A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

Tamanho: px
Começar a partir da página:

Download "A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003"

Transcrição

1 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação e o significao isso: enotamos f g (x) à composição f (g (x)). Poemos pensar nessa composição como ois passos: y = g (x) e z = f (y). Faça uma figura representano essa composição e inicano as três erivaas presentes nessa iscussão: g (x), f (y) e (f g) (x). A regra a caeia iz precisamente a relação entre essas erivaas. Para obter tal relação vamos novamente fazer uso a iéia e erivaa como aproximação linear. Assim, f (y + y) f (y) + f (y) y, () g (x + x) g (x) + g (x) x, (2) e agora queremos obter estas a aproximação linear e f g (x + x). Usano primeiramente a expressão (2), tem-se f (g (x + x)) f (g (x) + g (x) x), (3) e agora usa-se a expressão () reconheceno y = g (x) e y = g (x) x: e one eve ficar claro que f (g (x + x)) f (g (x)) + f (g (x)) g (x) x, (4) (f g) (x) = f (g (x)) g (x) (5) Em notação e Leibniz, esse resultao poe ser escrito e uma forma até mneomônica: z x = z y y x, (6) que nos lembra como são encaeaas as pequenas variações e x, y e z. O estuante, porém, eve estar atento tanto ao fato e na notação e Leibniz não ser explícito one são calculaas as erivaas, quanto para o fato que o que está escrito na expressão (6) não é um prouto e frações! Agora vamos iscutir algumas conseqüências a regra a caeia. Derivaa e F (x) = e rx, com r constante. Você poe pensar F como uma composição one f (y) = e y e g (x) = rx. Com isso, F (x) = e rx r = re rx. (7)

2 Derivaa e F (x) = a x, one a > 0 é constante. Para isso recorremos à inversa a exponencial, o logaritmo. Basta lembrar que a x = e ln(ax) = e x ln a, (8) e notar que ln a é uma constante, e portanto poemos usar a expressão (7). Assim, F (x) = ln a e x ln a = ln a a x. (9) Vale notar que a expressão acima novamente corrobora a frase que escreve as funções exponenciais: quanto mais tem mais cresce, ou e maneira mais precisa, a taxa e variação é proporcional à própria função. Derivaa e x n, one n é um número inteiro negativo. Vamos escrever n = m, com m inteiro positivo. E note que x m = ( x ) m. Novamente vamos usar a regra a caeia, usano que já sabemos (e maneira justificaa) que x xm = mx m. (0) Temos então x xn = ( x ) m = mx m ( x 2) = ( m) x m = nx n. () x Derivaa e G (x) = x p, one p é inteiro. Agora a estratégia é utilizar a regra a caeia compono G com uma função que sabemos erivar, e tal que o resultao a composição também seja uma função que sabemos erivar. Um exemplo isso é ao por (G (x)) p = x. (2) Como a igualae acima vale para too x em que ela está efinia, as erivaas também everão ser iguais. Calculano esta erivaa: x (G (x))p = x x p (G (x)) p G (x) = G (x) = (G (x)) p p G (x) = p x p, (3) Derivaa e F (x) = x p q, com p e q inteiros. Você é conviao a obter esse resultao usano a regra a caeia. Note que agora temos razão para acreitar na fórmula para a erivaa e x n para qualquer potência racional. Com a estratégia acima, é o melhor que poemos fazer. Sabeno a erivaa o logaritmo você poerá usar novamente a regra a caeia para mostrar que este resultao vale para qualquer potência real. 2

