PROVA DE MATEMÁTICA APLICADA VESTIBULAR FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

Tamanho: px
Começar a partir da página:

Download "PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia"

Transcrição

1 PROVA DE MATEMÁTICA APLICADA VESTIBULAR FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional d Livros, m 01. Uma psquisa fita plo dpartamnto d Markting stimou a quantidad d livros adquirida plos consumidors m função do prço d cada xmplar. Prço d Vnda Quantidad Vndida R$ 100,00 30 R$ 90,00 40 R$ 85,00 45 R$ 80,00 50 Considr qu os dados da tabla possam sr xprssos mdiant uma função polinomial do 1 o grau y = a.x + b, m qu x rprsnta a quantidad d livros vndida y, o prço d cada xmplar. a) Qu prço d vnda d cada livro maximizaria a rcita da ditora? b) O custo unitário d produção d cada livro é d R$ 8,00. Visando maximizar o lucro da ditora, o grnt d vndas stablcu m R$ 75,00 o prço d cada livro. Foi corrta a sua dcisão? Por quê? 10a a b 30 a 1 y x a b 40 b 130 a) Sndo qu x rprsnta a quantidad d livros vndida y, o prço d cada xmplar, ntão R(x) = xy R(x) = x(-x + 130) R(x) = R(x) = x + 130x o valor d R(x) vai sr 130 máximo para x = 65 R(65) = = = 45 o valor do livro qu 45 maximiza a rcita é RESPOSTA: R$ 65,00 b) L(x) = R(x) C(x) L(x) = x + 130x 8x L(x) = x + 1x L(x) assum o valor máximo 1 para x = 61 L(61) = x L(x) = = 371 o prço d cada livro 371 dv sr ntão RESPOSTA: R$ 69,00.. A ditora fz também um studo sobr o lançamnto do livro m duas vrsõs: capa dura capa d paplão. A psquisa mostrou qu, s a vrsão capa dura for vndida por x rais a vrsão capa d paplão por y rais, srão vndidos, no total, 130x + 70y (x² + y²) xmplars das duas vrsõs. Por uma qustão d stratégia, o grnt d vndas dcidiu qu a vrsão capa dura dv custar o dobro da vrsão capa d paplão. a) Qual dv sr o prço d vnda d cada vrsão, d modo qu a quantidad d livros vndida sja a maior possívl? b) Nas condiçõs do itm a), quantos xmplars a ditora stima vndr no total? 1

2 a) A xprssão 130x + 70y (x² + y²) qu rprsnta o total d livros a sr vndido é uma função d x y, ou sja: f(x,y) = 130x + 70y (x² + y²). Como a vrsão capa dura dv custar o dobro da vrsão capa d paplão, x = y f(y,y) = 60y + 70y (4y² + y²) f(y,y) = 5y + 330y. 330 f(y,y) assum valor máximo para y = 33 x RESPOSTA: O prço do livro d capa dura dv sr R$ 66,00 o do d capa d paplão R$ 33,00. b) Para y = R$33,00, f(y,y) = 5(33) = RESPOSTA: 5445 livros. 3. No stand d vndas da ditora foram slcionados 5 livros distintos, grands, d msmo tamanho, 4 livros distintos, pqunos, d msmo tamanho. Els srão xpostos m uma pratlira junto com um único xmplar d Dscobrindo o Pantanal. a) D quantas maniras difrnts ls podm sr alinhados na pratlira, s os d msmo tamanho dvm ficar juntos Dscobrindo o Pantanal dv ficar m um dos xtrmos? b) No final da fira d livros, a ditora fz uma promoção. Numrou os livros da pratlira d 1 a 10, sortou um livro para o milésimo visitant do stand. Qual é a probabilidad xprssa m porcntagm d o visitant rcbr um livro cujo númro sja a média aritmética d dois númros primos quaisqur comprndidos ntr 1 10? a) LIVROS GRANDES LIVROS PEQUENOS Dscobrindo o Pantanal TOTAL 5!=10 4!= =880 LIVROS PEQUENOS LIVROS GRANDES Dscobrindo o Pantanal 4!=4 5!= Dscobrindo o Pantanal LIVROS GRANDES LIVROS PEQUENOS 1 5!=10 4!=4 880 Dscobrindo o Pantanal LIVROS PEQUENOS LIVROS GRANDES 1 4!=4 5!= TOTAL 1150 Ou:..5!.4! = RESPOSTA: 1150 maniras difrnts b), 3, 4, 5, 5, 6 7. O sortado pod rcbr um dos livros numrados d 1 a 10, ntr sts númros, os qu são a média aritmética d dois númros primos quaisqur comprndidos ntr 1 10, são, 3, 4, 5, 6 7. Logo a probabilidad pdida é: 6 60%. 10 RESPOSTA: 60%.

