(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ).

Tamanho: px
Começar a partir da página:

Download "(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 )."

Transcrição

1 Ministério a Eucação Universiae Tecnológica Feeral o Paraná Campus Campo Mourão Wellington José Corrêa ā Lista e Cálculo Diferencial e Integral I Curso: Bacharelao em Ciências a Computação DAMAT, 205 Nome: Definição e Derivaa. Recorreno a efinição e erivaa aa por limite, encontre f () nos itens a seguir: (a) f() = (b) f() = (c) f() = () f () = + 2 Faça o que se pee: (a) Ache a inclinação a reta tangente à curva = aa no ponto ( 2, 7). Faça um esboço a curva com a reta tangente e a reta normal. (b) Iem, para = 2 no ponto ( 2, 4). (c) Encontre uma equação a reta tangente à curva = que é paralela à reta 8 + = 0. () Encontre uma equação a reta tangente à curva = 2 2 que é perpenicular à reta = 0. Seja f efinia por Do eposto, (a) Faça um esboço o gráfico e f. f() = { se < ( ) 2 se (b) Determine se f é contínua em =. (c) Determine se f () e f +() eistem e se f é erivável em. 4 Prove as afirmações abaio: (a) se f (a) eiste, prove que (b) Calcule com enlevo lim 00. (c) Se f ( ) eistir, prove que f f(a + h) f(a h) (a) = lim. h 0 2h f( ) f() lim = f( ) f ( ). () O Teorema o Resto em Álgebra Elementar afirma que, se P () é um polinômio em e se r é um número real qualquer, então eiste um polinômio Q(), tal que P () = Q() ( r) + P (r). Qual é o limite lim Q()? r Na situação acima, se P () = , calcule lim Q()?

2 Regras e Derivação. 5 Calcule as erivaas abaio: (a) = (b) w = z z (c) f() = 2 e () f() = e 2 (e) g() = ( + 2)( ) (f) h() = ( 2 + )( + ) (g) f() = (h) = ( 2 )( + ) (i) = 2 sen (j) f() = cossec + 7 (k) g() = cos sen (l) = sec tg (m) = e cos (n) f() = cos ln (o) = 2 log 45 6 Se Galileu tivesse eiao cair uma bala e canhão a Torre e Pisa, 79 pés acima o solo, sua altura t segunos epois e cair teria sio s(t) = 79 6 t 2. (a) Quais teriam sio a velociae, o móulo a velociae e a aceleração a bala no instante t? (b) Quanto tempo a bala teria levao, aproimaamente, para atingir o chão? (c) Qual teria sio a velociae a bala no momento o impacto? Regra a Caeia. 7 Calcule as erivaas as funções abaio utilizano a Regra a Caeia. (a) f() = (sen + cos ) sen k (b) g(k) = e (c) h(t) = cos 5t sen 2t () f(t) = t e t (e) f() = [ln( 2 + )] (f) = cos (g) f(z) = 2+ + log 2 ( 2 + ) sen (h) f() = (i) = (j) = π + π (k) = 2 4 (l) = 8 Prove que a erivaa e uma função par é uma função ímpar e a erivaa e uma função ímpar é uma função par, ese que tais erivaas eistam. 9 Use a Regra a Caeia para mostrar que, se θ for meio em graus, então (sen θ) = π θ 80 cos θ (Isso á uma razão par que a convenção e que a meia em raianos é sempre usaa quano tratamos o cálculo e funções trigonométricas: as fórmulas e erivação não seriam tão simples se usássemos a meia em graus). 0 A leitura a escala ( Richter, ) R, utilizaa para meir a magnitue e um terremoto com intensiae I é ln I I0 eterminaa por R = ln 0 one I 0 é um limiar mínimo parão e intensiae. Se I 0 =, qual é a taa e variação a leitura a escala Richter em relação à intensiae? 2

