O NÚMERO 𝛑 E A QUADRATURA DO CÍRCULO

Tamanho: px
Começar a partir da página:

Download "O NÚMERO 𝛑 E A QUADRATURA DO CÍRCULO"

Transcrição

1 59 O NÚMERO 𝛑 E A QUADRATURA DO CÍRCULO THE 𝛑 NUMBER AND THE CIRCLE QUADRATURE Juliano Frrira d Lima, Amanda Santos Silva, Frnando Prira d Souza Univrsidad Fdral d Mato Grosso do Sul UFMS, Curso d Licnciatura m Matmática, Três Lagoas, MS juliano.frrira.info2@gmail. RESUMO - Há muito tmpo, crca d 4000 a.c, já xistia o númro 𝜋, porém, não o conhcmos hoj. Val rssaltar qu o primiro matmático a utilizar o númro pi o sndo a ltra grga 𝜋 foi o matmático francês Lonhard Eulr ( ). Tão antigo quanto o valor d 𝜋 é o clbr problma grgo da quadratura do círculo, ou sja, utilizando régua passo construir um quadrado d ára igual à d um círculo dado. Para rsolvr ssa qustão, utilizarmos a idia d númros transcndnts principalmnt o fato d 𝜋 sr um númro transcndnt,ou sja, l não pod sr raiz d uma quação algébrica coficints intiros, fato qu foi provado por o matmático almão Frdinand von Lindmann m 1882, dsta forma, mostrarmos qu é impossívl rsolvr tal problma. Palavras-chav: Problma Grgo; Númro 𝜋; Númros Transcndnts; Gomtria Plana; Áras. Rcbido m: 19/08/2015 Rvisado m: 31/08/2015 Aprovado m: 14/09/2015 ABSTRACT - Long ago, around 4000 BC, thr was alrady th numbr π, but not as w know it today. It is notworthy that th first mathmatician to us th numbr "pi" as th Grk lttr π was th Frnch mathmatician Lonhard Eulr ( ). As old as th π valu is th clbratd Grk problm of squaring th circl, i using rulr and pass to construct a squar qual to th ara of a givn circl. To addrss this issu, w will us th ida of transcndntal numbrs and spcially th fact that π is a transcndntal numbr, maning it can not b th root of an algbraic quation with intgr cofficints, a fact provd by th Grman mathmatician Frdinand von Lindmann in 1882 thus show that it is impossibl to solv such a problm. Kywords: Grk Problm; Numbr π; Numbrs Transcndntal; Plan Gomtry; Aras.

2 60 aprsntação d sminários d discussão 1. INTRODUÇÃO Nst rodas d convrsas. prsnt trabalho irmos aprsntar um dos três problmas clássicos 3. RESULTADOS grgo a quadratura do círculo, ou sja, O qu é o númro 𝝅? construir utilizando régua passo, um Sgundo o Profssor Elon no livro quadrado cuja ára foss igual à d um Explorando a matmática, a manira mais circulo dado. Esss problmas clássicos rápida d rspondr a ssa prgunta é dizr dsmpnharam na qu 𝜋 é o valor da ára d um círculo d matmática, m particular, no studo da diâmtro 1, ou sja, s um círculo tm raio Gomtria. igual a papl significativo Todos os problmas dvriam sr rsolvidos apnas utilizando régua passo, pois, sss ram os únicos instrumntos utilizados por Euclids d Alxandria (pai da gomtria). O trabalho stá 1 2 cm ntão sua ára é dada por 𝜋 𝑐𝑚2. Também podmos dizr qu s 𝐶 é 𝑝 𝜋 = 𝑑, ond uma circunfrência, ntão 𝑝 = 𝑝𝑒𝑟í𝑚𝑒𝑡𝑟𝑜 d 𝐶 𝑑 = 𝑑𝑖â𝑚𝑒𝑡𝑟𝑜 d 𝐶, já qu o quocint ntr primnto o diâmtro d qualqur circunfrência rsulta organizado da sguint forma, no primiro momnto irmos aprsntar o qu é o númro 𝜋, m sguida, abordarmos d forma simpls o qu são os númros transcndnts por fim m um msmo valor, fato st notado a crca d 4000 anos. Antigamnt não s havia um padrão d notação para a razão 𝑝 𝑑 mncionada, sndo qu o grand matmático Eulr o problma grgo. costumava usar 𝜋 ou 𝑐 para dnotar ssa 2. METODOLOGIA constant. Postriormnt l passou a usar O trabalho é rsultado d uma constantmnt a ltra grga 𝜋 para dnotar psquisa tórica qu foi abordada no ssa constant, a partir daí foi sguido Trabalho d Conclusão d Curso (TCC) no plos outros matmáticos. Atualmnt sab-s qu o su valor ço do primiro smstr d 2015 cujo tma é: Trigonomtria aplicaçõs para tm o nsino médio, dsnvolvido através d 3, , sndo qu ja ra d discussõs do tma o orintador. conhcimnto dos babilônios qu: O studo as atividads dsnvolvidas foram avaliados através da uma aproximação dada 𝜋 3,125 < 𝜋 < 3, por

