Corrente elétrica, Resistência e circuitos elétricos de corrente contínua. Cargas em movimento

Tamanho: px
Começar a partir da página:

Download "Corrente elétrica, Resistência e circuitos elétricos de corrente contínua. Cargas em movimento"

Transcrição

1 9//17 Elricidad Magnismo IME Corrn lérica, sisência circuios léricos d corrn conínua Prof. Crisiano Olivira Ed. Basilio Jaf sala crislpo@if.usp.br Cargas m movimno Cargas m movimno Corrn lérica O caminho prcorrido pla corrn dnomina-s circuio lérico. A principal função d um circuio lérico é ransfrir nrgia d um local para ao ouro. A mdida u as parículas carrgadas flum no circuio, a nrgia poncial lérica é ransfrida d uma fon aé um disposiivo, ond é armaznada ou convrida m oura forma d nrgia: calor, som, luz, c LECTUE NOTES POF. CISTIANO 1

2 9//17 Corrn lérica Movimno d cargas d uma rgião para a oura. No uilíbrio lrosáico, o campo lérico é igual a zro m odos os ponos no inrior d um conduor porano não xis nnhuma corrn. Considr agora o u ocorr uando um campo consan sacionário E é sablcido no inrior d um conduor. Uma parícula carrgada srá submida a uma força sacionária.ssaparícula sivss no vácuo, la ria uma aclração sacionária. No nano, dnro d um conduor, as parículas carrgadas s movm colidm com íons grands do marial, praicamn sáicos. Assim, o fio rsulan do campo E é al u, além do movimno caóico das parículas carrgadas, xis ambém um movimno muio lno, ou movimno d arras, d um grupo d parículas na dirção da força lérica. Ess movimno é dscrio pla vlocidad d arras das parículas. Assim surg uma corrn fiva no conduor Corrn lérica Dfinimos corrn lérica I, como o movimno d cargas posiivas, msmo sabndo u a corrn ral é produzida plos lérons. Esa scolha dnomina-s snido convncional d corrn. Ds modo dfin-s a corrn aravés da ára com sção ra A como igual ao fluxo oal das cargas aravs da ára por unidad d mpo. lim Δ Δ dq : carga [Coulomb] LECTUE NOTES : mpo [sgundos] I : ampèr [A = C/s] No SI a unidad d corrn lérica éoampèr,dfinido como um coulomb por sgundo. Quando uma lanrna é ligada m-s corrns da ordm d.5 aé 1A; a corrn dos fios do moor d arranu m um moor d parida d auomóvl é da ordm d A. As corrns m um circuio d radio lvisão são da ordm d miliamprs ou microamprs corrn dnro d compuadors são da ordm d picoamprs. POF. CISTIANO

3 9//17 Corrn lérica, vlocidad d arras dnsidad d corrn Sjam n parículas carrgadas por unidad d volum. A grandza n é a concnração d parículas (no SI, possui unidad m -3 ). Suponha u s movam com a msma vlocidad d arras. Em um inrvalo, cada parícula s dsloca. Vamos assumir u as parículas s dsloum m uma sção circular d ára. Assim o volum ocupado plas parículas é onumrod parículas m su inrior é. S cada parícula possui carga, acarga u flui para for a da xrmidad do cilindro no inrvalo é: A corrn é: A dnsidad d corrn J é dfinida como a corrn u flui por unidad d ára da sção ra: J : [A/m J I indpndm do sinal da carga, ] somn dpnd do valor absoluo O valor dnsidad d corrn inclui o snido da vlocidad d arras: sisividad A rlação nr a dnsidad d corrn fac a um dado campo lérico é, m gral, basan complxa. Para cros mariais, spcialmn mais, m uma dada mpraura é uas diramn proporcional a, a razão E / J prmanc consan. Esa rlação, chamada Li d Ohm foi dscobra plo físico almão Gorg Simon Ohm. Dfin-s rsisividad d um marial como a razão nr o módulo do campo lérico o módulo da dnsidad d corrn LECTUE NOTES POF. CISTIANO No SI a rsisividad possui unidad V.m/A ou.m Sndo (ohm) a unidad d rsisência lérica (V/A) 3