3 Derivaa o logaritmo: f (x) = ln x. A iéia é semelhante ao que foi feito na expressão (2). E nesse caso, usamos a inversa o logaritmo, a exponencial, que já sabemos erivar.assim, poemos então enotar y = e x, e concluir que ln (e x ) = x x ln (ex ) = x x f (e x ) e x =, (4) f (y) = y. (5) Você agora eve fazer um gráfico e f (x) = ln x, esboçar então o gráfico e sua erivaa e possivelmente concorar que se este resultao (a erivaa o logaritmo) não é e too intuitivo, também não é nenhum contra-senso. Foram aina propostos e/ou iscutios em sala os seguintes exercícios (orem em que foram propostos): 4.2: 6, 7, 35, 34,, 2 e 20; 4.3: 9, 3, 37 e 38; 4.4:, 3, 6, 4, 2 e 27. Resolveno estes exercícios, você encontrou algumas funções o tipo F (x) = f(x) g(x) e eve ter conseguio calcular sua erivaa. Algumas pessoas preferem usar a chamaa regra o quociente, que será esenvolvia agora em uas etapas. A minha opinião sincera é que, assim como com várias outras proprieaes, não se eve gastar energia tentano memorizar a regra o quociente. Mais que isso, eve se ter muito cuiao para não confunir o sinal envolvio nela. Uma boa maneira e não errar este sinal é lembrar e one ele vem. A ita regra o quociente será aqui apresentaa como uma conseqüência as uas regras mais importantes que foram iscutias: a regra o prouto e a regra a caeia. Como primeiro passo, vamos calcular a erivaa e f(x) = (f (x)) usano a regra a caeia: ( ) = x f (x) (f (x)) 2 f (x) = f (x) (f (x)) 2, (6) para agora usar a regra o prouto no cálculo a erivaa e F (x) = f(x) g(x) = f (x) g(x), assim: x F = f x g + f x ( ) g 3

4 = f x g g f x g 2 = ou, na notação envolveno linhas: f x g f g x g 2, (7) F = f g fg g 2. (8) Você poe agora refazer os exercícios que envolvem quocientes e funções e recalcular as erivaas utilizano a regra o quociente. Derivaas e Funções Trigonométricas Nosso problema agora é eterminar a erivaa e funções trigonométricas como f (x) = sen (x) e g (x) = cos (x). Isso poe ser feito iretamente no círculo trigonométrico (você é conviao a tentar euzir as fórmulas aqui apresentaas através e construções geométricas), ou com a ajua a fórmula para somas e arcos: sen (a + b) = sen a cos b + cos a sen b. (9) Uma caso particular essa fórmula (b = π 2 ) nos lembra o importante fato que o cosseno poe ser visto como a função seno eslocaa e π 2. Portanto, conheceno a erivaa e sen x conheceremos também a erivaa e cos x. Para obter a erivaa e sen x começamos pela expressão (9), e one, sen (x + x) = sen x cos x + cos x sen x. (20) Precisamos entener o comportamento e cos x e e sen x quano X é muito pequeno. Lembrano o gráfico e cos x, é fácil perceber que a reta tangente ao gráfico em x = 0 é horizontal, portanto a erivaa e cos x em x = 0 vale zero. Ou seja, cos x + 0 x. (2) Para completar esse quaro, evemos aina saber a erivaa e sen x calculaa em x = 0. Em outras palavras, queremos eterminar o limite: lim x 0 sen x. (22) x Para estimar tal limite você poe voltar mais uma vez ao círculo trigonométrico e marcar um segmento e reta vertical que representa sen x e o arco que 4

5 representa 2 x. Feito isso, você poe se convencer que esta razão tene a um quano x tene a zero. Ou seja, ambos os comprimentos tenem a zero, mas a razão entre eles se aproxima e (o arco e o segmento tornam-se quase iênticos). Este é um os limites mais importantes em um curso e cálculo, merece então ser estacao: lim x 0 sen x x =. (23) Agora o cenário está completo, a erivaa e sen x em x = 0 vale. Como sen 0 = 0, temos sen x 0 + x. (24) Finalmente, usano as aproximações (2) e (24) na expressão (20) obtemos sen (x + x) sen x + cos x x, (25) que quano comparaa com a expressão () (que trauz a iéia e erivaa como inclinação a reta tangente) nos leva a concluir que x sen x = cos x. (26) Agora você poe escolher uma e uas alternativas (e por que não seguir as uas?): ou refaz um argumento semelhante ao aqui apresentao para o seno e obtém a erivaa a função cosseno, ou argumenta que translações não afetam a erivaa e translaa e expressão (26) e π 2, obteno cos x = sen x. (27) x Foram aina propostos/iscutios os exercícios: 4.5) 3, 4, 0, 5, 9 e 20. Isso encerra o nosso conjunto e regras e erivação. melhor e se acostumar com elas o que usano-as. Não há maneira 2 Lembre-se que a efinição e raianos é que meimos ângulos como a razão entre o arco e o raio; quano escolhemos o raio igual a, obtemos iretamente a igualae numérica entre ângulo e arco. 5

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

Integral de Linha e Triedro de Frenet

Integral de Linha e Triedro de Frenet Cálculo III Departamento e Matemática - ICEx - UFMG Marcelo Terra Cunha Integral e Linha e Triero e Frenet Na aula anterior iniciamos o estuo as curvas parametrizaas. Em particular, interpretamos a erivaa

Leia mais

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas.