3 61 Dsd Arquimds qu obtv o valor A rsposta da prgunta antrior 𝜋 = 3,1416, alguns matmáticos tm s sugr outra prgunta: S não é possívl ocupado da dsgastant tarfa d calcular o dtrminar xatamnt o valor d 𝜋, ntão 𝜋 uma prcisão cada vz maior. Um porqu calcular 𝜋 cntnas ou milhars dsts matmáticos foi o Inglês Willian d algarismo dcimais? Shanks qu calculou 𝜋 707 algarismos Uma possívl rsposta é a motivação dcimais xatos m Postriormnt part do dsjo d suprar a aproximação o auxílio d máquinas manuais foi fita por outro, motivo plo qual xist, por calculada uma aproximação d 𝜋 808 xmplo, o livro dos rcords do Guinnss. algarismos. d Outra rsposta é o d tstar o bom putadors foi obtida m 1967 na França, funcionamnto d putadors, fazndo uma aproximação d 𝜋 qu calculm o valor d 𝜋 parando algarismos m 1984 nos stados unidos os valors já conhcidos. uma Já aproximação o auxílio algarismos dcimais xatos. Eulr acrditava na irracionalidad 𝜋, assim, Nst ponto cab uma prgunta: apontou 𝜋 qu sria transcndnt. Quantos algarismos dcimais são ncssários para tr o valor xato d 𝜋? l Df. (MARQUES, 2013) Um númro é dito algébrico s l for raiz d um Obviamnt a rsposta para ssa polinômio, não prgunta é qu não é possívl dtrminar intiro, uma quantidad d algarismos dcimais d transcndnt. forma a dtrminar o valor xato d 𝜋, já qu s sab qu o msmo é um númro irracional caso nulo, contrario, coficints l é dito Em outras palavras, s 𝑝(𝑥) não é solução d: (provado plo matmático suíço Johann 𝑝(𝑥) = 𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥 𝑎𝑛 𝑥 𝑛, 𝑎𝑖 Hinrich Lambrt m 1761), portanto, ℤ, 𝑖 ℕ, nnhuma fração dcimal finita ou priódica ntão 𝑝(𝑥) é transcndnt. pod rprsntar o su valor xato. Em outras palavras, não importa quantos algarismos dcimais tommos, nunca obtrmos uma priodicidad da dízima muito mnos o valor xato d 𝜋, somnt ncontrarmos aproximaçõs. A quadradura do círculo Um antigo problma grgo conhcido o quadratura do círculo é: Construir auxílio d régua passo, um quadrado cuja ára foss igual à d um círculo dado.