3 4. Um funcionário do stor d planjamnto da Editora Progrsso vrificou qu as livrarias dos três clints mais importants stão localizadas nos pontos A (0,0), B (1,7) C (8,6), sndo qu as unidads stão m quilômtros. a) Em qu ponto P(x, y) dv sr instalado um dpósito para qu as distâncias do dpósito às três livrarias sjam iguais? b) Qual é a ára do quadrado inscrito na circunfrência qu contém os pontos A, B C? a) O ponto P quidistant dos três pontos A, B C é o cntro da circunfrência qu circunscrv o triângulo ABC. Ao fazr o gráfico da qustão nota-s qu P é o ponto médio do lado AC : P, P 4,3. OUTRO MODO DE RESOLVER: PA PC x y (x 8) (y 6) 16x 1y 100 PB PA (x 1) (y 7) x y x 14y 50 L1/4; PB PC (x 1) (y 7) (x 8) (y 6) 14x y 50 4x 3y 5 4x 3y 5 4x 8y 100 (L L1) 5y 75 y 3 7x y 5 7x 3 5 x 4 RESPOSTA: P(4, 3). L ; L / 3 b) A mdida do raio da circunfrência qu passa plos pontos A, B C (figura acima), é a mtad do lado AC pois P é o ponto médio dst lado (O triângulo ABC é rtângulo). AC 8 6 RESPOSTA: 50u,a A figura mostra a maqut do dpósito a sr construído. A scala é 1 : 500, ou sja, 1cm, na rprsntação, corrspond a 500 cm na ralidad. Qual srá a capacidad, m mtros cúbicos, do dpósito? 3

4 O dpósito é constituído d um prisma rtangular ncimado por um prisma triangular. Como sua maqut foi construída na scala 1 : 500 rprsntando as suas dimnsõs rais por a, b, c d: 0,6 0,9 3 7, 1 a 300cm; a b d c 500 b 450cm; d 1500cm c 3600cm a = 3m; b = 4,5m; d = 15m c = 36m. O volum do dpósito, m m 3, é: 315 4, Pod-s também pnsar qu o dpósito tm a forma d um prisma rto cuja bas é formada por dois trapézios d bass b a + b, altura é d/. Assim o volum do dpósito pod sr calculado: b a b d 4,5 7,5 15 c RESPOSTA: 340m Em uma pard do stand d vndas havia um quadro d 50 cm d comprimnto por 45 cm d largura, tndo ao rdor uma moldura, como mostra a figura. a) Justifiqu por qu não são smlhants os rtângulos intrior xtrior à moldura. b) Exist algum númro ral positivo k qu, substituído no lugar d 5 cm, faria com qu os dois rtângulos do itm a) fossm smlhants? a) As razõs ntr as dimnsõs dos dois rtângulos são: Portanto os rtângulos não são smlhants. C C i 50 5 Li 45 9 Ci Li L C L b),com x x x x 0 x 0 50 x 45 x 50 x 45 x Portanto não xist valor positivo d x qu torn os rtângulos smlhants. 4