4 9//17 sisividad para vários mariais sisência Para um conduor com rsisividad mos a rlação Quando a Li d Ohm é obdcida, a rsisividad é consan Suponha um fio conduor com sção ransvrsal com ára A comprimno L. Quando mos um poncial V nr as xrmidads, a corrn convncional I fluirá no snido d maior poncial para o mnor poncial. Como J é uma dnsidad d corrn, o produo JA indicará o valor da corrn lérica I. Agora, como mos uma corrn sacionaria, V=EL. Assim: I JA Ond dfinimos a rsisência como sndo E J V EL E V / L L A J E / J V / L E mos a Li d Ohm rlacionando, V, I : VA I JA V V V I L L V I A (ohm) é a unidad d rsisência lérica (V/A) LECTUE NOTES POF. CISTIANO 4

5 9//17 Grafico IxV Força lromoriz Circuios Corrn sacionária -> circuio complo A corrn flui d um pono com maior poncial para ouro pono com mnor poncial, m algum lugar do circuio, dv xisir um disposiivo u novamn lv o poncial, fazndo com u as cargas m um circuio (u são consans) rornm d uma rgião d baixo poncial para oura d alo poncial. O agn u faz a corrn fluir do poncial mais baixo para o mais lvado dnomina-s força lromoriz (fm) Todo circuio com corrn sacionária dv possuir algum disposiivo u produza uma fm. Tal disposiivo dnomina-s fondfm, oufon d nsão. Exmplos são pilhas, barias, gradors léricos, células solars, rmopars, células d combusívl, c LECTUE NOTES Uma fon idal (u não xis!) manm um poncial consan indpndn da corrn u passa por l. POF. CISTIANO 5

6 9//17 Força lromoriz Circuios Em um circuio fchado, a função d uma fon mf é movr cargas d localizadas m um poncial baixo para um poncial lvado d modo u o circuio funcion. O aumno na nrgia poncial é igual ao rabalho não lrosáico ralizado pla fon mf:, logo: A nsão nas xrmidads d um fio é dada por. Logo, para um circuio fchado, alimnado por uma fon mf, Fons rais Fons mf rais possum rsisência inrna. Esa rsisência, u dnominarmos d r, acabará por sr diminuir a nsão disponívl por sa fon. Em ouras palavras, par da nsão mf da fon fica nsa rsisência inrna: LECTUE NOTES Logo, a corrn u passa por um circuio lérico srá dada por: POF. CISTIANO Assim, a rsisência oal do circuio é + r. 6

7 9//17 Simbolos para circuios léricos Simbolos para circuios léricos Conduor com rsisência dsprzávl sisor Fon mf idal. Linha longa smpr para o rminal posiivo, indicando o rminal com maior poncial. LECTUE NOTES Fon mf com rsisência inrna. Volímro Amprímro POF. CISTIANO 7

8 9//17 Simbolos para circuios léricos Circuios Eléricos Lis d Kirchhoff Quando um circuio fchado é prcorrido (malha), a soma algébrica das mudanças no poncial dv sr zro Em ualur pono d junção no circuio ond a corrn pod s dividir, a soma das corrns u nram an junção dv sr igual a soma das corrns u sam da junção LECTUE NOTES POF. CISTIANO 8

9 9//17 Enrgia Poência m circuios léricos Quando uma carga passa por um lmno do circuio, xis uma alração no poncial igual a V ab.as cargas não ganham nrgia cinéica dvido ao fao da corrn u passa plo circuio é a msma m odos os ponos. Assim a uanidad V ab indica a uanidad d nrgia forncida a um lmno do circuio ou xraída dl. Em um circuio lérico a uanidad d inrss éaaxacomuanrgia é forncida ou xraída d um dado lmno. LECTUE NOTES Sja uma corrn I passando por um lmno.. Assim m um inrvalo d uma uanidad d carga dq = I d passa plo lmno. A mudança d nrgia poncial ns lmno é dada por V ab dq = V ab Id Dividindo ssa xprssão por d, obmos a axa d ransfrência d nrgia para o lmno ou a parir dl. Essa axa d ransfrência d nrgia é a poência P: POF. CISTIANO [P] = [V].[I]=1J/C * 1 C/s = 1J / s = 1 W (Wa) Taxa d nrgia forncida ou xraída d um lmno do circuio 9