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas. CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula no 3: Derivação Implícita. Derivaa a Função Inversa. Taxas Relacionaas. Objetivos a Aula Apresentar a técnica e erivação implícita;

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

Derivadas de Funções Trigonométricas

Derivadas de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções

Leia mais

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como:

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como: 1 Acaêmico(a) Turma: Capítulo 4: Derivaa 4.1 Definição A erivaa por ser entenia como taxa e variação instantânea e uma função e expressa como: f (x) = y = y x Eq. 1 Assim f (x) é chamao e erivaa a função

Leia mais

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x.

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x. RESUMO DERIVADAS DEFINIÇÃO A erivaa naa mais é o que a inclinação a reta tangente a y=f(x) ou a taxa e variação instantânea e y em relação a x. x 0 f(x +h) f(x ) f (x 0 ) = lim h 0 h 0 0 DIFERENCIABILIDADE

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17. Assunto: Funções Implícitas, Teorema das Funções Implícitas

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17. Assunto: Funções Implícitas, Teorema das Funções Implícitas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17 Assunto: Funções Implícitas, Teorema as Funções Implícitas Palavras-chaves: funções, funções implícitas, erivação implícita Funções implícitas

Leia mais

LIMITES E CONTINIDADE

LIMITES E CONTINIDADE MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função

Leia mais

DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL

DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL 1 a Eição Rio Grane Eitora a FURG 2016 Universiae Feeral o Rio

Leia mais

3 Cálculo Diferencial. Diferenciabilidade

3 Cálculo Diferencial. Diferenciabilidade 3 Cálculo Diferencial Diferenciabiliae EXERCÍCIOS RESOLVIDOS. Para caa uma as seguintes funções etermine o omínio e iferenciabiliae e calcule as respectivas erivaas: a, b e, c ln, e. a f ( = é iferenciável

Leia mais

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 25: Funções Logarítmicas e Eponenciais Gerais Objetivos a Aula Denir f() = log Denir f() = a Funções Eponenciais Gerais Denição. Se a > 0 e

Leia mais

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado!

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado! ## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## LISTA DE EXERCÍCIOS Operações com Vetores na Forma Algébrica [Analítica] no R [página 7] 5) Daos os vetores u i j Inicialmente, antes e substituir

Leia mais

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada:

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada: Cálculo Numérico Computacional Exercícios fórmula e Taylor T. Praciano-Pereira Dep. e Matemática Univ. Estaual Vale o Acaraú Sobral, 7 e fevereiro e 7 Relembrano: Fórmula e Taylor A equação a reta tangente

Leia mais

CONTINUIDADE E LIMITES INFINITOS

CONTINUIDADE E LIMITES INFINITOS MATEMÁTICA I CONTINUIDADE E LIMITES INFINITOS Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

Derivada de algumas funções elementares

Derivada de algumas funções elementares Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).

Leia mais

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari amanda@fcav.unesp.br Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 19 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante:

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. A regra a constante

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. / 3 a FICHA DE EXERCÍCIOS Primitivação é a operação inversa a

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b.

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b. ª Avaliação ) Encontre lim 9 9. A substituição e por 9 leva a uma ineterminação o tipo 0/0. ( ) + 9 lim lim lim lim 9 9 9 9 9 9 + 9 + 9 + lim 9 ( 9 ) 9 lim + + 9 + 6 9 ( + ) se 0 < < b ) Dao f, etermine

Leia mais

Derivadas das Funções Hiperbólicas Inversas

Derivadas das Funções Hiperbólicas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas as Funções

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 21 17 DE ABRIL DE 2017 EQUAÇÕES DIFERENCIAIS Equações iferenciais são equações (algébricas) one figuram funções e erivaas e várias orens e funções.

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

Cálculo Diferencial e Integral I - Turma C 26 de Junho de 2015

Cálculo Diferencial e Integral I - Turma C 26 de Junho de 2015 Cálculo Diferencial e Inegral I - Turma C 6 e Junho e 5 Quesão................................................................................ 7 Calcule as inegrais abaixo: ( ) πx (a) ( poins) x cos Soluion:

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais

O limite trigonométrico fundamental

O limite trigonométrico fundamental O ite trigonométrico fundamental Meta da aula Continuar a apresentação de ites de funções. Objetivo Ao final desta aula, você deverá ser capaz de: Calcular ites usando o ite trigonométrico fundamental.