3 Derivação Implícita. Nos eercícios abaio, encontre t (a) + 2 = + 4 por erivação implícita. () = cos( ) (b) = 0 (c) e + cos = (e) ( + ) 2 ( ) 2 = + (f) + ln( ) = 0. 2 Encontre (a) = ( 2 + ) sen (b) = + 2 usano iferenciação logarítimica. (c) = 5 + () = sen cos tg (e) = (2 8) / Taas Relacionaas. Resolva os problemas abaio: (a) Uma pera cai livremente em um lago parao. Onas circulares se espalham e o raio a região afetaa aumenta a uma taa e 6cm/s. Qual a taa seguno a qual a região está aumentano quano o raio for e 4cm? (b) Dois carros iniciam o movimento e um mesmo ponto. Um viaja para o sul a 60 mi/h, e o outro para o oeste a 25 mi/h. A que taa está cresceno a istância entre os carros uas horas epois? (c) Um tanque com a forma e um cone invertio está seno esvaziao a uma taa e 6m /min. A altura o cone é e 24m e o raio a base é e 2m. Ache a velociae com que o nível e água está abaiano, quano a água estiver a uma profuniae e 0m. () Enche-se um reservatório, cuja forma é a e um cone circular reto, e água a uma taa e 0, m /s. O vértice está a 5 m o topo e o raio o topo é e 0 m. Com que velociae o nível h a água está subino no instante em que h = 5 m. (e) Uma viatura e polícia, vino o norte e se aproimano e um cruzamento em ângulo reto, persegue um carro em alta velociae, que no cruzamento, toma a ireção leste. Quano a viatura está a 0,6 milha ao norte o cruzamento e o carro fugitivo a 0,8 milha a leste, o raar a polícia etecta que a istância entre a viatura e o fugitivo aumenta a 20 milhas/h. Se a viatura se esloca a 60 milhas/h no instante a meição, qual é a velociae o fugitivo? (f) Um balão e ar quente, que sobe na vertical a partir o solo, é rastreao por um telêmetro colocao a 500 pés e istância o ponto a ecolagem. No momento em que o ângulo e elevação o telêmetro é π/4, o ângulo aumenta a uma taa e 0,4 ra/min. A que velociae o balão sobe nesse momento?

4 Derivaas e Orem Superior. 4 Calcule as erivaas e orem superior. (a) D ( 9 ) (b) 2 t 2 (t2 sen t) 5 Obtenha uma fórmula para encontrar a n ésima erivaa as seguintes funções: (a) = n (b) = (c) = ln () = 2 (e) = sen (f) = cos Derivaas e funções trigonométricas inversas 6 Usano erivação implícita, mostre que (a) [arc sen ] = 2 (b) [arc tg ] = Recorreno ao eercício anterior e assumino a veraciae as seguintes erivaas (o métoo para euzir tais erivaas é análogo ao feito no eercício 8) [arc cos ] = 2 [arc sec ] = 2 calcule as seguintes erivaas: [arc cotg ] = + 2 [arc cossec ] = 2 (a) = arc sen(2 + ) (b) = arc tg (c) H() = ( + 2 ) arc tg () = arc sec(e ) Linearização (aproimação linear). 8 Determine a aproimação linear (linearização) e: (a) f() = + em =. (b) f() = cos quano = π/2. (c) f() = sen para = 0. Use esta aproimação linear para aproimar sen 2. () f() = ( + ) k, one k R em = 0. Use esta linearização para estimar (, 0002) 50 e,

5 Teorema o Valor Méio. 9 Use o teorema o valor méio para provar que (a) sen a sen b a b, a, b R (c) sec + cossec = π 2 (b) tg + cotg = π 2 20 Às uas horas a tare o velocímetro e um carro mostrava 0 mi/h, e às 2h 0 mostrava 50 mi/h. Mostre que em algum instante entre 2h e 2h 0 a aceleração é eatamente 20 mi/h 2. Etremos Relativos. 2 Encontre os etremos relativos as funções usano o teste a seguna erivaa, quano aplicável. Em caso contrário, use o teste a erivaa primeira. Determine também, os pontos e infleão, bem como one o gráfico é côncavo para cima e côncavo para baio. Também, encontre as assíntotas horizontal, vertical e oblíqüa, caso eistam. Por fim, faça o esboço o mesmo. (a) f() = (b) f() = (c) f() = 4 /2 + 4 /2 () F () = cos( ), [ π 6, π 2 (e) f() = e (f) f() = 2 ] (g) f() = (h) f() = 2/ 2 Otimização. 22 Resolva os seguintes problemas e otimização: (a) Encontre ois números positivos cujo prouto seja 00 e cuja soma seja a menor possível. (b) Se 200 cm 2 e material estiverem isponíveis para fazer uma caia com uma base quaraa e sem tampa, encontre o maior volume possível a caia. (c) Encontre o ponto sobre a reta = que está mais próimo a origem. () Uma janela normana tem a forma e um retângulo teno em cima um semicírculo. (O iâmetro o semicírculo é igual à largura o retângulo). Se o perímetro a janela for 0 pés, encontre as imensões a janela que eiam passar a maior quantiae possível e luz. 5