4 62 Irmos fazr agora algumas passo, a partir d um sgmnto dado, considraçõs a rspito dst problma, tomado o unidad, outro sgmnto d para isto dirmos construir um númro 𝑥", primnto igual a 𝑥. para significar construir utilizando régua Figura1. Quadratura do círculo. Tomando o raio do círculo o unidad d primnto, o problma d circunfrências, ou sja, são obtidas a partir das sguints opraçõs básicas: quadratura do círculo quival a pdir qu s construa, régua passo, um Traçar rtas por dois pontos dados; sgmnto d primnto igual a 𝜋, pois, a ára do circulo srá dada por 𝐴𝑐 = 𝜋 o Traçar uma circunfrência cntro raio dado. qurmos qu a ára do quadrado sja igual Considrando o plano cartsiano a do círculo, ntão: tmos: 𝐴𝑞 = 𝑙. 𝑙 𝜋 = 𝑙 2 𝑙 = 𝜋. 𝑦 = 𝑎𝑥 + 𝑏 (rtas); Assim, o problma da quadratura do (𝑥 𝑎0 )2 + (𝑦 𝑏0 )2 = 𝑟 2 círculo s torna o problma d construir o númro 𝜋 quivalnt ao lado do quadrado. Assim, um númro qu s pod construir é smpr obtido o solução d Sgundo Barbosa (2006), as construçõs gométricas fitas régua passo (circunfrências). são basicamnt rtas um sistma d 2 quaçõs a 2 incógnitas cujos graus são <2.

5 63 { 𝑦 = 𝑎𝑥 + 𝑏, (𝑥 𝑎0 )2 + (𝑦 𝑏0 )2 = 𝑟 2. Portanto, 𝜋 é transcndnt, ntão Logo, s um númro ral 𝑥 pod sr construído, ntão 𝑥 é obtido d um númro finito d opraçõs d adição, subtração, não satisfaz o sistma da quadradura do círculo tornando o problma impossívl. 4. DISCUSSÃO multiplicação, divisão xtração d raiz O problma da quadradura do círculo quadrada, ralizadas a partir d númros xrc um impacto important na motivação intiros. para atrair a atnção dos alunos Portando, todo númro qu pod sr principiants, pois val rssaltar qu o construído régua passo é raiz d principal foco é fazr qu os alunos uma quação da forma 𝛼𝑥 2 + 𝛽𝑥 + 𝛾 = pnsm s ralmnt é ou não possívl 0, 𝛼, 𝛽 𝑒 𝛾 ℤ, construir régua passo um círculo construído ou sja, régua todo númro passo é algébrico. ára igual d um quadrado. Muitos Suponhamos qu 𝑥 = 𝜋, sja matmática problmas xploram rlaçõs ntr sistmas coficints intiros, m particular, d grau linguagm coloquial. Part d sua atração 2: vm justamnt do fato d qu podm sr 𝛼𝜋 + 𝛽 𝜋 + 𝛾 = 0 𝛽 𝜋 = 𝛼𝜋 𝛾, ambos os xprssas m formulados, muitas vzs, rsolvidos sm 𝛼( 𝜋) + 𝛽 𝜋 + 𝛾 = 0, lvando quaçõs, d algébrico, logo é raiz d um polinômios 2 d atrants lados ao quadrado: rcorrr a fórmulas ou a técnicas plicadas. 5. CONCLUSÃO 2 (𝛽 𝜋) = ( 𝛼𝜋 𝛾)2, Nst trabalho abordamos um pouco dsnvolvndo o quadrado, podmos rscrvr a quação antrior o: da história do númro 𝜋, o qu são númros transcndnts por fim a quadradura do 𝛼 2 𝜋 2 + 𝜋(2𝛼𝛾 𝛽 2 ) + 𝛾 2 = 0. círculo, o vimos, é impossívl fazr a Dsta forma, podmos obsrvar qu quadradura utilizando apnas régua 𝜋 é solução da sguint quação do 2º grau: passo. Embora parça simpls, é através 𝛼 2 𝑦 2 + (2𝛼𝛾 𝛽 2 )𝑦 + 𝛾 2 = 0. dl qu podmos dmonstrar rsultados É um absurdo, pois, é uma quação possivlmnt insprados rsolvr vários do 2º grau coficints tornando 𝜋 um númro algébrico. intiros xrcícios curiosos, tornando assim o nsino mais prazroso.