10 9//17 Poência m rsisors S o lmno do circuio é um rsisor, a difrnça d poncial é dada por: Assim, a poência dissipada m um rsisor srá: Essa poncia dissipada s ransforma gralmn m calor. Isso pod sr uilizado, por xmplo, para aucimno d água, orradira ou divrsos ouros d disposiivos. Poência forncida pla fon A nrgia é forncida por uma fon para um dado circuio sguindo a uação: Uma fon ral possui a força lromoriz a rsisência inrna r, d modo u a nsão na fon é: LECTUE NOTES Assim rmos: I é a poncia forncida pla fon ao sisma. É a axa d rabalho ralizado pla fon no sisma. I r é a nrgia dissipada pla rsisência inrna da fon. A difrnça acima é a poncia disponívl forncida pla fon POF. CISTIANO 1

11 9//17 Poência Circuios DC Ns ipo d circuios, rmos a chamada dirc currn (DC), corrn conínua. Ns ipo d sisma considramos u a fon d nsão é consan. Associação d rsisors: sisors m séri: LECTUE NOTES sisors m parallo: POF. CISTIANO 11

12 9//17 Lis d Kirchhoff Quando um circuio fchado é prcorrido (malha), a soma algébrica das mudanças no poncial dv sr zro LECTUE NOTES Em ualur pono d junção no circuio ond a corrn pod s dividir, a soma das corrns u nram na junção dv sr igual a soma das corrns u sam da junção POF. CISTIANO 1

13 9//17 Enrgia forncida pla Fon: Balanço d nrgia de VI( ) d LECTUE NOTES E VI( ) d POF. CISTIANO 13

14 9//17 Circuio Alrnando-s a posição da Chav comuadora, pod-s ligar dsligar a fon no sisma Carga do Capacior : Fon ligada LECTUE NOTES POF. CISTIANO 14

15 9//17 Assumindo u o capacior C sá inicialmn dscarrgado podmos aplicar a li das malhas obr: V C V V C C V I I C Duas variávis, I São Indpndns? NÃO!!! Corrn lérica: d d C d I d Euação Difrncial d primira ordm com sinal xrno Como solvr? Dscarga do Capacior LECTUE NOTES POF. CISTIANO 15

16 9//17 Agora o capacior sá complamn carrgado. Como não xis mais a fon a li das malhas fornc: V C V V C C V I I C Duas variávis, I São Indpndns? NÃO!!! Corrn lérica: d d C d I d Euação Difrncial d primira ordm homogêna Como solvr? Prcisamos solvr: Carga do Capacior d d C LECTUE NOTES Dscarga do Capacior d d C POF. CISTIANO 16

17 9//17 Solução obida: Carga do Capacior C 1 d I d C.63 C I I = / I.368 I I = Solução obida: Dscarga do Capacior d I d I = LECTUE NOTES C -I I = / POF. CISTIANO I.368 I 17

18 9//17 Enrgia forncida pla Fon: C 1 de VI( ) d Balanço d nrgia d E VI( ) d C d d ( ) ( ) 1 Enrgia Armaznada /Forncida plo capacior Carga du Vd d C C 1 d du U du / / / / d d ) 1 ( 1 1 C Dscarga du Vd d C C du U du d / LECTUE NOTES / POF. CISTIANO d d ( 1) 1 C Ond sá a oura mad da nrgia? 18

19 9//17 19 Enrgia Dissipada no sisor Carga Dscarga d I du I d I du I d I U d d 1 1) ( C d I U d d 1 1) ( C Aplicação: Tmporizador LECTUE NOTES POF. CISTIANO