6 (e) Uma caia aberta eve ser feita e uma folha e papelão meino 6 por 0 cm, estacano - se quaraos iguais os quatro cantos e obrano - se os laos conforme figura abaio: Qual é o tamanho os quaraos para se obter uma caia com o maior volume? (f) Um retângulo eve ser inscrito em um triângulo retângulo com laos e comprimento 6, 8 e 0 cm. Encontre as imensões o retângulo com a maior área, supono que ele está posicionao conforme a figura a seguir. 0 cm 8 cm (g) Mostre que, entre toos os retângulos com perímetro p, o quarao é o que tem área máima. 6 cm Regra e L Hôspital. 2 Calcule os limites abaio: (a) (b) lim + e ln lim + (c) () ln lim + lim + (e) (f) lim + ( + 2) lim. 0 +(sen)2 Derivaas e funções inversas. Para os eercícios a seguir, temos o seguinte resultao: Teorema (Derivaa e uma função inversa) Suponha que o omínio e uma função f seja o intervalo aberto I que f seja erivável nesse intervalo. Então, f é iferenciável em qualquer ponto a imagem e f no qual f (f ()) 0 e sua erivaa é Se = f(), uma fórmula alternativa para () é [f ()] = f (f ()). () =. (2) 6

7 24 Nos eercícios a seguir, calcule ( f ) (). (a) f() = + ; =. (b) f() = 2 6, 0; = 9. (c) f() = 5 + 2, 0; = 5. () f() = 2 cos2, 0 π 2 ; = 4. Derivaa e funções hiperbólicas. As funções hiperbólicas são efinias como segue: Seno hiperbólico senh = e e 2 Cosseno hiperbólico Tangente hiperbólica cosh = e + e 2 tgh = senh cosh Cotangente hiperbólica cotgh = cosh senh Secante hiperbólica sech = cosh Cossecante hiperbólica cossech = senh 25 Do eposto acima, mostre que (a) cosh 2 senh 2 = (b) A função cosh é uma função par. (c) A função senh é uma função ímpar. () (e) senh = cosh cosh = senh (f) (g) (h) (i) tgh = sech2 cotgh = cossech2 sech = sech tgh cossech = cossech cotgh 7

8 26 Uma linha e telefone é penuraa entre ois postes separaos a 4 m na forma e catenária = cosh ( 20) 5 em que e são aos em metros. (a) Encontre a inclinação essa curva quano ela encontra o poste à ireita. (b) Encontre o ângulo θ entre a reta e o poste. 5 θ Derivaas e funções hiperbólicas Inversas 27 Mostre que as seguintes relações valem para too no omínio as funções hiperbólicas inversas aas. ( (a) arc senh = ln + ) 2 + (b) arc tgh = ( ) + 2 ln 28 Derivano os itens (a) e (b) o eercício anterior ou fazeno uso e erivação implícita, mostre (a) [arc senh ] = + 2 (b) [arc tgh ] = 2 Sucesso!!! 8

9 Respostas (a) f () = 2 (b) f () = 2 2 (a) -8 (c) f () = () f () = 2 ( + ) 2 (c) 8 5 = 0 (b) -0 () = 0 (b) Sim; (a) 0 (c) Eistem, mas f não é erivável em =. 4 (a) Use o fato que f(a + h) f(a h) = f(a + h) f(a) + f(a) f(a h) (b) Use a efinição e erivaa. (c) Note que f( ) f() = f( ) f( ) + f( ) f() P () P (r) () Perceba com eleite que Q() = ; 8. r 5 (a) = (f) h () = (b) w = 9z 4 + z 2 (c) f () = 2 e + 2e () f () = 2 e 2e 4 (e) g () = 2 + (g) f 9 () = ( 2) 2 (h) (i) = 2 cos (j) f () = cossec cotg (k) g () = sen (l) = sec + sec tg 2 (m) = e cos e sen (n) f () = sen ln + cos (o) = 2 ln ln 45 6 (a) Velociae: v(t) = 2 t pés/s; móulo a velociae: v(t) = 2 t pés/s; aceleração: a(t) = (b) t = 6, segunos. (c) t = pés/s. 7 (a) (sen + cos ) 2 (cos sen ) (b) k 2 cos(k sen k ) e (c) 5 sen 2t sen 5t 2 cos 2t cos 5t (sen 2t) 2 () t 2 e t ( + t ) (e) 6 [ln(2 + )] (f) 9 cos 2 ( ) sen( ) 2 (g) ( 2 + ) ln 2 ( (h) sen() cos() ln + sen() 8 Use as efinições e função par e ímpar e a Regra a Caeia. 0 R I = ln 0 I. 9 (i) 2 ln ln 2 (j) π π + ln π π (k) = 2 (2 4) ) 2 4 (l) =