5 7. Uma livraria rcbu o pdido d um xmplar do livro Dscobrindo o Pantanal, para cada um d 11 clints. Ela dcidiu adquirir os 11 xmplars da Editora Progrsso vndr os livros a sus clints com um prço ntr 5% 10% a mais qu o prço consguido na ditora. A ditora lh propôs duas opçõs: (1 a ) Comprar 10 livros lvar 1 d graça. ( a ) Comprar 10 livros pagar somnt 9, adquirindo mais um xmplar, o 11 o, com um dsconto d 10% sobr o prço original. a) Qual das opçõs é mais vantajosa à livraria? b) S o prço original d cada livro na ditora for R$ 54,00, qual é o maior lucro qu a livraria pod obtr com a vnda dos 11 livros aos sus clints, m cada caso? a) Considrando qu a ditora vnda cada livro ao prço x. (1 a ) Valor a sr pago na aquisição dos 11 livros: 10x. ( a ) Valor a sr pago na aquisição dos 11 livros: 9x + 0,9x = 9,9x. CONCLUSÃO: A sgunda opção é mais vantajosa. b) Cada livro dvrá sr vndido por (1 + 0,1) R$54,00 = 1,1 R$54,00 = R$59,40. Na primira opção os 11 livros srão adquiridos por 10 R$54,00 = R$540,00. Os 11 livros srão vndidos por 11 R$59,40 = R$653,40. O lucro máximo srá d R$653,40 R$540,00 = R$113,40. Na sgunda opção os 11 livros srão adquiridos por 9,9 R$54 = R$ 534,60. Os 11 livros srão vndidos por 11 R$59,40 = R$653,40. O lucro máximo srá d R$653,40 R$ 534,60 = R$118,80. CONCLUSÃO: Em função do lucro a sgunda opção é mais vantajosa. 8. Para o consumidor individual, a ditora fz sta promoção na compra d crto livro: Compr o livro com 1% d dsconto conomiz R$ 10,80 m rlação ao prço original. Qual é o prço original do livro? A conomia é xatamnt os 1% d dsconto sobr o prço original. Logo: 0,1x = 10,80 x = 90. RESPOSTA: R$90, A ditora aplicou o lucro obtido m 011, R$ ,00, m um fundo d rnda fixa, a crta taxa d juro composta. Após 3 anos, dv rcbr um montant d R$ ,00. a) A qu taxa d juro anual aplicou su dinhiro? Us as informaçõs do gráfico abaixo para justificar a sua rsposta. b) Qual é a soma das duas raízs complxas da quação x 3 +3 x + 3x - 0,78 = 0 qu não são númros rais? 5

6 a) O montant d um capital C aplicado a uma taxa anual x por um príodo d n anos, é: M = C. (1+x) n = (1+x) x + 3x + x 3 = 1,78 x 3 + 3x + 3x 0,78 =0 Plo gráfico 0, é a raiz ral da quação x 3 + 3x + 3x 0,78 =0, logo a taxa d juro é 0% ao ano. b) A soma das raízs da quação x 3 + 3x + 3x 0,78 =0, é 3, como uma d suas raízs é 0,, ntão a soma das duas raízs complxas é 3 0, 3,. RESPOSTA: 3, 10. Para trabalhar na Fira Intrnacional do Livro, a ditora contratou três funcionários: Ana, Bto Carlos, com salários x, y z rais, rspctivamnt. O salário d Ana é igual à soma dos salários d Bto Carlos. No final da fira, a ditora pagou uma gratificação, d valor igual ao salário d Bto, a cada um dos três. Assim, Ana rcbu no total, R$ 300,00, a soma dos valors qu os três rcbram foi d R$ 5 400,00. Qual foi o valor da gratificação qu rcbram? x y z y 800 y z 300 4y z 4600 x y 300 x y z y z 5400 x z 4y 5400 z 700 RESPOSTA: O valor da gratificação foi d R$

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de

Leia mais

Resolução. Admitindo x = x. I) Ax = b

Resolução. Admitindo x = x. I) Ax = b Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emrson Marcos Furtado Mstr m Métodos Numéricos pla Univrsidad Fdral do Paraná (UFPR). Graduado m Matmática pla UFPR. Profssor do Ensino Médio nos stados do Paraná Santa Catarina dsd 1992. Profssor do Curso

Leia mais

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício OFICINA 9-2ºSmntr / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Profssors: Edu Vicnt / Gabrila / Ulício 1. (Enm 2012) As curvas d ofrta d dmanda d um produto rprsntam, rspctivamnt, as quantidads qu vnddors

Leia mais

EMPRESA BRASILEIRA DE TELECOMUNICAÇÕES S.A - EMBRATEL

EMPRESA BRASILEIRA DE TELECOMUNICAÇÕES S.A - EMBRATEL EMPRESA BRASILEIRA DE TELECOMUNICAÇÕES S.A - EMBRATEL PLANO ALTERNATIVO DE SERVIÇO N o 001 - EMBRATEL 1. APLICAÇÃO Est Plano d Srviço ofrc ao usuário do Srviço d Tlfonia Fixa Comutada, a possibilidad d

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

Preço de Venda Quantidade Vendida R$ 100,00 30 R$ 90,00 40 R$ 85,00 45 R$ 80,00 50

Preço de Venda Quantidade Vendida R$ 100,00 30 R$ 90,00 40 R$ 85,00 45 R$ 80,00 50 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 2012. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

No N r o m r a m s a?