20 9//17 Filro Passa baixa Filro Passa Ala LECTUE NOTES POF. CISTIANO

21 9//17 Solução Alrnaiva : Carga do Capacior d d C d d d C d d 1 d C d C ln C ln C lnc C ln C C C C C C C C 1 1 d,ln( x) a x Solução Alrnaiva: Dscarga do Capacior d d C d d d d d 1 d Q ln d Q Q ln ln( Q) ln Q Q 1 d LECTUE NOTES,ln( x) a x POF. CISTIANO Q C, uando a carga do capacior ivr sido compla a a 1

3. Análise de Circuitos Elétricos Simples

3. Análise de Circuitos Elétricos Simples REDES CIRCUITOS: 3. Anális d Circuios Eléricos Simpls A inrconxão d dois ou mais lmnos d circuios simpls forma uma rd lérica. S a rd ivr plo mnos um caminho fchado, la é ambém um circuio lérico. ELEMENTO

Leia mais

FÍSICA MÓDULO III (triênio )

FÍSICA MÓDULO III (triênio ) FÍSCA MÓDUO (riênio -3) QUESTÕES OBJETVAS 9. Para conoizar dinhiro co sua cona d luz, você dv aprndr a calcular o consuo d nrgia lérica d sua casa, qu é forncido, sua cona, na unidad d Wh (quilowa-hora).

Leia mais

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS ANAISE DE IRUITOS DE a E a J.R. Kaschny ORDENS Inrodução As caracrísicas nsão-corrn do capacior do induor inroduzm as quaçõs difrnciais na anális dos circuios léricos. As is d Kirchhoff as caracrísicas

Leia mais

2. Análise de Circuitos Elétricos Simples. Curto circuito e circuito aberto. Amperímetros e voltímetros

2. Análise de Circuitos Elétricos Simples. Curto circuito e circuito aberto. Amperímetros e voltímetros REDES CIRCUITOS:. Anális d Circuios Eléricos Simpls A inrconxão d dois ou mais lmnos d circuios simpls forma uma rd lérica. S a rd ir plo mnos um caminho fchado, la é ambém um circuio lérico. ELEMENTO

Leia mais

Experimento 4 Indutores e circuitos RL com onda quadrada

Experimento 4 Indutores e circuitos RL com onda quadrada Exprimno 4 Induors circuios RL com onda quadrada 1. OBJETIVO O objivo dsa aula é sudar o comporamno d induors associados a rsisors m circuios alimnados com onda quadrada. 2. MATERIAL UTILIZADO osciloscópio;

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

Sumário Propagação em Meios com perdas Propagação em Meios Dieléctricos e Condutores Energia transportada por uma onda electromagnética

Sumário Propagação em Meios com perdas Propagação em Meios Dieléctricos e Condutores Energia transportada por uma onda electromagnética Sumário Propagação m Mios com prdas Propagação m Mios Dilécricos Conduors nrgia ransporada por uma onda lcromagnéica Livro Chng : pp [354 37] [379 385] Propagação d Ondas m Mios sm Prdas k k x x x k C

Leia mais

Capítulo 6 Decaimento Radioativo

Capítulo 6 Decaimento Radioativo Física das Radiaçõs Dosimria Capíulo 6 Dcaimno Radioaivo Dra. Luciana Tourinho Campos Programa acional d Formação m Radiorapia Inrodução Inrodução Consan d dcaimno Vida-média mia-vida Rlaçõs nr núclo pai

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

7. Aplicação do Principio do Máximo

7. Aplicação do Principio do Máximo 7. Aplicação do Principio do Máximo Ns capiulo vamos implmnar um algorimo qu uiliz a oria do Principio do Máximo para drminar o conjuno dos sados aingívis. Com o rsulados obidos vamos nar fazr um parallo

Leia mais

Aula 1, Experiência 1 Circuitos CA e Caos

Aula 1, Experiência 1 Circuitos CA e Caos Noas d aula: www.fap.if.usp.br/~hbarbosa LabFlx: www.dfn.if.usp.br/curso/labflx Profa. Eloisa Szano loisa@dfn.if.usp.br Ramal: 7 Pllron Aula, Expriência ircuios A aos Prof. Hnriqu Barbosa hbarbosa@if.usp.br