10 = (b) (a) = + (c) = e e sen 2 (a) = (2 + ) sen (b) = [ [ 2 sen (cos ) ln(2 + ) 2 ( + 2 ) (c) = [ ] + () = sen cos [ tg cotg tg + sec2 tg [ + (e) = (2 8) / (a) 28 cm 2 /s (b) 65 mi/h ] () 2 = (e) sen( ) = sen( ) (f) = ] ] 2 2 ( 2 8) + 2 2( + ) (c) () 6 25 π m/min π m/s ] (e) 70 milhas/h (f) 40 pés/min 4 (a) (b) 2sent + 4t cos t t 2 sent 5 (a) n! cos, para n =, 5, 9,... (b) ( )n n! (e) D(sen n sen, para n = 2, 6, 0,... ) = cos, para n =, 7,,... n+ sen, para n = 4, 8, 2,... (c) ( )n+ (n )! n n. () 2 n n! ( 2) n+ 7 (a) = 2 sen, para n =, 5, 9,... (f) D(cos n cos, para n = 2, 6, 0,... ) = sen, para n =, 7,,... cos, para n = 4, 8, 2,... (c) H () = + 2 arc tg (b) = 2 ( + ) 8 (a) L() = 2 + ( ) 4 (b) L() = + π 2 () = e 2 (c) L() = ; 0, () L() = + k ;, 0;, Sugestão: Use o teorema o valor méio. 0

11 ( 2 (a) f ) = 2 mínimo relativo; f( ) = 5 máimo relativo; 27 ( ponto e infleão em 5 ) [, 7 ; ecrescente em, ] e crescente em (, ] e 27 [ ), + ; côncavo para cima para > 5 e > ; côncavo para baio em < 5. 5 f() - ( 5, 7 ) (b) f( ) = 7 2 e f(2) = 5 mínimos relativos; f(0) = máimo relativo; pontos e infleão em = ( ± 7); ecrescente em (, ] e [0, 2]; crescente em [, 0] e [2, + ); côncavo para cima para < ( 7) e > ( + 7); côncavo para baio em ( 7) < < ( + 7) (c) f() = 8 mínimo relativo; ponto e infleão em (, 6 ) ; ecrescente em (, ]; crescente em [, + ); côncavo para cima para 0 < < ; côncavo para baio em > (, 6 ) 5 0

12 ( π ) () f infleão em = mínimo relativo; f(0) = máimo relativo; ponto e ( π ) 6, 0 ; ecrescente em (, ] e [0, 2]; crescente em π 6 π 6 π π 2 [, 0] e [2, + ); côncavo para cima para π 6 < < π ; côncavo para 2 baio em π 6 < < π - 6. e 2 ( 2, 2 e 2 ) (e) f() = e máimo relativo; ponto e infleão em ( 2, 2 e 2) ; ecrescente em [, + ); crescente em (, ]; côncavo para cima para > 2 ; côncavo para baio em < 2. 4 = + (f) f(0) = 0 mínimo relativo; f(2) = 4 máimo relativo; não há ponto e infleão ; ecrescente em [0, ) e (, 2]; crescente em (, 0] e [2, + ); côncavo para cima para > ; côncavo para baio em < ; assíntota vertical: = ; assíntota oblíqua: =

13 (g) f(0) = mínimo relativo; não há ponto e infleão ; ecrescente em [0, ) e (, 2]; crescente em (, ) e (, + ); côncavo para cima para < e > ; côncavo para baio em < < ; assíntotas verticais: = e = ; assíntota horizontal: = (h) f(0) = 0 mínimo relativo; f() = máimo relativo; não há ponto e infleão; ecrescente em (, 0] e [, + ); crescente em [0, ]; côncavo para baio em < 0 e > (a) 0 e 0 (b) 4000 cm (c) ( 28 ) 7, (a) 0 (b) 0 (c) 0 () () = π, = π (e) 0 cm (f) = cm e = 4 cm (e) (f) 24 (a) 2 (b) 0 (c) 2 () 2

14 26 (a) ( ) 7 = sinh 0, 572. =7 20 (b) Denotamos α é o ângulo entre a reta tangente e o eio, então, tg α = 0, 572. Deste moo, α = arc tg(0, 572) 0, 4 ra 9, 66. Então, o ângulo entre a reta e o poste é θ = 90 9, 66 = 70, Sugestão: Para o item (a), escreva e resolva a equação e 2 e = 0 em termos e. = senh = e e 2 4

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b.