No N r o m r a m s a? Normas? EM ALGUMA CERÂMICA... NORMAS? O qu tnho a vr com isso? VENDAS NORMAS??? O qu é isso?...um clint dixou d fchar o pdido porqu o bloco não stava dntro das NORMAS... Grnt Produção...Uma carga d Blocos

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

A ferramenta de planeamento multi

A ferramenta de planeamento multi A frramnta d planamnto multi mdia PLANVIEW TELEVISÃO Brv Aprsntação Softwar d planamnto qu s basia nas audiências d um príodo passado para prvr asaudiências d um príodo futuro Avrsatilidad afacilidad d

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Senado Federal maio/2008

Senado Federal maio/2008 Audiência Pública PL 213/2007 Difrnciação d Prços nas Vndas com Cartõs d Crédito José Antonio Marciano Brasília Snado Fdral maio/2008 1 Rgra d Não Sobr-pr prço - Dfinição Rgra contratual imposta plas socidads

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

Capitulo 4 Resolução de Exercícios

Capitulo 4 Resolução de Exercícios FORMULÁRIO i Taxa Proporcioal ou quivalt (juros simpls) i k Taxas Equivalts (juros compostos) 3 i i i i i i i 4 6 360 a s q t b m d Taxa Eftiva Nomial k i i p ao príodo d capitalização ; i k Taxa Ral Taxa

Leia mais

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico. Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga

Leia mais

Residência para coletivos na Casa do Povo. Cole tivo

Residência para coletivos na Casa do Povo. Cole tivo Rsidência para coltivos na Casa do Povo Chamada abrta tativo - Rsidência para coltivos na Casa do Povo Há mais d 60 anos, a Casa do Povo atua como lugar d mmória cntro cultural m sintonia com o pnsamnto

Leia mais

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES ETREMOS DA MÁIMA DE 24 HORAS DE BELÉM DO PARÁ Mauro Mndonça da Silva Mstrando UFAL Mació - AL -mail: mmds@ccn.ufal.br Ant Rika Tshima Gonçalvs UFPA Blém-PA -mail:

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1 5 MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 5 Introdução: Considrmos os sguints nunciados: Quais são as dimnsõs d uma caia rtangular sm tampa com volum v com a mnor ára d supríci possívl? A tmpratura

Leia mais

CTOC - Câmara dos Técnicos Oficiais de Contas Sistema de Informação do Técnico Oficial de Contas

CTOC - Câmara dos Técnicos Oficiais de Contas Sistema de Informação do Técnico Oficial de Contas IAS 17 (1) NORMA INTERNACIONAL DE CONTABILIDADE IAS 17 Locaçõs ÍNDICE Parágrafos Objctivo 1 Âmbito 2-3 Dfiniçõs 4-6 Classificação d locaçõs 7-19 Locaçõs nas dmonstraçõs financiras d locatários 20-35 Locaçõs

Leia mais

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2 ] Univrsidad Fdral da Paraíba Cntro d Ciências Exatas da Naturza Dpartamnto d Matmática Univrsidad Fdral d Campina Grand Cntro d Ciências Tcnologia Unidad Acadêmica d Matmática Programa Associado d Pós-Graduação

Leia mais

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1 Física Vstibular Urj 98 1ª fas Qustão 16 A 1 A 2 θ Na figura acima, a corda idal suporta um homm pndurado num ponto qüidistant dos dois apoios ( A 1 A 2 ), a uma crta altura do solo, formando um ângulo

Leia mais

Estudo da Transmissão de Sinal em um Cabo co-axial

Estudo da Transmissão de Sinal em um Cabo co-axial Rlatório final d Instrumntação d Ensino F-809 /11/00 Wllington Akira Iwamoto Orintador: Richard Landrs Instituto d Física Glb Wataghin, Unicamp Estudo da Transmissão d Sinal m um Cabo co-axial OBJETIVO

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Curso de Engenharia Química Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Química Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Química Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EQ3M Smstr: 1 sm/2017 Data: 27/04/2017 Avaliação: 1 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

F o l e s S a n f o n a d o s

F o l e s S a n f o n a d o s Fols Sanfonados Protção individualmnt sob mdida sanfonada por sanfonada A protção prfita para o homm para a máquina. A Hnnig projta produz fols sanfonados para máquinasfrramnta há mais d 50 anos. Hoj a