6 64 Acrditamos qu nosso objtivo foi atingido o rsultado s obtv um txto claro, bm struturado acssívl a divrsos studants. Est trabalho é d xtrma importância, pois prmit um aprofundamnto sobr os númros transcndnts. REFERÊNCIAS BARBOSA, J. L. W. Gomtria Euclidiana Plana. 10. d. Rio d Janiro: Markgraph, MARQUES, D. Toria do Númros Transcndnts. 1. d. Rio d Janiro: SBM, 2013.

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT Encontro d Ensino Psquisa Extnsão Prsidnt Prudnt 20 a 23 d outubro 2014 1 APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT APPLICATIONS OF THE FERMAT'S LITTLE THEOREM Vanssa d Fritas Travllo 1 ; Luana Batriz Cardoso¹;

Leia mais

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013 10 Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 21 a 24 d outubro, 2013 DIFERENCIAÇÃO COMPLEXA E AS CONDIÇÕES DE CAUCHY-RIEMANN Pâmla Catarina d Sousa Brandão1, Frnando Prira Sousa2 1 Aluna do Curso

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Ára d Publicação: Matmática UMA MANEIRA SIMPLES DE DETERMINAR TODOS OS TERNOS PITAGÓRICOS SILVA, Rodrigo M. F. da 1 ; SILVA, Lucas da² ; FILHO, Danil Cordiro d Morais ² 1 UFCG/CCT/UAMAT/Voluntário PET-

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Canguru Matemático sem Fronteiras 2018

Canguru Matemático sem Fronteiras 2018 Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II Dstinatários: alunos do 3. o ano d scolaridad Nom: Turma: Duração: 1h 30min Canguru Matmático. Todos os diritos rsrvados. Est matrial

Leia mais

Canguru Matemático sem Fronteiras 2018

Canguru Matemático sem Fronteiras 2018 Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II Dstinatários: alunos do 3. o ano d scolaridad Nom: Turma: Duração: 1h 30min Não pods usar calculadora. Em cada qustão dvs assinalar

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

Material Teórico - Módulo de Função Logarítmica. Função logarítmica e propriedades - Parte 1. Primeiro Ano - Ensino Médio

Material Teórico - Módulo de Função Logarítmica. Função logarítmica e propriedades - Parte 1. Primeiro Ano - Ensino Médio Matrial Tórico - Módulo d Função Logarítmica Função logarítmica propridads - Part 1 Primiro Ano - Ensino Médio Autor: Prof. Anglo Papa Nto Rvisor: Prof. Antonio Caminha M. Nto 1 Motivação para o studo

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio Matrial Tórico - Módulo d Gomtria Anaĺıtica Círculos Trciro Ano - Médio Autor: Prof. Anglo Papa Nto Rvisor: Prof. Antonio Caminha M. Nto 9 d julho d 018 1 Equação rduzida d um círculo Considrmos um ponto

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

EXAME A NÍVEL DE ESCOLA EQUIVALENTE A EXAME NACIONAL

EXAME A NÍVEL DE ESCOLA EQUIVALENTE A EXAME NACIONAL PROVA 535/C/8 Págs. EXAME A NÍVEL DE ESCOLA EQUIVALENTE A EXAME NACIONAL.º Ano d Escolaridad (Dcrto-Li n.º 86/89, d 9 d Agosto) Cursos Grais Cursos Tcnológicos Duração da prova: 50 minutos 008 PROVA ESCRITA

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados d Idntificação 1.1 Nom do bolsista: Marily Rodrigus Angr 1.2 Público alvo: alunos do 8 9 ano. 1.3 Duração: 2 horas. 1.4 Contúdo dsnvolvido: Smlhança d triângulos; Noçõs d Gomtria

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6 Introdução ao Soluçõs dos Exrcícios Propostos Capítulo 6 1. Dadas as squências x[n] abaixo com sus rspctivos comprimntos, ncontr as transformadas discrtas d Fourir: a x[n] = n, para n < 4 X[] = 6 X[1]

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES RESOLUÇÃO A1 Primiramnt, dividimos a figura B m dois triângulos B1 B2, um altura d 21 m bas d 3 m outro altura bas mdindo 15 m. Mosaico 1: Tmos qu os dois triângulos