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS Tiago Novllo d Brio Fcilcam, iago-novllo@homail.com ald dos Sanos Coquiro Fcilcam, vcoquiro@yahoo.com.br Rosangla Tixira Guds UTFPR, r_guds@homail.com

Leia mais

J, o termo de tendência é positivo, ( J - J

J, o termo de tendência é positivo, ( J - J 6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri FENOMENOS DE TRANSPORTE o Smsr d 03 Prof. Maurício Fabbri 3ª SÉRIE DE EXERCÍCIOS Transpor d calor por convcção O ransin ponncial simpls Consrvação da nrgia 0-3. O coficin d ransfrência d calor Lia o marial

Leia mais

TRASITÓRIOS PARTE 2. 1 Fluxo magnético. 2 Ímã permanente. 2 Ímã. 3 Fluxo magnético de um condutor retilíneo 27/4/2015

TRASITÓRIOS PARTE 2. 1 Fluxo magnético. 2 Ímã permanente. 2 Ímã. 3 Fluxo magnético de um condutor retilíneo 27/4/2015 7/4/5 TTÓO PTE 7/4/5 7/4/5 Fluxo magnéico Ímã prmann N há corrn lérica [], xi fluxo magnéico. há fluxo magnéico [Wb], xi corrn lérica. 7/4/5 7/4/5 4 Ímã Da mma forma qu não lérica fluxo lérico ão inparávi,

Leia mais

Probabilidade II Aula 6

Probabilidade II Aula 6 obabilidad II Aula 6 Março d 9 Mônica Barros, DSc Conúdo Mais sobr momnos condicionais Cálculo d valors srados aravés do condicionamno numa variávl rlação nr valors srados condicionais incondicionais fórmulas

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

Física IV. Instituto de Física - Universidade de São Paulo. Aula: Interferência

Física IV. Instituto de Física - Universidade de São Paulo. Aula: Interferência Física IV Insiuo d Física - Univrsidad d São Paulo Profssor: Valdir Guimarãs -mail: valdirg@if.usp.br Aula: Inrfrência Inrfrência d ondas Inrfrência d ondas O qu aconc quando duas ondas s combinam ou inrfrm

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial 6- EDO s: TEORIA E TRATAMENTO NUMÉRICO Inrodução Muios problmas imporans significaivos da ngnharia, das ciências físicas das ciências sociais, formulados m rmos mamáicos, igm a drminação d uma função qu

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA 3 TRNSFORMD DE LPLCE Prof JOSÉ RODRIGO DE OLIVEIR CONCEITOS BÁSICOS Númro complxo: ond α β prncm ao nº rai Módulo fa d um númro complxo Torma d Eulr: b a an a co co n n Prof Joé Rodrigo CONCEITOS BÁSICOS

Leia mais

Aula Teórica nº 32 LEM-2006/2007. Prof. responsável de EO: Mário J. Pinheiro. Oscilações eléctricas num circuito RLC

Aula Teórica nº 32 LEM-2006/2007. Prof. responsável de EO: Mário J. Pinheiro. Oscilações eléctricas num circuito RLC Aula órica nº 3 LEM-6/7 Prof. rponávl d EO: Mário J. Pinhiro Ocilaçõ lécrica num circuio RLC Conidr- agora um condnador inicialmn carrgado com a carga q qu no inan é dcarrgado obr um circuio lécrico d

Leia mais

= σ, pelo que as linhas de corrente coincidem com as l. de f. do campo (se o meio for homogéneo) e portanto ter-se-à. c E

= σ, pelo que as linhas de corrente coincidem com as l. de f. do campo (se o meio for homogéneo) e portanto ter-se-à. c E Aula Tórica nº 17 LEM-2006/2007 Prof. rsponsávl: Mário Pinhiro Campos Eléctricos d origm não Elctrostática Considr-s um condutor fchado sobr si próprio prcorrido por uma corrnt d dnsidad J. S calcularmos

Leia mais

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell Méodos Elromagnéicos agoso d 9 Fundamnos Equaçõs d Mawll no domínio do mpo da frqüência Onda plana édison K. ao Equaçõs d Mawll Todos os fnômnos lromagnéicos obdcm às quaçõs mpíricas d Mawll. b d h j ond

Leia mais

TRASITÓRIOS PARTE 1 CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA. 0 q elétron. Itens. 1 Carga elétrica.