Leia mais

Concentraçã. ção o e Custos. Câmara dos Deputados - Comissão de Finanças e Tributação 8 de outubro de 2009

Concentraçã. ção o e Custos. Câmara dos Deputados - Comissão de Finanças e Tributação 8 de outubro de 2009 Cartão o d Crédito: Concntraçã ção o Custos Câmara dos Dputados - Comissão d Finanças Tributação 8 d outubro d 2009 Agnda 2 Indústria d cartõs d pagamntos Concntração Infra-strutura Estrutura d custos

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG.

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG. Atituds Sociolinguísticas m cidads d frontira: o caso d Brnardo d Irigoyn. Célia Niscoriuk Grad/UEPG. Valska Gracioso Carlos UEPG. 1. Introdução: O Brasil Argntina fazm frontira m crca d 1240 km dsd sua

Leia mais

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema Força cntral 3 O problma das forças cntrais TÓPICOS FUNDAMENTAIS DE FÍSICA Uma força cntralé uma força (atrativa ou rpulsiva) cuja magnitud dpnd somnt da distância rdo objto à origm é dirigida ao longo

Leia mais

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO?

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? Luís Augusto Chavs Frir, UNIOESTE 01. Introdução. Esta é uma psquisa introdutória qu foi concrtizada como um studo piloto d campo,

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Módulo Discursivo 09/dez/2012 Matemática Aplicada 01. A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

Planejamento de capacidade

Planejamento de capacidade Administração da Produção Opraçõs II Planjamnto d capacidad Planjamnto d capacidad Planjamnto d capacidad é uma atividad crítica dsnvolvida parallamnt ao planjamnto d matriais a) Capacidad insuficint lva

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

O emprego da proporção na resolução de problemas

O emprego da proporção na resolução de problemas Proporção O mprgo da proporção na rsolução d problmas Vamos aprndr agora a rsolvr problmas utilizando a proporção. Considr o sguint problma Uma vara d 0 cm fincada vrticalmnt no solo produz numa dtrminada

Leia mais

3 Proposição de fórmula

3 Proposição de fórmula 3 Proposição fórmula A substituição os inos plos juros sobr capital próprio po sr um important instrumnto planjamnto tributário, sno uma rução lgal a tributação sobr o lucro. Nos últimos anos, a utilização

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Rio Grande do Norte terá maior oferta de energia eólica em leilão Agência Estado 17/04/2015

Rio Grande do Norte terá maior oferta de energia eólica em leilão Agência Estado 17/04/2015 www.lmntos.com.br du dilignc slção d arogradors inspçõs d fábricas ngnharia do propritário projtos solars ntr outros 17 d abril d 2015 Sxta-Fira - # 1.528 Rio Grand do Nort trá maior ofrta d nrgia ólica

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de Dsintgração Radioativa Os núclos, m sua grand maioria, são instávis, ou sja, as rspctivas combinaçõs d prótons nêutrons não originam configuraçõs nuclars stávis. Esss núclos, chamados radioativos, s transformam

Leia mais

CAPÍTULO 4 Exercícios Propostos

CAPÍTULO 4 Exercícios Propostos 53. Calcular o valor dos juros pagos por um fiaciamto d capital d giro d $1.500 por cico dias cotratado à taxa d 3% a.m., capitalizada diariamt. Dados: P = $1.500, j = 3% a.m.. k =, m = 5 dias, J =? k

Leia mais

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,

Leia mais

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES 17 As associaçõs d pilhas ou batrias m séri ou parallo xigm o domínio d suas rspctivas polaridads, tnsõs corrnts. ALGUMAS SITUAÇÕES CLÁSSICAS (pilhas

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

TECNOLOGIA DE INFORMAÇÃO

TECNOLOGIA DE INFORMAÇÃO FUNDAÇÃO EDUCACIONAL DE ALÉM PARAÍBA INSTITUTO SUPERIOR DE EDUCAÇÃO NAIR FORTES ABU-MERHY TECNOLOGIA DE INFORMAÇÃO PLANEJAMENTO DO PARQUE TECNOLÓGICO 2011-2013 Tcnologia d Informação - FEAP 1 - Rlação

Leia mais

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara Instituto d Física USP Física Modrna I Aula 09 Profssora: Mazé Bchara Aula 09 O fito fotolétrico a visão corpuscular da radiação ltromagnética 1. Efito fotolétrico: o qu é, o qu s obsrva xprimntalmnt,

Leia mais

PROGRAMA DE REESTRUTURAÇÃO DA UNIDADE

PROGRAMA DE REESTRUTURAÇÃO DA UNIDADE Campus d Ilha Soltira PROGRAMA DE REESTRUTURAÇÃO DA UNIDADE Aos dz (10) dias do mês d stmbro (09) do ano d dois mil doz (2012), na Sala d Runiõs da Congrgação, as parts abaio nomadas tomaram ciência do

Leia mais

A IMPLEMENTAÇÃO DA LÍNGUA ESPANHOLA NAS ESCOLAS DE SERGIPE. A presença da língua espanhola no Nordeste e o caso de Sergipe

A IMPLEMENTAÇÃO DA LÍNGUA ESPANHOLA NAS ESCOLAS DE SERGIPE. A presença da língua espanhola no Nordeste e o caso de Sergipe Congrsso Intrnacional d Profssors d Línguas Oficiais do MERCOSUL A IMPLEMENTAÇÃO DA LÍNGUA ESPANHOLA NAS ESCOLAS DE SERGIPE Doris Cristina Vicnt da Silva Matos (UFS) Considraçõs iniciais Chgamos a 2010,

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

POLÍTICAS PÚBLICAS E ENSINO DE ESPANHOL COMO LÍNGUA ESTRANGEIRA NA REGIÃO DE LONDRINA: DESAFIOS PARA SUA IMPLEMENTAÇÃO

POLÍTICAS PÚBLICAS E ENSINO DE ESPANHOL COMO LÍNGUA ESTRANGEIRA NA REGIÃO DE LONDRINA: DESAFIOS PARA SUA IMPLEMENTAÇÃO Congrsso Intrnacional d Profssors d Línguas Oficiais do MERCOSUL POLÍTICAS PÚBLICAS E ENSINO DE ESPANHOL COMO LÍNGUA ESTRANGEIRA NA REGIÃO DE LONDRINA: DESAFIOS PARA SUA IMPLEMENTAÇÃO Catya Marqus Agostinho

Leia mais

A distribuição Beta apresenta

A distribuição Beta apresenta Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ Bta Cauchy Erlang Exponncial F (Sndkor) Gama Gumbl Laplac Logística Lognormal Normal Parto Qui-quadrado - χ Studnt - t Uniform Wibull

Leia mais

UMA INTRODUÇÃO A TOPOLOGIA

UMA INTRODUÇÃO A TOPOLOGIA Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 0 a 3 d outubro, 014 0 UMA INTRODUÇÃO A TOPOLOGIA TÍTULO DO TRABALHO EM INGLES Mário Márcio dos Santos Palhars 1, Antonio Carlos Tamarozzi² Univrsidad

Leia mais

LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Internacional - GABARITO

LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Internacional - GABARITO LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Intrnacional - GABARITO Profa. Sílvia Miranda Data: Novmbro/2015 1)O qu é uma Ára Montária Òtima vr psquisa 2) Expliqu o fito locomotiva aula sobr Ajusts

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como: ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E

Leia mais

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS Normas Aplicávis - NBR 15.950 Sistmas para Distribuição d Água Esgoto sob prssão Tubos d politilno

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

CURSO ON LINE RACIOCÍNIO LÓGICO PARA DESESPERADOS PROFESSORES: GUILHERME NEVES E VÍTOR MENEZES. Aula 1 Lógica de argumentação e diagramas lógicos

CURSO ON LINE RACIOCÍNIO LÓGICO PARA DESESPERADOS PROFESSORES: GUILHERME NEVES E VÍTOR MENEZES. Aula 1 Lógica de argumentação e diagramas lógicos 1 Aula 1 Lógica d argumntação diagramas lógicos I LÓGICA DE ARGUMENTAÇÃO (CONTINUAÇÃO).... 2 1 Rvisão..... 2 2 Técnica 1: liminando as linhas com prmissas falsas... 5 Técnica 2: tabla vrdad modificada...

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT - Mamáica I Prof.: Lopoldina Cachoira Mnzs Prof.: Mauricio Sobral Brandão ª Lisa d Ercícios Par I: Funçõs Econômicas

Leia mais

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos. DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além

Leia mais