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b. ª Avaliação ) Encontre lim 9 9. A substituição e por 9 leva a uma ineterminação o tipo 0/0. ( ) + 9 lim lim lim lim 9 9 9 9 9 9 + 9 + 9 + lim 9 ( 9 ) 9 lim + + 9 + 6 9 ( + ) se 0 < < b ) Dao f, etermine

Leia mais

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x ª Avaliação 0/ ) Determine o limite a epressão: lim. 0 ( ) ( ) ( ) lim 0 ( ) ( 0) 4 lim lim lim lim 0 0 0 0 ( ) ) Derive a função g ( ). 4 4 g ( ) g ( ) g ( ) 4 4 g ( ) g ( ) g( ) g( ) 4 6 8 9 4 g( ) 4

Leia mais

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas Universiae Feeral o Paraná Centro Politécnico ET-DMAT Pro. Maria Eugênia Martin CM04- Cálculo I Lista 5: Derivaas Eercício. O gráico ilustra a unção posição e um carro. Use a orma o gráico para eplicar

Leia mais

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 014 Lista 6 Gráficos: Pontos críticos, máimos e mínimos, partes crescentes e decrescentes. L Hôpital.

Leia mais

Derivadas das Funções Hiperbólicas Inversas

Derivadas das Funções Hiperbólicas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas as Funções

Leia mais

1. Calcule a derivada da função dada usando a definição. (c) f(x) = 2x + 1. (a) f(x) = 2. (b) f(x) = 5x. (d) f(x) = 2x 2 + x 1

1. Calcule a derivada da função dada usando a definição. (c) f(x) = 2x + 1. (a) f(x) = 2. (b) f(x) = 5x. (d) f(x) = 2x 2 + x 1 Lista de Eercícios de Cálculo I para os cursos de Engenharia - Derivadas 1. Calcule a derivada da função dada usando a definição. (a) f() = (b) f() = 5 (c) f() = + 1 (d) f() = + 1. O limite abaio representa

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas.

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas. CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula no 3: Derivação Implícita. Derivaa a Função Inversa. Taxas Relacionaas. Objetivos a Aula Apresentar a técnica e erivação implícita;

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1 ) Calcule os limites abaio: (3,0) ª Avaliação 03/ a) + ( a) a lim a a + ( a) a ( a) ( + ) lim = lim = lim( + = + a a a a ) a a b) lim 0 + + + + + + lim = lim = lim 0 0 + + 0 ( ) ( + + ) = lim = lim = =

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

MAT Cálculo I - POLI a Lista de Exercícios

MAT Cálculo I - POLI a Lista de Exercícios MAT 453 - Cálculo I - POLI - 003 a Lista de Eercícios. Calcule a derivada indicada em cada caso: a) y se y = ; b) y se y = ( ) d ; c) ; d + ( d) d d 3 + ); e) d500 3 d 500 (3 3 79 + 4).. Calcule dy por

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática 3 a Lista - MAT 146 - Cálculo I 2017/I 1. Sejam f, g e h funções deriváveis. Determine [f()g()h()] e [ ] f()g(). h() 2.

Leia mais

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Derivadas (26/09/2017)

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Derivadas (26/09/2017) Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma ) Cálculo Diferencial e Integral I 207/II a Lista de Derivadas (26/09/207) ) Calcule f (p), usando definição de derivada. a) f() =

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

Funções Hiperbólicas

Funções Hiperbólicas Funções Hiperbólicas Luiza Amalia Pinto Cantão & Renato Fernanes Cantão Campus Experimental e Sorocaba Unesp http://www.sorocaba.unesp.br/professor/luiza http://www.sorocaba.unesp.br/professor/cantao 006

Leia mais

2a. Lista de Exercícios

2a. Lista de Exercícios UFPR - Universidade Federal do Paraná Departamento de Matemática Prof. José Carlos Eidam CM04 - Cálculo I - Turma C - 0/ a. Lista de Eercícios Teoremas do valor intermediário e do valor médio. Seja h()

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

para: (a) f(x) = 3 (b) f(x) = c, c

para: (a) f(x) = 3 (b) f(x) = c, c MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DESEMPENHO CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a. Dayse Batistus, Dr a.

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

2a Lista de Exercícios. f (x), se x a g (x), se x < a. x 3 x, x 0, se x = 0. 1, se x 1 x 2 4 x 4, se x 1

2a Lista de Exercícios. f (x), se x a g (x), se x < a. x 3 x, x 0, se x = 0. 1, se x 1 x 2 4 x 4, se x 1 UFPR - Universidade Federal do Paraná Setor de Ciências Eatas Departamento de Matemática Prof. José Carlos Eidam MA/PROFMAT - Fundamentos de Cálculo a Lista de Eercícios Derivadas. Sejam f e g funções

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS )

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS ) UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A0 CÁLCULO A 009 ª LISTA ( QUESTÕES DE PROVAS ) Regra da cadeia ( f ( g( h(( t( )))))) f ( g( h(( t( ))))) g ( h(( t(

Leia mais

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 )

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 ) Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEFT, MEBiom o Sem. 20/2 2//20 Duração: h30mn.,5 val.) a) Represente na