TRASITÓRIOS PARTE 1 CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA. 0 q elétron. Itens. 1 Carga elétrica. // TÂN TTÓO T TÂN // // TÂN n. nrgia poncial lérica..trabalho lérico..oncial lérico..tnão lérica.. arga lérica..apaciância lérica.. Força lérica..náli mporal.. ampo lérico.. rmiividad lérica ar.. Fluxo

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Capítulo 3 Transmissão de Sinais e Filtragem

Capítulo 3 Transmissão de Sinais e Filtragem Capíulo 3 Transmissão d Sinais Filragm 3.1 Rsposa d Sismas Linars Invarians no Tmpo No diagrama d blocos da Figura 3.1-1, é o sinal d nrada é o sinal d saída. Elmnos qu armaznam nrgia ouros ios inrnos

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

MÁQUINAS DE FLUXO CADERNO DE LABORATÓRIO

MÁQUINAS DE FLUXO CADERNO DE LABORATÓRIO DEARTAMENTO DE TURBOMÁQUINAS ágina /75 MÁQUINAS DE FLUXO CADERNO DE LABORATÓRIO 3 DEARTAMENTO DE TURBOMÁQUINAS ágina /75 HOMENAGEM Esa é uma dição rcopilada plo rof. João Robro Barbosa d uma publicação

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

Capítulo 2.1: Equações Lineares 1 a ordem; Método dos Fatores Integrantes

Capítulo 2.1: Equações Lineares 1 a ordem; Método dos Fatores Integrantes Capíulo.1: Equaçõs Linars 1 a ordm; Méodo dos Faors Ingrans Uma EDO d primira ordm m a forma gral d f, ond f é linar m. Exmplo: a Equaçõs com coficins consans; a b b Equaçõs com coficins variavis: d p

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

Aula 16 - Circuitos RC

Aula 16 - Circuitos RC Univrsidad Fdral do Paraná Stor d iências Exatas Dpartamnto d Física Física III Prof. Dr. icardo Luiz Viana frências bibliográficas: H. 29-8 S. 27-5 T. 23-2 Aula 16 - ircuitos São circuitos ond um rsistor

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Funções reais de n variáveis reais

Funções reais de n variáveis reais Apoio às aulas MAT II 8--6 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE FUNÇÕES REAIS DE MAIS DE UMA VARIÁVEL REAL 5/6 Manul Marins

Leia mais

Sinais e Sistemas Lineares

Sinais e Sistemas Lineares ES 43 Linars Prof. Aluizio Fauso Ribiro Araújo Dpo. of Sismas d Compuação Cnro d Informáica - UFPE Capíulo Conúdo Sinais Tamanho d um Sinal Opraçõs Úis com Sinais Classificação d Sinais Modlos Úis com

Leia mais

1ª. Lei da Termodinâmica para um Volume de Controle

1ª. Lei da Termodinâmica para um Volume de Controle ª. Li da Trmodinâmica ara um Volum d Conrol Grand ar do roblma d inr na ngnharia nol ima abro, ou ja, ima no quai há fluo d maa araé d ua fronira. É, orano, connin obrmo uma rão da ª. Li álida ara ima

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Univridad Fdral do ABC ESZO 001-15 Fnôno d Tranpor Profa. Dra. Ana Maria Prira No ana.no@ufabc.du.br Bloco A, orr 1, ala 637 1ª Li da Trodinâica para olu d Conrol ESZO 001-15_Ana Maria Prira No 1ª Li da

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 9 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada m 00. A LISTA DE EXERCÍCIOS Drivadas d Funçõs Compostas 0. Para cada uma das funçõs sguints,

Leia mais

4. Modelos matemáticos de crescimento

4. Modelos matemáticos de crescimento 2 Sumário (3ª aula) Exrcícios d consolidação (coninuação) 4. Modlos mamáicos d crscimno 4..Progrssão ariméica (variação absolua consan) 4.2.Progrssão goméricas (variação rlaiva consan) Exrcício 2) Compaibiliz