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I Escola Scundária com 3º ciclo D. Dinis 10º Ano d Matmática A Gomtria no Plano no Espaço I Tarfa Intrmédia 8 Grupo I As três qustõs do Grupo I são d scolha múltipla. Slccion, para cada uma dlas, a ltra

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Exercícios Sobre Vetores. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Exercícios Sobre Vetores. Terceiro Ano - Médio Matrial Tórico - Módulo: Vtors m R R Exrcícios Sobr Vtors Trciro Ano - Médio Autor: Prof Anglo Papa Nto Rvisor: Prof Antonio Caminha M Nto 1 Exrcícios sobr vtors Nsta aula, discutimos alguns xrcícios sobr

Leia mais

Algumas distribuições de variáveis aleatórias discretas importantes:

Algumas distribuições de variáveis aleatórias discretas importantes: Algumas distribuiçõs d variávis alatórias discrtas importants: Distribuição Uniform Discrta Enquadram-s aqui as distribuiçõs m qu os possívis valors da variávl alatória tnham todos a msma probabilidad

Leia mais

Segunda Prova de Física Aluno: Número USP:

Segunda Prova de Física Aluno: Número USP: Sgunda Prova d Física 1-7600005 - 2017.1 Aluno: Númro USP: Atnção: i. Não adianta aprsntar contas sm uma discussão mínima sobr o problma. Rspostas sm justificativas não srão considradas. ii. A prova trá

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

Canguru Matemático sem Fronteiras 2018

Canguru Matemático sem Fronteiras 2018 Canguru Matmático sm Frontiras 208 Catgoria: Mini-Escolar - nívl III Dstinatários: alunos do 4. o ano d scolaridad Nom: Turma: Duração: h 30min Canguru Matmático. Todos os diritos rsrvados. Est matrial

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Divisão (cont.) Obter TODOS os nomes dos empregados que trabalham em TODOS os projectos nos quais Joao trabalha. projectos em que Joao trabalha.

Divisão (cont.) Obter TODOS os nomes dos empregados que trabalham em TODOS os projectos nos quais Joao trabalha. projectos em que Joao trabalha. 16 Divisão (cont a opração d divisão é útil para qustõs como: Obtr TODOS os noms dos mprgados qu trabalham m TODOS os projctos nos quais Joao trabalha projctos m qu Joao trabalha projctos EBIs d mprgados

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Canguru Matemático sem Fronteiras 2018

Canguru Matemático sem Fronteiras 2018 Canguru Matmático sm Frontiras 208 Catgoria: Mini-Escolar - nívl III Dstinatários: alunos do 4. o ano d scolaridad Nom: Turma: Duração: h 30min Não pods usar calculadora. Em cada qustão dvs assinalar a

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matmática A Etnsivo V. 6 Rsolva.) a) Aula. ( )

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

Origem dos Jogos Olímpicos

Origem dos Jogos Olímpicos Natal, RN / /04 ALUNO: Nº SÉRIE/ANO: TURMA: TURNO: DISCIPLINA: TIPO DE ATIVIDADE: Profssor: TESTE º Trimstr º M INSTRUÇÕES: Vrifiqu s sua avaliação contém 6 qustõs ( objtivas 04 discursivas). Caso haja

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM º CICLO D DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tma II Introdução ao Cálculo Difrncial II Aula nº 4 do plano d trabalho nº 9 Rsolvr os rcícios 87, 88, 89, 90 9 os rcícios 9

Leia mais

2. Nos enunciados dos testes deverá ser dada a indicação da cotação do item;

2. Nos enunciados dos testes deverá ser dada a indicação da cotação do item; Critérios d avaliação do Grupo 5 Disciplinas: Matmática, Matmática A, Matmática Aplicada às Ciências Sociais Cursos Profissionais/Vocacionais Nívis d nsino: Básico Scundário Ano ltivo 217/218 Os critérios