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral I Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores EXERCÍCIOS. Calcule

Leia mais

3 o quadrimestre a Lista de Exercícios - Derivadas 1 :

3 o quadrimestre a Lista de Exercícios - Derivadas 1 : Funções de Uma Variável 3 o quadrimestre - 00 a Lista de Eercícios - Derivadas : Técnicas de Derivação, Taas Relacionadas e Aplicações à Geometria Analítica. Determine o valor de a para que as funções

Leia mais

4.1 Funções Deriváveis

4.1 Funções Deriváveis 4. Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

MAT Lista de exercícios para a 3 a prova

MAT Lista de exercícios para a 3 a prova Universidade de São Paulo Instituto de Matemática e Estatística MAT - Lista de eercícios para a a prova Valentin Ferenczi de maio de 9. Estude a função dada com relação a máimos e mínimos locais e globais.

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº As questões de números a 9 referem-se à função f ( ). - O domínio da função f é o conjunto: a) R b) R c) R R, 0 e) R 0 - A derivada

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

Lista de Exercícios 3 1

Lista de Exercícios 3 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +

Leia mais

Derivadas de Funções Trigonométricas

Derivadas de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções

Leia mais

7 Derivadas e Diferenciabilidade.

7 Derivadas e Diferenciabilidade. Eercícios de Cálculo p. Informática, 006-07 1 7 Derivadas e Diferenciabilidade. E 7-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite

Leia mais

3 Cálculo Diferencial. Diferenciabilidade

3 Cálculo Diferencial. Diferenciabilidade 3 Cálculo Diferencial Diferenciabiliae EXERCÍCIOS RESOLVIDOS. Para caa uma as seguintes funções etermine o omínio e iferenciabiliae e calcule as respectivas erivaas: a, b e, c ln, e. a f ( = é iferenciável

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

4.-1 Funções Deriváveis

4.-1 Funções Deriváveis 4.- Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral I (Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores EXERCÍCIOS.

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

Regras Básicas de Derivação

Regras Básicas de Derivação Regras Básicas e Derivação. regra a soma: (u + kv) = u + kv, k constante 2. regra a iferença: (u + v) = u + v 3. regra o prouto: (u v) = u v + u v u u v u v 4. regra o quociente: = v v 2 5. regra a caeia:

Leia mais

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x.

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x. RESUMO DERIVADAS DEFINIÇÃO A erivaa naa mais é o que a inclinação a reta tangente a y=f(x) ou a taxa e variação instantânea e y em relação a x. x 0 f(x +h) f(x ) f (x 0 ) = lim h 0 h 0 0 DIFERENCIABILIDADE

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações Universidade Federal de Viçosa Departamento de Matemática MAT 40 (Cálculo I) 07/I Lista de Derivadas e Aplicações ) Determine a função derivada de f definida por: a) ( + 4 5) 4 b) ( 4 7 3 ) e c) ( + 4)

Leia mais

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações Universidade Federal de Viçosa Departamento de Matemática MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações 1) Determine a função derivada de f definida por: a) ( 2 + 4 5) 4 b) (2 4 7 3 ) e c)

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B33 Limites e Derivadas Prof a. Graça Luzia Dominguez Santos

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B33 Limites e Derivadas Prof a. Graça Luzia Dominguez Santos UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivadas Prof a Graça Luzia Dominguez Santos LISTA DE EXERCÍCIOS( Questões de Provas a UNIDADE) Derivada

Leia mais

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando 5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende

Leia mais

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x a Lista de Eercícios MAT 0 - CÁLCULO I ) Utilizando o Teorema Fundamental do Cálculo, determine as seguintes integrais definidas: ) I = 7 0 d 6 + 9 ) I = d ) I = ) I = d t t + d ( 8 ) 6 0 5 ( ) 5) I =

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia I

MAT Cálculo Diferencial e Integral para Engenharia I MAT453 - Cálculo Diferencial e Integral para Engenharia I 1 o Semestre de 011 - a Lista de Eercícios 1. Calcule a área da região compreendida entre os gráficos de f () = 3 + 1 e g() = + 1, com 1 1.. Desenhe

Leia mais

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como:

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como: 1 Acaêmico(a) Turma: Capítulo 4: Derivaa 4.1 Definição A erivaa por ser entenia como taxa e variação instantânea e uma função e expressa como: f (x) = y = y x Eq. 1 Assim f (x) é chamao e erivaa a função

Leia mais

Funções Hiperbólicas

Funções Hiperbólicas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Hiperbólicas

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4

Leia mais

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s Simulao 1 Física AFA/EFOMM 1- A face inferior e uma camaa e nuvens é plana e horizontal. Um rojão estoura entre o solo e a camaa e nuvens. Uma pessoa situaa na mesma vertical e junto ao solo vê o clarão

