 Joinville, de 2013/01 Escopo dos Tópicos Abordados Sistema Por Unidade (P.U.) Exercícios 2 Sistema PU Exercício 1 Tarefa: Trace o diagrama unifilar do sistema convertendo

Leia mais