Leia mais

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção COLÉGIO PAULO VI Ficha d Trabalho Matmática ºano Tmas: Trigonomtria ( Triângulo rctângulo círculo trigonométrico) Proposta d corrcção Rlmbrar qu um radiano é, m qualqur circunfrência, a amplitud do arco

Leia mais

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL Univrsidad Fdral d Alagoas Cntro d cnologia Curso d Engnharia Civil Disciplina: Mcânica dos Sólidos Código: ECIV030 Profssor: Eduardo Nobr Lags orção m Barras d Sção ransvrsal Dlgada Fchada Mació/AL Sção

Leia mais

Números inteiros: alguns critérios de divisibilidade

Números inteiros: alguns critérios de divisibilidade Númros intiros: alguns critérios d divisibilidad ANDRÉ FONSECA E TERESA ALMADA UNIVERSIDADE LUSÓFONA andrfonsca@ulusofonapt, talmada@ulusofonapt 36 GAZETA DE MATEMÁTICA 170 O inclum vários critérios d

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DRLN MOUTINHO VOL. 01 RESOLUÇÕES PÁGIN 42 39 LETR C Sjam as staçõs, B C, cujos lmntos são as pssoas qu scutavam, plo mnos, uma das staçõs, B ou C. Considr o diagrama abaixo: B 31500 17000 7500

Leia mais

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG.

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG. Atituds Sociolinguísticas m cidads d frontira: o caso d Brnardo d Irigoyn. Célia Niscoriuk Grad/UEPG. Valska Gracioso Carlos UEPG. 1. Introdução: O Brasil Argntina fazm frontira m crca d 1240 km dsd sua

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Módulo de Círculo Trigonométrico. Secante, Cossecante e Cotangente. 1 a série E.M.

Módulo de Círculo Trigonométrico. Secante, Cossecante e Cotangente. 1 a série E.M. Módulo d Círculo Trigonométrico Scant, Cosscant Cotangnt a séri EM Círculo Trigonométrico Scant, Cosscant Cotangnt Exrcícios Introdutórios ] π Exrcício Sja α ; π tal qu sn α, dtrmin, s xistir, o rsultado

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

A função de distribuição neste caso é dada por: em que

A função de distribuição neste caso é dada por: em que 1 2 A função d distribuição nst caso é dada por: m qu 3 A função d distribuição d probabilidad nss caso é dada por X 0 1 2 3 P(X) 0,343 0,441 0,189 1,027 4 Ercícios: 2. Considr ninhada d 4 filhots d colhos.

Leia mais

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO?

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? Luís Augusto Chavs Frir, UNIOESTE 01. Introdução. Esta é uma psquisa introdutória qu foi concrtizada como um studo piloto d campo,

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

CAPÍTULO 12 REGRA DA CADEIA

CAPÍTULO 12 REGRA DA CADEIA CAPÍTULO 12 REGRA DA CADEIA 121 Introdução Em aulas passadas, aprndmos a rgra da cadia para o caso particular m qu s faz a composição ntr uma função scalar d várias variávis f uma função vtorial d uma

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA COMENTÁIO DA POVA DE FÍSICA A prova d conhcimntos spcíficos d Física da UFP 009/10 tv boa distribuição d assuntos, dntro do qu é possívl cobrar m apnas 10 qustõs. Quanto ao nívl, classificamos ssa prova

Leia mais

TÉCNICO LEGISLATIVO ATRIBUIÇÃO: AGENTE DE POLÍCIA LEGISLATIVA 2014

TÉCNICO LEGISLATIVO ATRIBUIÇÃO: AGENTE DE POLÍCIA LEGISLATIVA 2014 CESPE UnB TÉCNICO LEGISLATIVO ATRIBUIÇÃO: AGENTE DE POLÍCIA LEGISLATIVA 2014 Assunto: lógica d argumntação Prof Pachr Considrando qu P sja a proposição S o bm é público, ntão não é d ninguém, julgu os

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara nstituto d Física USP Física V - Aula 3 Profssora: Mazé Bchara Aula 3 - Estados ligados m movimntos unidimnsionais 1. O poço d potncial finito: colocando as condiçõs d continuidad nas funçõs d onda suas

Leia mais