Leia mais

Lista de Exercícios 2 1

Lista de Exercícios 2 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor

Leia mais

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais

Quadro de Respostas Valor: 110 pontos Alternativa/Questão A B C D E. Rascunho

Quadro de Respostas Valor: 110 pontos Alternativa/Questão A B C D E. Rascunho UFJF ICE Departamento de Matemática Cálculo I Prova Opcional º Semestre Letivo de 04 9//04 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: - Preencher o quadro de respostas das questões de múltipla

Leia mais

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática a Lista MAT - Cálculo I 7/II. Verifique se as seguintes igualdades são válidas, seja por integração ou por derivação:

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-0 Cálculo Diferencial e Integral I (Instituto de Física) Segunda Lista de Eercícios - Professor: Aleandre Lymberopoulos. Calcule a derivada

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

Universidade Federal do Espírito Santo Segunda Prova de Cálculo I Data: 04/10/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. 2 x x = cos (x) 1

Universidade Federal do Espírito Santo Segunda Prova de Cálculo I Data: 04/10/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. 2 x x = cos (x) 1 Universiae Feeral o Espírito Santo Seguna Prova e Cálculo I Data 4//22 Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno Matrícula Nota. (3 pontos) Calcule os ites (i) (ii) (iii) x! 2 x x + 22 = cos (x) x!

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral para Engenharia I Segunda Lista de Eercícios - Professor: Equipe da Disciplina. Calcule a derivada

Leia mais

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x.

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x. Professora: Elisandra Bär de Figueiredo Lista 4: Derivadas - Cálculo Diferencial e Integral I f( + h) f() 1. Para as funções dadas abaio calcule lim. h 0 h( (a) f() ) (b) f() (e) f() cos (c) f() 1 (f)

Leia mais

Lista de Exercícios do capítulo 4

Lista de Exercícios do capítulo 4 Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo

Leia mais

MAT Cálculo para Ciências Biológicas - Farmácia Prof. Gláucio Terra. 3 a Lista de Exercícios

MAT Cálculo para Ciências Biológicas - Farmácia Prof. Gláucio Terra. 3 a Lista de Exercícios MAT0143 - Cálculo para Ciências Biológicas - Farmácia - 006 Prof. Gláucio Terra 3 a Lista de Eercícios 1-) Dois corredores iniciam uma corrida ao mesmo tempo e terminam empatados. Prove que em algum momento

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = ex x = 0

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = ex x = 0 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas

Leia mais

Derivada - Parte 3 - Aplicações

Derivada - Parte 3 - Aplicações Derivada - Parte 3 - Aplicações Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D.

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

3x 9. 2)lim x 3. x 4 x 2. 5) lim. 2x 3 x 2 + 7x 3 2 x + 5x 2 4x 3 9) lim sen(sen x) 11)lim 1 cosx. 18) lim. x 1 3. x 1 x 1.

3x 9. 2)lim x 3. x 4 x 2. 5) lim. 2x 3 x 2 + 7x 3 2 x + 5x 2 4x 3 9) lim sen(sen x) 11)lim 1 cosx. 18) lim. x 1 3. x 1 x 1. 1 a Lista de Cálculo I - Escola Politécnica - 2003 Limite de Funções 1. Calcule os seguintes limites, caso eistam: 5 1) lim 0 1 2 + 56 4) lim 7 2 11 + 28 7) lim 10) lim + 1 + 1 9 + 1 13) lim tg(3) cossec(6)

Leia mais

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Fnções

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que: MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

1ª Avaliação. lim lim lim. Resolvendo o sistema formado pelas equações (1) e (2), teremos c 3 e

1ª Avaliação. lim lim lim. Resolvendo o sistema formado pelas equações (1) e (2), teremos c 3 e 1ª Avaliação 1) Determine os limites abaio: a) lim 4 4 1 1 4 1 1 4 4 4 1 1 1 lim lim lim 4 4 4 4 4 16 4 4 4 b) 4 16 lim 4 4 4 16 lim lim lim lim 4 4 4 8 4 ) Determine os valores das constantes c e k que

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 04/12/2010 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 04/12/2010 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 04//00 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: - A prova pode ser feita a lápis, eceto o quadro de respostas das questões

Leia mais

As listas de exercícios podem ser encontradas nos seguintes endereços: ou na pasta J18, no xerox (sala1036)

As listas de exercícios podem ser encontradas nos seguintes endereços:  ou na pasta J18, no xerox (sala1036) As listas de eercícios podem ser encontradas nos seguintes endereços: www.mat.ufmg.br/calculoi ou na pasta J8, no ero (sala06) TERCEIRA LISTA DE EXERCÍCIOS. Derive: a) y = 6 + b) y = c) d) y = + y = 0

Leia mais

Lista de Exercícios 03: Derivadas e Aplicações

Lista de Exercícios 03: Derivadas e Aplicações Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologias Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental - UACTA Disciplina: Cálculo Professor: Paulo Pamplona

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013 Página de 8 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC38 Respostas da Prova de Final - 0//03 Questão : ( pontos) (a) Dado o gráfico da função f, esboce o gráfico da função

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Observação: Faça os exercícios 5, 6, 7, 8b-c), 9, 10, 11, 12, 13, 15, 19, 22, 27

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Observação: Faça os exercícios 5, 6, 7, 8b-c), 9, 10, 11, 12, 13, 15, 19, 22, 27 UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ 3a Lista de Eercícios - Limites Prof. Wellington D. Previero Observação: Faça os eercícios 5, 6, 7, 8b-c), 9, 10, 11, 12, 13, 15, 19, 22, 27 1. Eplique com suas

Leia mais

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura

Leia mais

1. Seja V o volume de um cilindro tendo altura h e raio r e suponha que h e r variam com o tempo.

1. Seja V o volume de um cilindro tendo altura h e raio r e suponha que h e r variam com o tempo. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA DISCIPLINA: MAT0339 - Cálculo e Geometria Analítica para Arquitetos PROFESSOR: Vilmar Trevisan

Leia mais

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ;

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ; Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/004 Ficha Prática nº. 5: Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. / 3 a FICHA DE EXERCÍCIOS Primitivação é a operação inversa a

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática 3 a Lista MAT 141 - Cálculo Diferencial e Integral 016/I Professores: Filipe, Juliana, Bulmer 1. Estude a variação de

Leia mais

CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A

CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A Preparar o Eame 01 016 Matemática A Página 19 88. 88.1. O ângulo CDA está inscrito na circunferência, portanto CDA. Assim: AD CD A ABCD A CDA AD CD AD Tem-se que, cos AD cos CD e sen CD sen. Portanto,

Leia mais

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2 Questão -A. (, pontos) Calcule a) arctg d = arctg() 1 d = 1 + arctg() 1 u 1 6 u du = u = arctg() du = 1 dv = d v = 1+ d u = 1 + du = d = arctg() 1 1 + [u ln u ] + k = arctg() + ln(1 + ) + k. 6 6 6 b) 5e

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1 (Eercício IV1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log, e) sen cos tg, f) (1 + log ), g) cos(arcsen ) h) (log ), i) sen Derive: a) arctg

Leia mais

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T.

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T. Universiae eeral o Paraná Setor e Ciências Eatas Departamento e ísica ísica III Prof. Dr. Ricaro Luiz Viana Referências bibliográficas: H. -4 S. -5 T. 18- Aula Lei e Coulomb Charles Augustin e Coulomb

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Primeira Lista de Eercícios de Cálculo Diferencial e Integral I - MTM Prof. Júlio César do Espírito

Leia mais

Derivada da Função Exponencial Natural. Usando a Regra da Diferença, temos. f x d dx e x x d dx e x d dx x e x 1. f x d dx e x 1 d dx e x d x.

Derivada da Função Exponencial Natural. Usando a Regra da Diferença, temos. f x d dx e x x d dx e x d dx x e x 1. f x d dx e x 1 d dx e x d x. 64 CÁLCULO TEC Visual. usa um escopo e inclinação para ilustrar essa fórmula. Derivaa a Função Eponencial Natural e e Assim, a função eponencial f e tem a proprieae e ser sua própria erivaa. O significao

Leia mais

MAT Cálculo I - POLI Gabarito da P2 - A

MAT Cálculo I - POLI Gabarito da P2 - A MAT 45 - Cálculo I - POLI - 006 Gabarito da P - A Questão A) Calcule (.0) (a) lim ( cos() ) / (.0) (b) 0 ( ( π ) ) cos + e d (a) Tem-se, ( π/4, π/4) \ {0}: (cos ) / = ep( ln(cos )). Pondo f() =. ln(cos

Leia mais

MAT CÁLCULO DIFERENCIAL E INTEGRAL I. IME & Física 2016 (2 a Lista de Exercícios)

MAT CÁLCULO DIFERENCIAL E INTEGRAL I. IME & Física 2016 (2 a Lista de Exercícios) MAT - CÁLCULO DIFERENCIAL E INTEGRAL I IME & Física 6 ( a Lista de Eercícios). Verifique para as funções abaio se eistem números c, com a < c < b e tais que f(b) f(a) = f (c)(b a). Em caso afirmativo eiba-os.

Leia mais