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais

O modelo Von Bertalanffy adaptado para suínos de corte

O modelo Von Bertalanffy adaptado para suínos de corte O modlo Von Bralanffy adapado para suínos d cor Lucas d Olivira nro Fdral d Educação Fdral Tcnológica EFET-MG.5-, Av. Amazonas 525 - Nova Suíça - Blo Horizon - MG - Brasil E-mail: lucasdolivira@gmail.com

Leia mais

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )

Leia mais

Este texto trata do estudo analítico de sistemas de controle. Falando de forma geral, ele consiste de quatro partes:

Este texto trata do estudo analítico de sistemas de controle. Falando de forma geral, ele consiste de quatro partes: . Mamáica.. Sima Fíico Modlo E o raa do udo analíico d ima d conrol. Falando d forma gral, l coni d quaro par:. Modlagm. Dnvolvimno d quaçõ mamáica. Análi 4. Projo E capíulo dicu a dua primira par. A diinção

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m

Leia mais

( 1). β β. 4.2 Funções Densidades Con2nuas

( 1). β β. 4.2 Funções Densidades Con2nuas 4 Funçõs Dnsidads Connuas Dnsidad Eponncial A dnsidad ponncial é u:lizada comumn para sablcr sruuras d probabilidads m primnos cujos nos são siuados na ra ral [, ] Uma aplicação gral comum corrspond à

Leia mais

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL Univrsidad Fdral d Alagoas Cntro d cnologia Curso d Engnharia Civil Disciplina: Mcânica dos Sólidos Código: ECIV030 Profssor: Eduardo Nobr Lags orção m Barras d Sção ransvrsal Dlgada Fchada Mació/AL Sção

Leia mais

Escoamento incompressível, tubo rígido I

Escoamento incompressível, tubo rígido I Balanço d aa: coano incorívl, ubo ríido I ) 0 ) Balanço d ono linar: Inrando nr a oiçõ, rula: vaão voluérica conan na oição d d ) nθ d ) ) uda d rão á cooa d uda d rão or nria oncial ravidad), nria cinéica

Leia mais

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1 Funçõs d Várias Variávis (FVV UFABC, 209-Q Pr Hazard 4 Drivadas Toal, Dircional Parcial 4. Drivadas a rspio d um vor. Dfinição 4.. Sja A R n um abro, sja f: A R, P A v R n. Digamos qu f é drivávl (ou difrnciávl

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

CEL033 Circuitos Lineares I

CEL033 Circuitos Lineares I Aula 13/03/2012 CEL033 Circuios Lineares I ivo.junior@ufjf.edu.br Sie Disciplina www.ufjf.br/ivo_junior CEL033_NOTURNO Teoria do Circuios Eléricos Alessandro Vola Físico Ialiano 1745-1827 1800- Invenção

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsn o s raciocínio d orma clara, indicando odos os cálclos q ivr d ar odas as jsiicaçõs ncssárias. Qando, para m rslado, não é pdida ma aproimação,

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) - 2009/1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 PROBLEMA 1 (Cilindros coaxiais) [ 2,5 ponto(s)] Um cilindro condutor

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Atrito Fixação - Básica

Atrito Fixação - Básica 1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra

Leia mais

Equações de Maxwell na Forma Fasorial

Equações de Maxwell na Forma Fasorial quaçõs d Mawll na Forma Fasorial N s o raa-s das quaçõs d Mawll na forma fasorial as rlaçõs consiuivas m mios mariais, as quais srão amplamn mprga- das ao longo o o, por raar-s d uma podrosa frramna mamáica

Leia mais

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Magnetismo e Fontes de Campo Magnético

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Magnetismo e Fontes de Campo Magnético Sala d Estudos FÍSIC Lucas 3 trimstr Ensino Médio 3º ano class: Prof.LUCS Nom: nº Sala d Estudos Magntismo Fonts d Campo Magnético 1. (Ifsp 2013) Um profssor d Física mostra aos sus alunos 3 barras d mtal

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=.