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

3. Limites e Continuidade

3. Limites e Continuidade 3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,

Leia mais

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica.

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica. Aula O logaritmo natural Objetivos Estuar o logaritmo natural. Fazer aplicações a erivaa a função logarítmica. Fazer aplicações a primitiva a função logarítmica. Na aula passaa vimos a conhecia fórmula

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Trigonometria Funções Trigonométricas

Trigonometria Funções Trigonométricas Trigonometria Funções Trigonométricas imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x) = sen x y f(x) = R R Imagem: [-,] Período: 3 0 0 0 x - 3 - período imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x)

Leia mais

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas Universiae Feeral o Paraná Centro Politécnico ET-DMAT Pro. Maria Eugênia Martin CM04- Cálculo I Lista 5: Derivaas Eercício. O gráico ilustra a unção posição e um carro. Use a orma o gráico para eplicar

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1 ) Calcule os limites abaio: (3,0) ª Avaliação 03/ a) + ( a) a lim a a + ( a) a ( a) ( + ) lim = lim = lim( + = + a a a a ) a a b) lim 0 + + + + + + lim = lim = lim 0 0 + + 0 ( ) ( + + ) = lim = lim = =

Leia mais

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

30 a Aula AMIV LEAN, LEC Apontamentos

30 a Aula AMIV LEAN, LEC Apontamentos 30 a Aula 20041124 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 301 Equações iferenciais e orem n Comecemos com consierações gerais sobre equações e orem n; nomeaamente sobre a sua relação

Leia mais

Derivadas. Derivadas. ( e )

Derivadas. Derivadas. ( e ) Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

26 a Aula AMIV LEAN, LEC Apontamentos

26 a Aula AMIV LEAN, LEC Apontamentos 26 a Aula 2004..5 AMIV LEAN, LEC Apontamentos (Ricaro.Coutinho@math.ist.utl.pt) 26. Sistemas e equações iferenciais 26.. Definição Consiere-se f : D R R n R n,contínuanoconjuntoabertod Vamos consierar

Leia mais

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R . Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Fnções

Leia mais

Regras Básicas de Derivação

Regras Básicas de Derivação Regras Básicas e Derivação. regra a soma: (u + kv) = u + kv, k constante 2. regra a iferença: (u + v) = u + v 3. regra o prouto: (u v) = u v + u v u u v u v 4. regra o quociente: = v v 2 5. regra a caeia:

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

AULA 12 Aplicação da Derivada (página 220)

AULA 12 Aplicação da Derivada (página 220) Belém, e maio e 0 Caro aluno, Nesta aula ocê encontra problemas resolios e Taxas Relacionaas. Resola os exercícios as páginas e a. Leia o enunciao com muita atenção. Cuiao com as uniaes. Faça um esquema

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função

Leia mais

Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira. Aula 24. A Lei da Indução de Faraday

Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira. Aula 24. A Lei da Indução de Faraday Eletromagnetismo I Prof. Ricaro Galvão - 2 emestre 2015 Preparo: Diego Oliveira Aula 24 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que se o

Leia mais

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x ª Avaliação 0/ ) Determine o limite a epressão: lim. 0 ( ) ( ) ( ) lim 0 ( ) ( 0) 4 lim lim lim lim 0 0 0 0 ( ) ) Derive a função g ( ). 4 4 g ( ) g ( ) g ( ) 4 4 g ( ) g ( ) g( ) g( ) 4 6 8 9 4 g( ) 4

Leia mais

DIFERENÇA DE POTENCIAL. d figura 1

DIFERENÇA DE POTENCIAL. d figura 1 DIFERENÇ DE POTENCIL 1. Trabalho realizao por uma força. Consieremos uma força ue atua sobre um objeto em repouso sobre uma superfície horizontal como mostrao na figura 1. kx Esta força esloca o objeto

Leia mais

AULA 1: PRÉ-CÁLCULO E FUNÇÕES

AULA 1: PRÉ-CÁLCULO E FUNÇÕES MATEMÁTICA I AULA 1: PRÉ-CÁLCULO E FUNÇÕES Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Conjuntos numéricos A reta real Intervalos Numéricos Valor absoluto de um número

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos

Leia mais

Pré-Cálculo ECT2101 Slides de apoio Funções II

Pré-Cálculo ECT2101 Slides de apoio Funções II Pré-Cálculo ECT2101 Slides de apoio Funções II Prof. Ronaldo Carlotto Batista 8 de abril de 2017 Funções Trigonométricas As funções trigonométricas são denidas no círculo unitário: sen (θ) = y r, cos (θ)

Leia mais

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital. Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida

Leia mais

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0 Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-TAGUS, LERCI, LEGI E LEE o SEM. 006/07 5 a FICHA DE EXERCÍCIOS PRIMITIVAÇÃO DE FUNÇÕES

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 0 - Época especial Proposta de resolução GRUPO I. Temos que A e B são acontecimentos incompatíveis, logo P A B 0 Como P A B P B P A B, e P A B 0, vem que: P A B P

Leia mais

MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP)

MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 12/ 23/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Hoje: correção da prova + derivadas. 3 Derivadas: definição de f (a) e equação

Leia mais

Curso: Análise e Desenvolvimento de Sistemas. (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral)

Curso: Análise e Desenvolvimento de Sistemas. (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral) Curso: Análise e Desenvolvimento de Sistemas Disciplina Sistemas de Controle e Modelagem (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral) Prof. Wagner Santos C. de Jesus wsantoscj@gmail.com

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ).

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ). Ministério a Eucação Universiae Tecnológica Feeral o Paraná Campus Campo Mourão Wellington José Corrêa ā Lista e Cálculo Diferencial e Integral I Curso: Bacharelao em Ciências a Computação DAMAT, 205 Nome:

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

Introdução à Astronomia Semestre:

Introdução à Astronomia Semestre: Introdução à Astronomia Semestre: 2015.1 Sergio Scarano Jr 22/10/2013 Horário de Atendimento do Professor Professor: Sergio Scarano Jr Sala: 119 Homepage: http://www.scaranojr.com.br/ * E-mail: scaranojr.ufs@gmail.com**

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,

Leia mais

A derivada (continuação) Aula 17

A derivada (continuação) Aula 17 A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MAEMÁICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como o ponto (0,) pertence ao gráfico de f, temos que f(0) =, e assim vem que: f(0) = a 0 + b = + b = b = b = Como o ponto

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES FORTALEZA - 009 Curso e Cálculo I Capítulo SUMÁRIO Capítulo Limite e continuiae.. Limites: Um conceito intuitivo.. Limites: Técnicas para calcular 9.. Limites:

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

Regras do Produto e do Quociente. Regras do Produto e do Quociente

Regras do Produto e do Quociente. Regras do Produto e do Quociente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e

Leia mais

a prova de Matemática da FUVEST 2ª fase

a prova de Matemática da FUVEST 2ª fase a prova e Matemática a FUVEST ª fase - 00 Matemática QUESTÃO 0 QUESTÃO 0 A iferença entre ois números inteiros positivos é 0. Ao multiplicar um pelo outro, um estuante cometeu um engano, teno iminuío em

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

Exercícios de Coordenadas Polares Aula 41

Exercícios de Coordenadas Polares Aula 41 Revisão - Métodos de Integração e Exercícios de Coordenadas Polares Aula 41 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 24 de Junho de 2014 Primeiro Semestre de 2014 Turma

Leia mais

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella A Forma Geométrica os Cabos Suspensos Prof. Lúcio Fassarella - 008 - Problema: Determinar a forma eométrica e um cabo e comprimento L suspenso em suas extremiaes por postes e mesma altura H separaos por

Leia mais

Aula 5 Limites infinitos. Assíntotas verticais.

Aula 5 Limites infinitos. Assíntotas verticais. MÓDULO - AULA 5 Aula 5 Limites infinitos. Assíntotas verticais. Objetivo lim Compreender o significado dos limites infinitos lim f(x) = ±, f(x) = ± e lim f(x) = ± + Referências: Aulas 34 e 40, de Pré-Cálculo,

Leia mais

Uma breve introdução ao estudo de equações diferenciais 1

Uma breve introdução ao estudo de equações diferenciais 1 Uma breve introução ao estuo e equações iferenciais 1 2 Pero Fernanes Este texto tem o objetivo e apresentar os métoos e resolução os moelos mais básicos e equações iferenciais. A ieia é fornecer um treinamento

Leia mais