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=. Prova d Conhcimntos Espcíficos 1 a QUESTÃO: (1,5 ponto) Considr a função f dfinida por Dtrmin: -x f(x). a) as quaçõs das assíntotas horizontais vrticais, caso xistam; b) as coordnadas dos pontos d máximo

Leia mais

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes:

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes: Curso d linguagm mamáica Profssor Rnao Tião 1 PUCRS. No projo Sobrmsa Musical, o Insiuo d Culura da PUCRS raliza aprsnaçõs smanais grauias para a comunidad univrsiária. O númro d músicos qu auaram na aprsnação

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO . INTRODUÇÃO Na saída dos circuios reificadores, viso na aula anerior, emos ensão pulsane que não adequada para o funcionameno da maioria dos aparelhos elerônicos. Esa ensão deve ser conínua, semelhane

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

Sinais e Sistemas Lineares

Sinais e Sistemas Lineares ES 43 Sinais Sismas Sinais Sismas Linars Prof. Aluizio Fauso Ribiro Araújo Dpo. of Sismas d Compuação Cnro d Informáica - UFPE Capíulo Sinais Sismas Eng. da Compuação Conúdo Sinais Tamanho d um Sinal Opraçõs

Leia mais

Notas de aulas de Mecânica dos Solos I (parte 5)

Notas de aulas de Mecânica dos Solos I (parte 5) 1 Noas d aulas d Mcânica dos olos I (par 5) Hlio Marcos Frnands iana Tma: Índics físicos do solo Conúdo da par 5 1 Inrodução 2 Ddução dos índics físicos do solo 3 Limis d variação dos índics físicos d

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se,

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se, Curo d Engnharia Elcrónica d Compuador - Elcrónica III Frquência Complxa rvião n Conidr- a xprão, σ v V co qu rprna uma inuoid com a ampliud modulada por uma xponncial. Com ral, m-, n σ>0 a ampliud d v

Leia mais

Curso de Engenharia Química Disciplina: Física I Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno:

Curso de Engenharia Química Disciplina: Física I Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno: Curso d Engnharia Química Disciplina: Física I Nota: Rubrica Coordnador Profssor: Rudson Alvs Aluno: Turma: EQ2M Smstr: 2 sm/2016 Data: 25/11/2016 Avaliação: 2 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO Noas d aula d PME 336 Procssos d ransfrênca d Calor 66 AULA 9 CONDUÇÃO DE CALOR EM REGIME RANSIÓRIO SÓLIDO SEMI-INFINIO Fluo d Calor num Sóldo Sm-Infno Na aula anror fo sudado o caso da condução d calor

Leia mais

Caderno Algébrico Medição Física

Caderno Algébrico Medição Física Cadrno Algébrico Vrsão 1.0 ÍNDICE MEDIÇÃO FÍSICA 3 1. O Esquma Gral 3 2. Etapas d 5 2.1. Aquisição das informaçõs do SCDE 5 2.2. Intgralização Horária dos Dados Mdidos 6 2.3. Cálculo das Prdas por Rd Compartilhada

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES 8.1 Drivadas Parciais d Ordns Supriors Dada a função ral d duas variávis f : Dom(f) R 2 R X = ) f(x) = f ) aprndmos antriormnt como construir suas drivadas

Leia mais

Circuitos Série de Corrente Alternada 1 Simplício do Carmo

Circuitos Série de Corrente Alternada 1 Simplício do Carmo ircuios éri d orrn lrnada 1 implício do armo ircuios éri d orrn lrnada implício do armo ircuios éri d orrn lrnada 3 implício do armo ircuios éri d orrn lrnada 4 implício do armo ircuios éri d orrn lrnada

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT - Mamáica I Prof.: Lopoldina Cachoira Mnzs Prof.: Mauricio Sobral Brandão ª Lisa d Ercícios Par I: Funçõs Econômicas

Leia mais

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Dparamno Mamáica Disciplina Anális Mamáica Curso Engnharia Informáica º Smsr º Ficha nº : Cálculo ingral m IR Drmin a soma d Rimann da função

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais